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Scattering of relativistic electrons and analogies with optical phenomena:
A study of longitudinal and transverse shifts at step potentials
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We investigate the behavior of relativistic electrons encountering a potential step through analogies with
optical phenomena. By accounting for the conservation of the Dirac current, we elucidate that the Goos-Hänchen
shift can be understood as a combination of two components: one arising from the current entering the
transmission region and the other originating from the interference between the incident and reflected beams.
This result has been proven to be consistent with findings obtained utilizing the stationary phase method.
Moreover, we explore the transverse Imbert-Fedorov shift by applying both current conservation and total
angular momentum conservation, revealing intriguing parallel to the spin Hall effect. Beyond enriching our
comprehension of fundamental quantum phenomena, our findings have potential applications for designing and
characterizing devices using Dirac and topological materials.
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I. INTRODUCTION

The Goos-Hänchen (GH) effect, first described by Newton
[1] in his pioneering work on optics and later named after
Goos and Hänchen in 1947 [2,3], stands as a notable optical
phenomenon. Newton’s observations laid the groundwork for
understanding this effect, which was further substantiated by
the theoretical and experimental contributions of Goos and
Hänchen. Their studies revealed that, when a light beam un-
dergoes total internal reflection at the interface between two
different refractive media, it undergoes a slight lateral shift
from the position predicted by geometrical optics. Initially
explained within the framework of classical wave optics, the
GH effect revealed the intricate behavior of light at interfaces
[4,5]. Another remarkable phenomenon, known as the Imbert-
Fedorov (IF) effect, was independently discovered by Imbert
[6] and Fedorov [7]. The IF effect pertains to the transverse
shift experienced by a totally reflected beam in the plane
perpendicular to the incidence plane. This shift arises due
to a polarization-dependent phase shift between the electric
and magnetic field components of the reflected beam [8,9].
Unlike the GH effect, the IF effect shares similarities with
the spin Hall effect of light, both of which emerge from the
complex interplay between the polarization properties and
the reflection behavior of light [10–12]. These two optical
phenomena, the GH and the IF effects, have been explored
in diverse optical systems and materials [13–23], including
plasmonic structures, photonic crystals, and metamaterials.
The understanding and control of these effects have facilitated
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significant advancements in the field of nanophotonics, optical
communications, and sensing technologies.

Following the idea of changing the perspective, the explo-
ration of analogies between quantum mechanics and classical
optics has provided a fruitful avenue for understanding and
analyzing quantum systems [24]. It has allowed us to leverage
insights and techniques from optics to gain new perspectives
on quantum phenomena, driving advancements in our knowl-
edge and applications of quantum mechanics [25]. Within the
framework of quantum mechanics, the behavior of scattering
particles, including Dirac particles and neutrons, has attracted
significant attention. Researchers have actively sought to
transplant concepts originally observed in classical optics,
such as the GH effect [4,26,27] and the IF effect [28–30], into
the context of quantum particle scattering.

With the advent of mesoscopic transport in condensed
matter physics, the study of GH and IF effects has expanded
to encompass various quantum systems, including semicon-
ductors, graphene, and topological insulators, as reviewed in
[31,32]. In the realm of semiconductors, the GH effect for
ballistic electrons has been integrated into the analysis of
crucial processes such as reflection, transmission, and tun-
neling, playing a vital role in the design and optimization of
electronic devices such as transistors, diodes, and integrated
circuits [33]. Furthermore, the GH shifts can be dynamically
tuned by external magnetic or electric fields, allowing for
the manipulation of electron beams and control of electron
transport in semiconductor-based devices [34–36]. Similarly,
the GH shifts and their tunability have been investigated in
graphene-based systems, offering a wide range of applications
[37–39]. Remarkably, the GH shfits and IF shifts as well
become particularly interesting in the presence of crossed
Andreev reflection at a metal-superconductor interface when
combined with graphene [40,41]. In recent times, these shifts’
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connection with phenomena such as the anomalous Hall ef-
fect, Berry curvature [42], screw scattering, and side jump
[43,44], has attracted considerable attention [45–51]. These
phenomena are intricately linked to the unique electronic and
topological properties of these materials, hinting at poten-
tial applications in spintronics and topological phenomena.
Importantly, the relationship between Berry curvature (mani-
fested in various Hall effects) and the shift vector (comprising
shift currents and side jumps), as well as the Pancharatnam-
Berry phase experienced by wave packets or beams, has been
well established and clarified. Consequently, the interplay be-
tween GH and IF shifts and other phenomena in solid-state
systems, such as the bulk photovoltaic effect [52–54], has
been also elucidated a lot. Therefore, gaining fundamental
insights into their physical mechanics from different perspec-
tives is of paramount importance.

