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Simulating Heisenberg interactions in the Ising model with strong drive fields
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The time evolution of an Ising model with large driving fields over discrete time intervals is shown to be
reproduced by an effective XXZ-Heisenberg model at leading order in the inverse field strength. For specific
orientations of the drive field, the dynamics of the XXX -Heisenberg model is reproduced. These approximate
equivalences, valid above a critical driving field strength set by dynamical phase transitions in the Ising model,
are expected to enable quantum devices that natively evolve qubits according to the Ising model to simulate more
complex systems.
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I. INTRODUCTION

With the recent advances in digital and analog quantum
computers and simulators, there is a growing effort toward
mapping quantum field theories onto arrays of qubits, and
more generally, qudits [1–66]. While classical computers are
used successfully in studies of the static properties of quantum
systems, time-dependent evolution and finite-density systems
typically suffer from nonpolynomial scaling computational
resource requirements [67–69]. This places important quan-
tities of interest in the Standard Model of physics, and in
many other areas, beyond the capabilities of classical com-
putation. In contrast, quantum simulations are expected to be
able to address some of these quantities with polynomially
scaling computational costs [70,71], and quantum advantages
in scientific applications are being sought. A number of plat-
forms for digital quantum computation are being developed,
such as those utilizing superconducting qubits, optical qubits,
quantum dots, trapped ions, and Rydberg atoms [72–82]. In
addition to performing universal digital quantum computa-
tions, these platforms can be used for analog simulations of
systems that can be mapped onto their native Hamiltonians.
This approach is more limited than universal digital quantum
computation, but recent work suggests that the error rates
on existing hardware may be low enough to enable a useful
quantum advantage through analog simulation [83]. While
the study of spin systems, and systems comprised of finite-
dimensional Hilbert spaces more generally, are interesting
by themselves, they are now central to advancing quantum
simulations for scientific applications.

Despite the apparent simplicity of a regular lattice of qubits
or qudits, it has been widely appreciated since the discov-
ery of quantum mechanics that spin systems exhibit a wide
variety of nontrivial properties and dynamics. One of the
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most studied spin systems is the Heisenberg model, which
is able to describe critical points and phase transitions in
magnetic materials. In addition to condensed matter appli-
cations, the Heisenberg model also has an important role
in high-energy physics as, for example, it can be used to
study the lattice O(3) nonlinear σ model [59–63,84–86]. This
theory is one of the “sandboxes” used to better understand
quantum chromodynamics (QCD) as it shares a number of
qualitative aspects such as asymptotic freedom and θ vacua
[61–63]. In the electroweak sector, the dynamics of coherent
collective flavor oscillations of neutrinos can be mapped to the
Heisenberg model [87,88]. This is of particular importance in
extreme astrophysical environments, where neutrino-neutrino
interactions can be significant. After extensive studies using
classical computers, including of entanglement, for example,
Refs. [89–97], it is expected that quantum simulations [96,98–
102] of the Heisenberg model will enable the study of dy-
namics beyond the reach of classical computers and provide
new insights into these problems. Due to this wide applica-
bility, a number of methods for quantum simulation of the
Heisenberg model have been developed, including digital ap-
proaches [103,104], hybrid digital-analog approaches [105],
analog simulation on trapped ions [106], Rydberg atoms using
dipole-dipole interactions [107], and nuclear spins [108,109].
Dissipative versions of the Heisenberg model have also been
studied on digital quantum computers [110,111].

