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Generic eigenstate preparation via measurement-based purification
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It is not a general opinion that a quantum system could be purified into a target eigenstate via repeated
measurements on a coupled qubit rather than direct transitions in the Hamiltonian. Projective measurement on
the ancillary qubit gives rise to positive operator-valued measures on the system that can filter out the unwanted
states except the target one. In application, we discuss measurement-based entanglement purification by which
maximally entangled states (Bell states and Greenberger-Horne-Zeilinger states) can be distilled from maximally
mixed states or separable states. We also demonstrate the significant acceleration of a stimulated Raman adiabatic
passage assisted by similar measurements. Our scheme allows arbitrary eigenstate preparation and reveals
efficiency in multipartite systems for subspace purification. It offers a promising and generic quantum-control
framework enriching the functionalities of quantum measurement.
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I. INTRODUCTION

Quantum state preparation is a basic and crucial premise
for plenty of modern quantum applications, including but not
limited to measurement-based quantum computation [1,2],
quantum teleportation [3,4], quantum dense coding [5], and
quantum cryptography [6]. Preparing eigenstates, especially
for a complex system, is of great importance in quantum
chemistry [7,8] and condensed-matter physics [9,10]. Various
interesting tools have been applied in pushing the system
of interest into a target eigenstate, including entanglement
generation by dissipation [11,12], variational quantum algo-
rithms [13,14], and shortcuts to adiabaticity [15–17]. Among
them, distilling a mixed state into a desired pure state of a
high fidelity distinguishes itself since any quantum system is
inevitably coupled to an external environment. It is therefore
reasonable to find that state purification and entanglement
purification have developed as key technologies in quantum
information and quantum computation [18–21].

Frequent quantum measurements over a noncommutative
operator with respect to the Hamiltonian could freeze the
measured quantum system at an eigenstate by asymptotically
affecting the system dynamics, known as the quantum Zeno
effect [22]. When the measurement operator becomes para-
metric dependent, the measured system could be steered to
a target state from either a pure state [23,24] or a mixed
state [25,26] through a finite number of measurements with
nonvanishing measurement intervals. As the dimension of the
system becomes larger, however, it is more difficult to perform
direct measurements on the system. Quantum engineering
could be alternatively realized through indirect measurements
on an ancillary system. In general, a projective measurement
or postselection on the ancillary system gives rise to a positive
operator-valued measure (POVM) on the interested system
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[27,28], which can be navigated to a target state with a finite
probability [29]. The indirect measurement method has a wide
range of applications associated with state purification, such
as cooling a resonator to its ground state [30–34], enhancing
the bath spin polarization [35,36], and charging a quantum
battery [27,37]. Nevertheless, the purification of the system
with repeated measurements on the ancillary system is under
certain constraints; e.g., the target states cannot be arbitrarily
chosen [29], the target system is required to be nondegenerate
[38], and all the system eigenstates have to be connected
directly or indirectly through given transitions [39]. It is then
desired to find a generic scheme capable of distilling a de-
generate or nondegenerate system into an eigenstate with a
limited number of ancillary systems.

In this paper, we propose a general scheme that an in-
terested system can be purified into an arbitrary eigenstate
by repeatedly measuring a coupled ancillary qubit. Rather
than directly transferring the system population to the target
state, we use projective measurements to filter out the pop-
ulations on the other states, which can be shuffled through a
purification operator. By virtue of the population renormaliza-
tion in company with the nonunitary operations determined
by measurements, there would be a unique population rise
on the target state. Our scheme is applied to entanglement
purification by generating the Bell states and the Greenberger-
Horne-Zeilinger (GHZ) states. It exemplifies a creation of
maximally entangled states [40,41] from maximally mixed
states or a separable state. To prepare the Bell state, a recent
scheme based on nonselective measurements [39] assigns one
detector (ancillary qubit) for each transition channel towards
the target state and relies on three-body interactions. In sharp
contrast, our scheme requires only a single ancillary qubit
and is efficient in operation. It can be applied to the GHZ
state preparation and shows potential to avoid many-body
interactions in the subspace purification. Also our framework
of state purification by measurement can be integrated with
the standard stimulated Raman adiabatic passage (STIRAP),
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FIG. 1. Transition diagram of the purification operator Q in an
N + 1 dimensional system, which can be arbitrarily designed pro-
vided all the eigenstates of the system except the target one are
directly or indirectly connected with no isolated element. Q does
not hold a directional path towards the target eigenstate and allows
self-transition (projection) operators of the unwanted eigenstates.

by which a complete population transfer is promoted even in
a diabatic passage.