In this article, we present a comprehensive investigation
into the GH and IF shifts exhibited by relativistic electrons
as they scatter by step potentials. The motivation to focus
on relativistic electrons, govern by the Dirac equation, stems
from the intriguing possibility of unveiling fruitful phenom-
ena resulting from the unique coupling of spin and orbital
angular momentum [55–60], particularly the complex dy-
namics at the intersection of relativistic quantum mechanics
and the distinctive properties of electron vortices. Building
upon the foundation of the Dirac equation, we analyze the
scattering of relativistic electrons. Due to the absence of spin
flip in the transmission through the potential barrier [61], our
study delves into two-dimensional Dirac diffusion at a single
scattering interface. Exploiting the explicit spin-dependent
amplitudes and phases of reflection and transmission, we
address the analytical aspects of the GH shift in term of con-
servation of Dirac current, and compare the results obtained
from the stationary phase method (SPM) [62]. Also we con-
nect the IF shift obtained from the current conservation to spin
Hall effect in terms of spin-to-orbital angular momentum con-
version. Our results will not only provide the physical insight
of the GH and IF shifts, but also the potential applications of
these shifts in Dirac materials and topological systems, which
share a fundamental similarity with Dirac particles.

Methodologically, we employ the energy flux method,
originally proposed by Renard [4] and Yasumoto [63,64], as
an alternative to the stationary phase method [62] or operator
method [29,30]. The flux method offers a distinct advan-
tage in providing a clear physical interpretation of the GH
and IF shifts by emphasizing the conservation of particle
flux or intensity. It establishes a direct connection between
shifts and alterations in probability current density, render-
ing it conceptually straightforward. In contrast, the stationary
phase method relies on the validity of the stationary phase
approximation, particularly losing validity around the critical
angle of incidence [65]. The operator method’s applicability
is contingent on the choice of polarization eigenstates, while
the energy flux method is well suited for handling cases of
arbitrary polarization [22].

The remainder of the paper will be organized as follows. In
Sec. II, we present the Hamiltonian and model, along with the
calculation of reflection and transmission coefficients when
Dirac particles are scattered from a potential step. In Secs. III
and IV, we present the GH and IF shifts, respectively, in terms

(a)

(b) (c)

FIG. 1. (a) Schematic diagram of relativistic electrons encoun-
tering a step potential, depicting spin-flip reflection and transmission.
Projection in the (b) yoz plane and in the (c) xoz plane, showcasing
the GH (Sy) and IF (Sx) shifts, respectively, along with the corre-
sponding currents.

of flux conversion. The physical mechanics of theses shifts
are clarified as compared to the results from stationary phase
method and total angular momentum conservation. Finally, in
Sec. V, we provide the discussion and conclusion.