In this work, the potential for using Ising systems for
analog simulations of physical systems that can be mapped
to the Heisenberg model is investigated. The Ising model
is considered because a number of platforms available for
quantum simulation, such as Rydberg atoms, trapped ions,
and superconducting qubits, can be natively described by
this Hamiltonian [112–120]. Unlike previous approaches, this
method of analog simulation of the Heisenberg model can
be implemented with a time-independent Hamiltonian which
could be beneficial for some platforms. There is an extensive
literature regarding the time evolution of Ising models in
background fields [121–137], including recent work related
to transitions to chaotic phases induced by finite-time steps
in Trotterized time evolution in digital quantum simulations
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[136,137], identified through studying the system at periodic
times. Previous work has shown that Ising interactions with
a transverse field generate time evolution according to the
XY model [123–126,138]. Studying the time evolution of
the Ising model has also shown that the Ising model under-
goes confinement analogous to QCD near its critical point
with a field in the x̂ and ẑ directions [121,122,139]. Known
to be universal in a computational sense [140], developing
analog simulations of the Heisenberg model is expected to
also advance simulations of other physical systems. We show
how constant driving fields in the Ising model generate an
effective Heisenberg model Hamiltonian to leading order in
the inverse field strength at periodic times. The systematic
errors associated with the periodic dynamics are quantified,
revealing that the convergence of the expansion in the inverse
field strength is limited by the location of dynamical quantum
phase transitions (DQPTs) in the Ising model with an external
field.

II. HEISENBERG FROM ISING WITH STRONG FIELDS

The Ising Hamiltonian with constant global driving fields
is given by

Ĥ Ising =
∑
i> j

Ji j ẐiẐ j + 1

2

∑
i

�xX̂i + �yŶi + �zẐi . (1)

To analyze the evolution of this Hamiltonian, it is helpful
to transform into the interaction picture, where the driving
fields are taken to be the “free” term in the Hamiltonian. The
interaction-picture Hamiltonian is

Ĥ Ising
I (t ) =

∑
i> j

Ji j ẐI,i(t )ẐI, j (t ) , (2)

where ẐI,i(t ) = Û †
0 (t ) Ẑi Û0(t ) = �e (t ) · �S, Û0 (t ) = ∏

j

e−it (�x X̂ j+�yŶj+�z Ẑ j ), �S is a vector of Pauli matrices, and �e(t )
is a unit vector. From this perspective, the driving fields
can be viewed as rotating �e(t ) from the north pole to other
points on the unit sphere. By choosing periodic driving fields
that generate closed paths on the sphere, it is possible to
engineer evolution according to different Hamiltonians. The
use of periodic dynamics to generate different Hamiltonians,
known as Floquet engineering, has been used to simulate a
range of interactions [106,107,141–151], including the Ising
Hamiltonian from the Heisenberg interaction in quantum-dot
systems [152,153]. Floquet engineering has also been
previously applied to static Hamiltonians in the interaction
picture to understand how some systems prethermalize to
a Hamiltonian that is not the generator of their evolution
[154–157]. In particular, it has been used to show that
the dynamics of the XY Z-Heisenberg model with a strong
external field are approximated by the XXZ-Heisenberg
model for times that are exponential in the driving field [154].
We will show that in the Ising model, evolution according to
the XXZ-Heisenberg Hamiltonian can be approximated by
taking �x = � sin θ , �y = 0, and �z = � cos θ . With these
driving fields, the interaction Hamiltonian becomes periodic
over time intervals 2π

�
and the Schrödinger picture becomes

equivalent to the interaction picture at these periods. A
representative path generated by such fields on the unit sphere

FIG. 1. A representative path on the unit sphere taken by �e(t ) that
generates time evolution according to the XXX -Heisenberg model.
The green line corresponds to the direction of the driving field.

is shown in Fig. 1. The time evolution of the system after
discrete time intervals and the associated Magnus expansion
is given by

ÛF = T exp −i
∫ 2π

�

0
dt ′ Ĥ Ising

I (t ′)

= Û †
B exp −i

2π

�

[
Ĥ1 + O

(
1

�

) ]
ÛB , (3)

where

Ĥ1 =
∑
i> j

Ji j

[
cos2θ ẐiẐ j + sin2θ

2
(X̂iX̂ j + ŶiŶj )

]
, (4)

where ÛB is a local change of basis given by ÛB = ∏
j e+iθŶj/2

(that aligns the driving field with the z axis). Therefore, the
time evolution of the Ising model with this choice of driv-
ing fields approximates that of the XXZ-Heisenberg model
between discrete intervals of �t = 2π