The rest of this paper is structured as follows. In Sec. II A,
a generic framework is introduced for eigenstate prepara-
tion based on repeated measurements on the ancillary qubit.
A necessary condition for state purification is established
through defining a purification operator in the system space,
given knowledge about the energy spectrum of the system.
In Sec. II B, we show that the steady state of the system in
the limit of an infinite number of measurements is exactly the
same as the target state with a given purification operator. In
Sec. II C, our framework is extended to a more general system
Hamiltonian and a necessary condition is provided about the
eigenstate preparation. In Sec. III, we apply our framework to
prepare a singlet Bell state for a double-qubit system and the
GHZ state for a three-qubit system. In Sec. IV, we present two
hybrid models combining STIRAP and state purification to
demonstrate an accelerated adiabatic passage in a three-level
system. We summarize our paper in Sec. V.

II. THEORETICAL FRAMEWORK

In general, two necessary conditions have to be fulfilled for
state purification through quantum measurements. The first
condition is that the population over the target state would
be ever increased upon a desired measurement outcome until
approaching unit. The second condition is that the target state
is a unique one approached by the system under a sufficient
number of measurements. In Secs. II A and II B, we illustrate
our scheme on accumulating the population over the target
state and the coincidence between the steady state and the
target state when the system Hamiltonian in the interaction
picture is time independent and in a specific formation. Then
in Sec. II C, the system Hamiltonian is relieved to a general
form, by which we discuss the purification condition through
measurements.

A. Purification operator and probabilistic purification

In our framework of state preparation and purification by
measurement, the target state |�target〉 is a given eigenstate
of the system Hamiltonian HS , i.e., HS|�target〉 = λ|�target〉,
where λ is the eigenvalue. We have an ancillary qubit with
a free Hamiltonian HA. With a purification operator Q built up

in Fig. 1, we have a purification Hamiltonian

HP = ga(A†Q + AQ†) = ga

[
0 Q

Q† 0

]
. (1)

Here ga is the coupling strength between the system and the
ancillary qubit. A ≡ |ϕ〉〈ϕ⊥| and A† ≡ |ϕ⊥〉〈ϕ| are transition
operators for the ancillary qubit about the initial state |ϕ〉
and its orthogonal counterpart |ϕ⊥〉, i.e., 〈ϕ|ϕ⊥〉 = 0. HP is
also the interaction Hamiltonian in the interaction picture with
respect to H0 = HS + HA. To illustrate the underlying mecha-
nism of our scheme and show the uniqueness of the purified
state, HP is assumed to be time independent for simplicity.
It is valid if the target system is resonant with the ancillary
qubit. We discuss in Sec. II C the general situation using the
full Hamiltonian in the Schrödinger picture.

To purify the system into the target state, the system
operator Q is constructed by connecting all the unwanted
eigenstates of the system HS . The target state is required to
be a dark state of Q, i.e.,

Q|�target〉 = 0. (2)

It means that Q forbids the transitions from |�target〉 to the
other eigenstates. Yet it does not forbid the inverse transi-
tions. In other words, when Q �= Q†, either Q†|�target〉 �= 0
or Q†|�target〉 = 0 has no bearing on our scheme. Figure 1
is an instance of Q†|�target〉 = 0, where no transition channel
connects the target eigenstate.