II. PRELIMINARY RESULTS

Our objective is to investigate the longitudinal GH shift
and the transverse IF shift of relativistic electrons as they
encounter a step potential, as illustrated in Fig. 1. The step
potential is defined by

V (z) =
{

0 (z < 0),
V0 (z > 0),

where V0 > 0. In general, the relativistic electron satisfies
the stationary Dirac equation, Hψ = Eψ , with the Hamilton
[66,67]

H = �α · �p + βm2, (1)

where m is the mass, E is the energy, and with a convenient
choice based on the Pauli spin matrices

αi =
(

0 σi

σi 0

)
, β =

(
I 0
0 −I

)
. (2)

Here �α presents the Dirac matrices αi (i = x, y, z) correspond-
ing to the z, y z directions with Pauli matrices σi, respectively,
and I is identity matrix. For simplicity, we choose natural units
with h̄ = c = 1 and the time-dependent factor e−iEt is sup-
pressed. We consider this investigation for two-dimensional
scattering arbitrary with an incidence angle θ , taking into
account the central plane wave of an relativistic electron beam
with finite width. The wave function of the plane wave under
the consideration along the z direction is assumed to be

ψin(z) =

⎛
⎜⎜⎜⎝

1
0
pz

E+m
ipy

E+m

⎞
⎟⎟⎟⎠eipzz, (3)
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where px = 0, pz and py are momentum components along
the z and y directions, respectively. As previously mentioned,
when px = 0, it indicates that the central momentum along the
x direction is zero. Consequently, the momentum distribution
and the beam width in that direction still remain finite. This
assumption is consistent with the standard practice in the
stationary phase approximation [62,65]. This wave function
is the free particle solutions to the Dirac equation, i.e. [67],

−iαzψ
′(z) + αy pyψ (z) + βmψ (z) = Eψ (z). (4)

The incident plane wave has the polarization in the z direc-
tion, denoted as spinor “|↑〉”, up to an overall normalization
factor 1/

√
N (see the Appendix). The dispersion relation is

given by E =
√

p2
y + p2

z + m2, and the incidence angle satis-
fies tan θ = py/pz. Upon encountering the step potential, the
reflected plane wave consists of a coexistence of the spin-up
and spin-down components, as shown in Fig. 1(a). Similarly,
the reflected wave can be expressed as

ψr(z) = r

⎛
⎜⎜⎜⎝

1
0

−pz

E+m
ipy

E+m

⎞
⎟⎟⎟⎠e−ipzz + r′

⎛
⎜⎜⎜⎝

0
1

−ipy

E+m
pz

E+m

⎞
⎟⎟⎟⎠e−ipzz, (5)

where r and r′ represent the amplitudes of the spin-up |↑〉 and
spin-down |↓〉 components, respectively. In the region z > 0,
the wave function in the z component can be written as

ψt(z) = t

⎛
⎜⎜⎝

1
0
qz

E−V0+m
iqy

E−V0+m

⎞
⎟⎟⎠eiqzz + t ′

⎛
⎜⎜⎜⎝

0
1

−iqy

E−V0+m−qz

E−V0+m

⎞
⎟⎟⎟⎠eiqzz, (6)

where t and t ′ represent the amplitudes of the spin-up | ↑〉 and
spin-down | ↓〉 components, respectively. Here, qy = py, and

qz =
√

(E − V0)2 − q2
y − m2 in the region of potential.

To facilitate the analysis, we introduce an effective mass
m∗ =

√
p2

y + m2. The energy zones can then be divided into
three regions:

D : E > V0 + m∗,
T : V0 − m∗ < E < V0 + m∗,
K : V0 − m∗ > E ,

(7)

as depicted in Fig. 2, the diffusion, tunneling, and Klein
regions [66], respectively, which is determined based on the
relations between E and sin θ with a fixed value of V0 = 5m.

The boundaries between the tunneling region and the
other two regions determine the conditions for generating
evanescent waves in the transmission region. From an optical
analogy, since the y component of the wave vector is contin-
uous, the critical angle for total reflection can be defined as

θc = arcsin

⎛
⎝

√
(E − V0)2 − m2

E2 − m2

⎞
⎠. (8)

The critical angle depends on the incident energy and co-
incides with the boundaries of the tunneling region. For
example, Eq. (8) determines the critical angles for total re-
flection θc = 0.408638 	 23.4◦ with the given parameters

FIG. 2. Separation of the various energy zones by fixing, respec-
tively, the incident angle θ and the potential V0, where V0 = 5m.
Two blue solid lines are the critical angles of the existence of tun-
neling and orange dotted line presents E = 2.5m, corresponding to
θc = π/2, solved from Eq. (8).