�
. Note that while the

formalism of Floquet engineering was used to derive this re-
sult, the Hamiltonian is time independent, and the periodicity
is only manifest in the interaction picture. Also, the Ising
model with a fast oscillating drive field could be used to
simulate an XXZ-Heisenberg model because the dynamics
of a transversely driven Ising model are equivalent to that of
a time-independent Ising model with external fields in the ẑ
and x̂ directions [127]. The O( 1

�2 ) higher-order terms in the
Magnus expansion of the Floquet operator in Eq. (3) have
one-body and three-body operators. The one-body operators
can be eliminated by renormalization of the “free” Hamilto-
nian employed to transform to the interaction picture, but the
three-body terms are a genuine deviation from the Heisen-
berg Hamiltonian. Such higher-order terms in the Magnus
expansion can be removed through the use of time-dependent
driving fields [158].

This approach to simulating the XXZ-Heisenberg model
is similar in spirit to recent proposals for simulating gauge
theories by adding terms to the Hamiltonian that generate
gauge symmetries [159–163]. In these proposals, an energy
penalty for breaking gauge invariance decouples the gauge
invariant sector from the rest of Hilbert space analogously to
how dynamical decoupling can be used to decouple systems
from their enviroment [162]. In this work, the addition of
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FIG. 2. The spectral norm (magnitude of the largest eigenvalue)
||e−i 2π

� ĤHeis.
XXX − ÛF || of the difference between the XXX -Heisenberg

chain time-evolution operator derived from Eq. (5) and the Floquet
engineered approximation in Eqs. (3) and (4) as a function of the
driving field strength � for a selection of chain lengths.

driving fields to the Ising model can be interpreted as adding
an energy penalty for violating the global U(1) symmetry
generated by the driving fields. This causes the different sym-
metry sectors to decouple, leading to time evolution that can
be described by the XXZ-Heisenberg model.

III. BEYOND LEADING ORDER IN THE MAGNUS
EXPANSION AND DYNAMICAL PHASE TRANSITIONS

The derivation of the approximate Heisenberg time evo-
lution indicates that systematic errors from the Magnus
expansion are suppressed by �−1 compared to leading order.
However, the Magnus expansion is known to have a finite
radius of convergence, and a priori it is not obvious what
the minimum value of � is for the leading-order term to
accurately describe the dynamics. As mentioned previously,
numerical studies of digital quantum simulations have been
used to show that Trotterized time evolution transitions into
chaotic dynamics for sufficiently large time steps [136,137].
In this context, the Floquet-period �t = 2π

�
is analogous to a

Trotter time step, and we show that at small � the breakdown
of the Magnus expansion is associated with a dynamical quan-
tum phase transition in the Ising model.

As an example, we focus on the special point θ =
tan−1

√
2, where the leading order Eq. (4) becomes an

XXX -Heisenberg Hamiltonian with enhanced nonabelian
O(3)-symmetry

ĤHeis.
XXX = 1

3

∑
i

X̂iX̂i+1 + ŶiŶi+1 + ẐiẐi+1. (5)

The systematic errors in the time evolution (of any state)
are bounded by the spectral norm (magnitude of the largest
eigenvalue) of the difference between the exact Heisenberg
time-evolution operator and the Floquet engineered approxi-
mation given in Eqs. (3) and (4), ||e−i 2π

�
ĤHeis.

XXX − ÛF ||. This is
shown for the one-dimensional XXX -Heisenberg model with
J = 1/3 in Fig. 2 as a function of � for varying chain lengths.
At large values of �, systematic deviations in the spectral

FIG. 3. The rate function, defined in Eq. (8), for the ground state
of XXX -Heisenberg chains of different lengths.

norm decrease with increasing � as predicted by the Magnus
expansion. At small values of �, the spectral norm saturates
below a critical value �c. Unfortunately, the lattice sizes for
which the spectral norm can be efficiently computed are not
large enough to determine the scaling of �c with chain length.
For longer chain lengths, Loschmidt echoes of the ground
state of the XXX -Heisenberg model in Eq. (5), |ψG〉, time
evolved over t = 2π