E = 8.5m, V = 5m. In the diffusion and Klein cases oscil-
latory solutions exist everywhere, thus we concentrate on the
tunneling case for studying GH and IF shifts, characterized by
real exponential solutions in the potential region.

Considering the continuity of the wave function at the
interface, e.g., ψin(0−) + ψr(0−) = ψt(0+), the scattering co-
efficients can be derived as follows:

r =
(
p2

y + m2 + mE
)
V0

(E + m)
(
p2

z + pzqz − V0E
) , (9)

t = p2
z (E − V0 + m) + pzqz(E + m)

(E + m)
(
p2

z + pzqz − V0E
) , (10)

r′ = ipy pzV0

(E + m)
(
p2

z + pzqz − V0E
) , (11)

t ′ = r′, (12)

where qz = iκ for θ > θc. In the diffusion region, θ < θc,
the conservation of current along the z direction leads to the
following relation among the scattering coefficients:

|r|2 + |r′|2 + qz(E + m)

pz(E − V0 + m)
(|t |2 + |t ′|2) = 1. (13)

For θ > θc, the transmitted waves exhibit an evanescent be-
havior, which corresponds to the tunneling region where total
reflection occurs, characterized by

|r|2 + |r′|2 = 1.

Indeed, the intriguing phenomenon arises when relativistic
electrons encounter a potential step with oblique incidence,
where qy �= 0. This scenario, as evidenced by the coefficient
r′ in Eq. (11), highlights the crucial role played by spin flip
in the presence of qy �= 0. The spin-flip effect stands out as
a distinct feature of relativistic Dirac particles experiencing
oblique incidence, which profoundly impacts their scattering
behavior, particularly the IF shift as discussed later.
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III. LONGITUDINAL GH SHIFT

In the subsequent section, we will utilize the energy flux
method [4,63] to provide a comprehensive explanation of
these unique phenomena from the perspective of Dirac cur-
rent analysis. Drawing on the energy flux model in optical
fashion [63,64,68,69], we discern that the longitudinal GH
shift can be attributed to two distinct components. The first
component originates from the current within the evanescent
wave present in the transmission region, while the second
component arises from the interference between the incident
and reflected beams. To begin, we will perform calculations
to determine the GH shift resulted from the current within the
evanescent wave.

In general, the Dirac current is defined as �j = ψ† �αψ ,
where ψ is the wave function and �α is the Dirac matrix as
described above. To calculate the GH shift resulting from the
current within the evanescent wave (θ > θc), we can first use
Renard’s model [4]. As a result, the GH shift is given by

Se
y = P

jr
z

=
∫ ∞

0 jt
ydz

jr
z

. (14)

Here as shown in Fig. 1(b), P is the total current inside the
transmission region in the y direction, jt

y = ψ
†
t αyψt is the y

component of the z-dependent current in the evanescent field,
and jr

z = ψ†
r αzψr is the z component of the reflected current.

It is assumed that the incident beam has finite width in the in-
cidence plane. When total reflection occurs, the current enters
the transmission part, experiences displacement, and returns
to the z < 0 region. Due to this, the shift of the reflected beam
calculated by Renard’s energy flux method [4] is given by

Se
y = (E + m)

2(E − V0 + m)

( |t |2 + |t ′|2
κ

− t∗t ′ + t ′t∗

py

)
. (15)

Additionally, the current presented here along the y direction
is also attributed to the interference between the incident beam
and the reflected beam

jir = 1
2 Re[ψ†

inαyψr + ψ†
r αyψin]. (16)

We can integrate jir over z from some distance point −l to
obtain the total particle flux

Pir =
∫ 0

−l
jirdz, (17)

where jir can be directly calculated from Eq. (16)

jir = 4

E + m
[py|r| cos(2pzz − ϕr ) − pz|r′| sin(2pzz − ϕr′ )],

with ϕr and ϕr′ being the phase of coefficients in reflection
for different spinors, see Eqs. (9) and (11). As Pir contains
trigonometric terms, to obtain the average flux and eliminate
rapid oscillation, we divide it by the length scale of order λz =
2π/pz:

〈Pir〉 =
∫ λz

0 Pirdl

λz
= 2|r′|

E + m
cos ϕr′ − 2py|r|

pz(E + m)
sin ϕr .

(18)

FIG. 3. The longitudinal GH shift Sy = Se
y + Sir

y (in units of the
reduced Compton wavelength λ̄ = h̄/mc) is depicted as a function
of the incidence angle θ . The shifts contributed from Se

y (dashed, red)
and Sir

y (dot-dashed, black) are compared to the one obtained from the
stationary phase method Sp

y = Sy (solid, blue). The orange dotted line
denotes the GH shift around the critical angle θc for visual reference.
The parameters are set to E0 = 8.5m, V0 = 5m, and m = 1, h̄ = 1
and c = 1 are used for simplicity.

Therefore, the shift part induced by the interference is given
by

Sir
y = 〈Pir〉

jin
x

= − py

pz
Im[r] + 1

pz
Re[r′]. (19)

From the perspective that the shift comes from the current
along the interface, the whole shift due to total reflection is
Sy = Se

y + Sir
y . As a matter of fact, one can also calculate the

GH shift from the point y = 0 by using the SPM [62], which
is defined as Sp

y = −∂ϕ/∂ py [62], with ϕ being ϕr and ϕr′ , the
phase shifts of reflected electrons with spin-up and spin-down
polarizations, respectively. From Eqs. (9) and (11), we have

ϕr = tan−1

(
κ pz

p2
z − V0E

)
, ϕr = ϕr′ + π/2, (20)

thus these two GH shifts are identical, yielding

Sp
y = (E2 − m2)

(
V0E − p2

z

)
sin 2θ

2κ
[(

p2
z − V0E

)2 + p2
zκ

2
] − κ (pz py + V0E tan θ )(

p2
z − V0E

)2 + p2
zκ

2
.

(21)

It is evident from the longitudinal GH shift derived from the
SPM, Sp

y , see Eq. (21), is exactly the same as Sy from the cur-
rent conservation, as illustrated in Fig. 3. When the incidence
angle approaches θc, the self-interference shift vanishes, while
near-grazing incidence it plays a dominant role. Interestingly,
when the stationary phase approximation ceases to be valid
near the critical angle of incidence, its quantitative predictions
remain in good agreement with results obtained via the flux
method, see Fig. 3. Therefore, the flux method clarifies that
the GH shifts arise from the evanescent wave propagating
along the interface, in addition to the interference between
incident and reflected beams.

IV. TRANSVERSE IF SHIFT

Next, we shall turn to the characteristics of the reflected
beam in the yox plane, by considering transverse IF shift.
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FIG. 4. The dependence of the transverse IF shift, denoted by Sx

(in units of the reduced Compton wavelength λ̄ = h̄/mc) on the inci-
dence angle θ is illustrated. Blue solid and red dashed lines represent
spin-up and spin-down polarizations of incidence. For comparison,
the shifts δSx (in units of λ̄ = h̄/mc) calculated from Eq. (23) are also
depicted by purple dotted and black dotted-dash lines, corresponding
to two different polarizations, respectively. All parameters remain
consistent with those in Fig. 3.

Similar to the previous analysis in the yoz plane, with some
width in the yox plane, the reflected beam undergoes a dis-
placement caused by the current in the transmission region
along the x direction, given that θ > θc. This transverse IF
shift is expressed as

Sx =
∫ ∞

0 jt
xdz

jr
z

= i(E + m)

2py(E − V0 + m)
(t∗t ′ − t ′∗t ), (22)

where jt
x = ψ

†
t αxψt represents the Dirac current along the x

direction originating from the transmission region, as indi-
cated in Fig. 1(c).