�
with the driven Ising model

Ĥ Ising =
∑

i

ẐiẐi+1 + �

2
√

3
(Ẑi +

√
2X̂i ) , (6)

are computed. If the time evolution of the XXX -Heisenberg
model were perfectly reproduced by the driven Ising model,
the Loschmidt echo, defined as the probability to return to the
initial state, i.e.,

L(�) = |〈ψG| e−i 2π
�

Ĥ Ising |ψG〉|2 , (7)

would equal unity, and deviation from unity provide an es-
timate of contributions beyond leading order in the Magnus
expansion. As lnL(�) is an extensive quantity, the rate
function

λ(�) = − ln [L(�)]/L , (8)

is computed to compare chains of different lengths L, as
shown in Fig. 3. For chains of L � 16, time evolution was
computed using exact diagonalization. The ground states of
the L = 50 and L = 100 chains were computed using densiy
matrix renormalization group (DMRG) and time evolution
was performed using the time-dependent variational princi-
ple (TDVP) [164–169]. The ground state and time evolution
of the infinite Heisenberg chain was computed using ITEBD

[170–172]. At large �, λ(�) decreases with increasing �,
indicating that the leading-order Magnus expansion is cor-
rectly describing the dynamics of the model. This asymptotic
behavior only occurs beyond a “kink” in λ(�), indicating
that at small values of � the Magnus expansion is failing to
converge. The presence of a kink (nonanalytic behavior) in
λ(�) is the defining characteristic of a dynamical quantum
phase transition [128]. Note that other inequivalent definitions
of dynamical phase transitions have been introduced in the
literature [173]. DQPTs have previously been studied in spin
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FIG. 4. The log IPR for the ground state of XXX -Heisenberg
chains of different lengths. The IPR for the chain of length 10 was
computed with exact diagonalization and the IPR for larger chains
was computed by averaging the Loschmidt echo over 1000 periods.

systems and have been shown to be associated with unsta-
ble renormalization group fixed points [128–133,174]. Our
results show that the Ising model with a constant driving field
�� = �( 1√

3
ẑ +

√
2
3 x̂) undergoes a DQPT into a regime with

an approximate O(3) symmetry at discrete time intervals, as
seen in Fig. 3.

These calculations demonstrate that for short timescales
Heisenberg evolution is being successfully simulated, pro-
vided a sufficiently large driving field strength is used.
However, this does not guarantee that the dynamics are repro-
duced at long times. Generically, periodically driven systems
are expected to heat at late times [175–177], however, in the
context of digital quantum simulation it has been shown that
quantum localization prevents this in Trotterized time evolu-
tion [136,137]. The Floquet engineering technique used in this
work uses a static Ising Hamiltonian so one would expect that
at large field strengths the eigenstates of the Ising model are
perturbatively close to those of the Heisenberg Hamiltonian.
This would guarantee that long time dynamics are correctly
reproduced as in the case of Trotterized time evolution. This
perturbative argument can be verified through the calculation
of the inverse participation ratio (IPR). For a given state |ψ〉
and eigenstates |n〉 of some Hamiltonian, the IPR is defined
by

IPR =
∑

n

|〈n| |ψ〉|4 . (9)

The IPR measures how localized |ψ〉 is relative to the eigen-
basis |n〉. In practice, it can be evaluated by averaging the
Loschmidt echo over long periods of time. To compare
systems of different sizes, a normalized IPR, defined by
λIPR(L) = − 1

L ln(IPR) for a chain of length L, was computed
for the ground state of the XXX -Heisenberg model in Fig. 4.
For the chain of length 10, the IPR was computed by ex-
plicitly evaluating Eq. (9), while for the larger chains the
IPR was computed by averaging Loschmidt echos. As this
figure shows, for large � the log IPR is small which indicates
the perturbative argument holds and the XXX -Heisenberg
ground state is localized with respect to the Ising Hamiltonian.
This indicates that the long time dynamics of the XXX -

FIG. 5. The rate function for the ground state of XY -Heisenberg
chains of different lengths.

Heisenberg model is being successfully simulated with this
technique.