As the reflected beam is parallel to the incident beam in
the yox plane, the interference between the reflected beam
and the incident beam does not contribute to the IF shift.
Also, it is worth noting that the IF shift is much smaller than
the GH shift in the tunneling case. The IF shift reaches its
maximum but remains a finite value for an incidence angle
very near the critical angle in the evanescent case. Moreover,
the IF shift occurs for incidences below the critical angle of
incidence and even at larger angles, which is not depicted
here. In contrast, the GH shift goes to infinity as the inci-
dence angle approaches the critical angle. The incident beams,
with opposite polarizations represented by the spinors “|↑〉”
and “|↓〉”, have corresponding eigenvalues σz = ±1, respec-
tively. As illustrated in Fig. 4, the IF shift, as derived from
Eq. (22), exhibits the same magnitude but opposite direction
for different polarizations. This intriguing behavior bears re-
semblance to the IF shift observed in the context of right-
and left-circularly polarized light beams during total reflection
[9,29,30]. Moreover, in our case, the initial polarization can
be described as the eigenstates of helicity, e.g., �σ · �p = ±1,
which is the superposition cos(θ/2)|↑〉 ± i sin(θ/2)|↓〉. In
this scenario, the flux method could provide an easier way
to calculate the IF shifts with different polarization states
compared to the conventional stationary phase method. As a
result, the IF shifts, corresponding to the eigenstates of helic-
ity become S′

x = Sx cos θ . This further implies the possibility

of controlling the IF shifts by varying the polarization of the
incident beam.

In addition, the IF shift can be derived by considering the
conservation of total angular momentum (TAM). In principle,
the total angular momentum operator for the relativistic Dirac
particle can be expressed as �J = �L + �, where �L is the orbital
angular momentum operator and � is the spin operator. In
our scenario, the z component of the TAM, Jz = Lz + z, is
conserved, i.e., 〈J in

z 〉 = 〈J r
z 〉. Since px = 0, we have Lz = xpy

and obtain, see the Appendix,

δSx = 〈
xr

0

〉 − 〈
xin

0

〉 = N
2py

[1 − (|r|2 − |r′|2)]. (23)

Noting that if the angle of incidence is θ , the angle of
the reflected particle π − θ is then used here. As shown
in Appendix, we used the unitary Foldy-Wouthuysen (FW)
transformation to separate the positive and negative energy
sub-spaces to show the relativistic effect and simplify the
calculation.

In Fig. 4, we illustrate how this formula (23) provides an
alternative calculation of the IF shift for relativistic electrons
reflected from a potential step, considering the conservation of
TAM and the angles of incidence and reflection. Notably, the
results obtained from Eq. (23) are consistent with those from
Eq. (22), as demonstrated in Fig. 4. Therefore, the transverse
IF shift is a direct manifestation of the spin Hall effect. The
fact that the IF shift depends on the polarization of the incident
particle suggests a strong connection between the transverse
IF shift and coupled spin and orbit angular momentum in-
volved in the spin properties of relativistic Dirac electrons.

Typically, the spin Hall effect is a phenomenon in which
a spin-polarized current separates into two transverse com-
ponents with opposite spin orientations. This effect arises
in materials with spin-orbit coupling, where the spin of the
charge carriers becomes coupled with their motion. The con-
nection we observe between the transverse displacement and
spin properties is reminiscent of the spin Hall effect. The
transverse spin separation is driven by the intrinsic spin-orbit
coupling involved in the Dirac equation, where the spin-to-
orbital angular momentum conversion plays a crucial role in
this process [58]. In addition, the side jump effect refers to
the lateral displacement experienced by a charge carrier when
it undergoes scattering at an interface or in a non-uniform
magnetic field [43,44]. It is a consequence of the Lorentz
force acting on the charge carriers due to the presence of an
electric field or a magnetic field gradient. The transverse IF
shift shares the similarity with the side jump effect in terms
of the pesudo-spin-orbit coupling (see the term ∝pyz in
the Appendix), which can be viewed as creating an effective
magnetic field, and in turn, related to the force.

V. DISCUSSION AND CONCLUSION

Summarizing, we investigated the GH and IF shifts of
relativistic electrons interacting with a step potential. Start-
ing with the GH shift in Sec. III, which arises from the
longitudinal displacement of the beam upon reflection, we de-
rived its expression using the Dirac current conservation and
showed its direct relation to the current within the evanescent
wave in the transmission region. The GH shift diverges as
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the incidence angle approaches the critical angle, indicating
its sensitivity to the proximity of total reflection and beam
distortion. Importantly, we observed that the GH shift remains
the same for both spin-up and spin-down polarizations along
the z direction.

In Sec. IV, we focused on the transverse IF shift, rep-
resenting the displacement of the reflected beam in the yox
plane. Unlike the GH shift, the IF shift is much smaller in
magnitude and reaches its maximum value for an incidence
angle close to the critical angle during total reflection. The IF
shift can also occur and become significant in the presence
of partial reflection. We clarified that the IF shift arises from
the current within the transmission region along the x direc-
tion. Furthermore, we demonstrated the equivalence of the IF
shift to the spin Hall effect, based on spin-to-orbital angular
momentum conservation and relativistic effect. Remarkably,
the IF shift displays a dependence on the spin polarization of
the incident beam. In particular, opposite polarizations lead to
shifts of equal magnitude but in opposite directions. In con-
trast, the side-jump mechanism describes the displacement of
electrons during scattering, which is contingent on their spin
orientation. As a result, the behavior of the IF shift implies
a resemblance to the transverse shifts observed in the side
jump effect, hinting at potential connections between these
phenomena.

However, there are several important avenues for future ex-
ploration. Our current analysis primarily focused on realistic
electrons described by the Dirac equation, with eigenstates
of spin polarization or helicity. However, considering ar-
bitrary polarization (helicity) states would be valuable, as
it allows us to explore the effects of different polarization
states on the observed shifts. By incorporating this additional
freedom [70], we can achieve a more comprehensive un-
derstanding of the scattering behavior of relativistic electron
beams and how their polarization properties influence the GH
and IF shifts. Another noteworthy consideration is that, thus
far, our assumptions centered on plane waves in the spec-
trum having uniform polarization. Furthermore, investigating
nonuniform polarization distributions, such as nondiffraction
Bessel beams [71] and Bessel-Gaussian vortex beams [55,59],
presents intriguing possibilities for future study. Additionally,
our analysis is conducted within the relativistic electron’s
scattering from a step potential. Future investigations can
be dedicated to the effects of different potential profiles and
incorporate additional factors, such as external fields, which
could introduce supplementary contributions to the shifts.

Last but not least, it is worth highlighting the recent
experimental strides in electron vortex beams, which carry
orbital angular momentum [72–74]. These achievements have
not only offered diverse practical applications in microscopy,
quantum information processing, and material characteri-
zation [75], but have also ignited a renewed interest in
wave-packet dynamics of relativistic electrons [55–57,59],
such as the realistic Hall effect and relativistic electron vor-
tices. This experimental progress now serves as a platform
for testing the these shifts. Hence, our findings empha-
size the vital role of accounting for current conservation,
interference effect, and spin-to-orbital angular momentum
conversion in comprehending and manipulating these lateral
shifts. Moreover, the polarization-dependent traits we ob-

served present exciting prospects for innovating novel devices
and applications in the devices using Dirac and topological
materials.
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APPENDIX: EXPECTATION VALUES OF SPIN AND
ANGULAR MOMENTUM AND TRANSVERSE IF SHIFT

In this Appendix, our objective is to derive the IF shift from
the conservation of TAM. To achieve this, we start by calculat-
ing the expectation values of spin and angular momentum for
the incident and reflected Dirac particle beams. In general, the
total angular momentum is expressed as �J = �L + �, where
�L is the orbital angular momentum operator, and the spin
operator � has the three components

i = 1

2

(
σi 0
0 σi

)
, (A1)

with i = x, y, z. In our scenario, the z component of the total
angular momentum, 〈Jz〉 = 〈Lz〉 + 〈z〉 is conserved, leading
to 〈J in

z 〉 = 〈J r
z 〉.