When the constant driving field is taken to be in another
direction, an approximate O(2) symmetry emerges. The ar-
guments above suggest that there should be a DQPT that
occurs in this case as well. As an example, the traditional
one-dimensional (1D) transverse field Ising model with the
driving field purely in the x̂ direction will generate evolution
according to the XY -Heisenberg model (up to a change of
basis)

ĤHeis.
XY = 1

2

∑
i

ŶiŶi+1 + ẐiẐi+1 . (10)

The rate function λ(�) for the ground state of ĤXY evolved
under the transverse field Ising Hamiltonian for one period
is shown in Fig. 5. As is the case for the XXX -Heisenberg
model, there is a series of kinks indicating a DQPT before
the rate function begins to decrease. It is interesting to note
that the final kink is at �∗ ≈ 1.948 which is close to, but not
quite at the critical point of the transverse field Ising model
at � = 2. While this work shows that the Ising model can
be used to simulate ĤXY in the strong field limit, it has been
shown in previous work that in 2 + 1 dimensions, the weak
field limit of the Ising model also reproduces the dynamics of
the XY -Heisenberg model [134,135].

These results explicitly show that in one dimension, this
technique can be used to simulate Heisenberg model physics
for long times with a driving field that is not extensive with
the system size. While there are classical computational tools
that enable the study of large 1D systems such as tensor
networks, simulating real time evolution in 1D systems still
has computational costs that grow exponentially with time and
analog quantum simulation may be of practical use. While
these calculation were only performed for one dimension, this
technique can also be applied to simulate higher-dimensional
Heisenberg models and it is likely that the required driving
field strength for simulating dynamics accurately is not exten-
sive with the system size as well. Even if the required driving
field strength is extensive with the system size in higher di-
mensions, this technique may still be of practical importance
as real time evolution for even modest sized two-dimensional
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(2D) systems is difficult for classical computers. In addition to
enabling analog quantum simulation of the Heisenberg model
on platforms with Ising interactions such as Rydberg atoms
and superconducting qubits, this technique could be combined
with the results of Ref. [140] to potentially perform analog
quantum simulation of an arbitrary Hamiltonian. This could
potentially enable analog simulations of any quantum field
theory of physical interest on these platforms.

IV. DISCUSSION

In this work, a method for analog simulation of the Heisen-
berg model has been proposed that can be implemented
on platforms whose natural evolution is described by the
Ising model with constant external fields. For a specific driv-
ing field, the time-evolution operator of the Ising model
is approximately that of the Heisenberg model over peri-
odic time intervals. Interestingly, the leading-order effective
Heisenberg operator has enhanced symmetry over the intrinsic
Hamiltonian.

The systematic errors associated with this method at small
external-field strength are limited by nonanalytic behavior in
the Ising model, associated with dynamical quantum phase
transitions, which indicates the Magnus expansion is failing
to converge. Beyond a critical value of the driving field, the
effective Hamiltonian describing the time-evolution can be
determined from a Magnus expansion, with each increasing
order in 1/� introducing operators involving an increasing
number of spins.

The technique presented in this work could be imple-
mentable on a range of quantum devices, including systems
of Rydberg atoms or even superconducting qubits, in any
dimension. While Rydberg systems are very promising as
analog quantum simulators, one of the main challenges is that
natively they offer a very narrow class of interactions, which
severely limits their applicability. Therefore, being able to
engineer new interactions makes an important step forward in
expanding the systems that can be studied on these platforms.
Furthermore, unlike previous proposals for quantum simula-

tions of Heisenberg models, this method can be implemented
using time-independent fields, which is extremely important
for experimental platforms with a limited slew rate for the
external fields. In the near term, analog quantum simulations
will be the only method of probing the long time dynamics of
large systems. The dynamics of the Heisenberg model are of
particular interest not only for condensed matter applications,
but also for high-energy physics, such as in coherent neutrino
oscillations and as a lattice regularization of the O(3) nonlin-
ear σ model which will be important for developing quantum
simulations of QCD. Importantly, this technique easily scales
to higher dimensions. By enabling analog simulation of the
Heisenberg model on Rydberg atoms and superconducting
qubits, systems beyond the reach of classical computers can
be simulated and one may be able to achieve a scientifically
useful quantum advantage.
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