To perform the calculations, we utilize the FW transforma-
tion, given by

U = cos
(α

2

)
1 + β(�α · �p)

|p| sin
(α

2

)
, (A2)

where α = arctan(p/m). This unitary transformation is em-
ployed to diagonalize the Dirac Hamiltonian and obtain
a more convenient representation where the positive and
negative energy states are separated [66]. It simplifies the
calculations and allows for a clearer separation of different
physical phenomena in the Dirac equation. Using this trans-
formation, we can express the expectation value of z for the
incident particle as〈

in
z

〉 = 〈�in|z|�in〉 = 〈�in|U †UzU
†U |�in〉. (A3)

By substituting the wave function (3), we can calculate the
expectation value of z for the incident relativistic electron as

〈
in

z

〉 = N
2

(1 − �), (A4)

where � = (1 − m/E ) sin2 θ is a spin-orbit interaction
parameter involving the incidence angle θ , and N =
〈�in|�in〉 = sec2(α/2) = 2E/(E + m). In the nonrelativistic
limit, as α and � approach 0 due to E 	 m, we have 〈in

z 〉 =
1/2, which corresponds to the exact eigenvalue of the initially
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spin-up state |↑〉 in the Schrödinger frame. Similarly, we can
apply the FW transformation to the operators

UxinU † = xin
0 + pyz

E (E + m)
, (A5)

U pyU
† = py. (A6)

In Eq. (A5), we used px = 0 and retained only the terms
contributing to the expectation values with respect to our
initial state for brevity. More detailed calculation and formulas
can be found in Ref. [66]. By doing so, we obtain 〈Lin

z 〉 =
〈�in|xin py|�in〉 = 〈�in|U †UxinU †U pyU †U |�in〉, yielding

〈
Lin

z

〉 = N
2

� + 〈
xin

0

〉
py. (A7)

As a consequence, we find, by using Eqs. (A4) and (A7), that〈
J in

z

〉 = 〈
Lin

z

〉 + 〈
in

z

〉 = N
2

+ 〈
xin

0

〉
py. (A8)

Here we highlight the presence of spin-orbit interaction (∝
pyz) in the second term of Eq. (A5), also known as spin-
to-orbital angular momentum conservation [58]. It plays the
significant role in the scattering behavior of relativistic elec-
trons and contributes to the fascinating phenomena, such as IF
shift and spin Hall effect, observed in our study.

For the reflected case, we also find that the expectation
value of the z component of the total angular momentum is

given by

〈
J r

z

〉 = 〈
Lr

z

〉 + 〈
r

z

〉 = N
2

(|r|2 − |r′|2) + 〈
xr

0

〉
py, (A9)

where the terms are respectively calculated as follows:

〈
r

z

〉 = N
2

(1 − �)(|r|2 − |r′|2), (A10)

〈
Lr

z

〉 = N
2

�(|r|2 − |r′|2) + 〈
xr

0

〉
py. (A11)

By further applying 〈J in
z 〉 = 〈J r

z 〉, we finally end up with the
transverse IF shift, expressed as

δSx = 〈
xr

0

〉 − 〈
xin

0

〉 = N
2py

[1 − (|r|2 − |r′|2)]. (A12)

This observation bears a resemblance to the Hall effect of
light [12]. In addition, the entire calculations are also simi-
lar to the ones for Weyl semimetals [47,49] and topological
systems [48]. However, the relativistic effects, specifically the
intrinsic spin-orbit interaction, lead to the spin dependence of
the orbital angular momentum (and other observable orbital
characteristics). This indicates intriguing phenomena and dif-
ferent characteristics in the scattering behavior of relativistic
electron, or other Dirac spin-1/2 particles.
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