Given the Hamiltonian in Eq. (1), the joint time-evolution
operator of both system and ancillary qubit for a period
of τ is

U (τ ) =
[
CT (τ ) S†(τ )
S(τ ) C(τ )

]
, (3)

where the Kraus operators are

C(τ ) =
N∑

k=0

(−iτ )2k

(2k)!
(Q†Q)k,

S(τ ) =
N∑

k=0

(−iτ )2k+1

(2k + 1)!
(Q†Q)kQ†, (4)

respectively. The time evolution of the whole system under the
Hamiltonian HP is repeatedly interrupted by the instantaneous
projective measurement about the initial state of the ancillary
system Mϕ ≡ |ϕ〉〈ϕ|. Any two neighboring measurements can
be arbitrarily spaced in time, so that our method is essentially
robust against the systematic error about the measurement
moments. After m − 1 rounds of evolution and successful
measurement, the whole system state is ρtot = ρs(t ) ⊗ |ϕ〉〈ϕ|,
where t = ∑m−1

j=1 τ j with τ j’s indicating the measurement in-
tervals. Then the whole system state becomes

ρtot (t + τm) = MϕU (τm)ρs ⊗ |ϕ〉〈ϕ|U †(τm)Mϕ

P(m)
ϕ

= ρs(t + τm) ⊗ |ϕ〉〈ϕ| (5)

after one more round of evolution and measurement last-
ing τm, where P(m)

ϕ ≡ Tr[C(τm)ρs(t )C†(τm)] represents the
success probability of the mth round. In particular, if the
measurement outcome is as desired, i.e., the ancillary qubit is
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reset as the initial state, then the system and the ancillary qubit
are decoupled from each other as in Eq. (5). According to
Naimark’s dilation theorem [28], the projective measurements
performed on the ancillary qubit induce a POVM M(τ )[O] ≡
C(τ )OC†(τ ) acting on the system. Then the system state in
Eq. (5) can be expressed as

ρs(t + τm) = C(τm)ρs(t )C†(τm)

P(m)
ϕ

, (6)

according to the time-evolution operator in Eq. (3).
Since the purification operator annihilates the target state

Q|�target〉 = 0, we have C(τm)|�target〉 = |�target〉 due to the
first line in Eq. (4), i.e., the POVM M(τm) does not immedi-
ately change the population over the target state

〈�target|M(τm)[ρs(t )]|�target〉 = 〈�target|ρs(t )|�target〉. (7)

As C(τ ) is a nonunitary operator, the system state should
be renormalized by the measurement probability P(m)

ϕ . Then
1/Pϕ � 1 in either Eq. (5) or Eq. (6) acts as a gain factor rais-
ing the target-state population. It follows with a purification
inequality:

〈�target|ρs(t + τm)|�target〉 � 〈�target|ρs(t )|�target〉. (8)

A successful measurement then suggests that the ancillary
qubit in its initial state heralds a population rise over the target
state.

After m rounds of measurements, the overlap
between the system state and the target state Fm ≡
〈�target|ρs(

∑m
j=1 τ j )|�target〉, i.e., the target-state fidelity,

could be expressed as

Fm = Fm−1

P(m)
ϕ

= Fm−2

P(m)
ϕ P(m−1)

ϕ

= 〈�target|ρs(0)|�target〉∏m
j=1 P( j)

ϕ

. (9)

Therefore the system can be gradually purified under more
and more rounds of evolution and measurement, provided
that its initial population over the target state is nonzero.
Nevertheless, the outcome of our framework is probabilistic as
indicated by the denominator of the last equivalence in Eq. (9),
i.e., the success probability Ps = ∏m

j=1 P( j)
ϕ . One can find that

Ps is lower bounded by the initial population over the target
state.

B. Uniqueness of the purified state

Under a sufficiently large number m of measurements,
the measurement probability of the ensued rounds would
approach unit: P( j)

ϕ → 1, j � m. Otherwise the target-state
fidelity will keep growing with no upper bound. In this sit-
uation, the ancillary qubit is freezed at the initial state |ϕ〉, the
system approaches a steady state, and the success probability
Ps becomes invariant in time. We can show that the steady
state is exactly the target state |�target〉.

Note that the Kraus operator C(τ ) in Eq. (4) is Hermitian
and C(τm)|�target〉 = |�target〉. Then the operator can always
be expanded as

C(τm) = |�target〉〈�target|
+

∑
k

′
εk (τm)|ψk (τm)〉〈ψk (τm)|, (10)

where |ψk (τm)〉’s and εk (τm)’s are instantaneous eigenstates
and eigenvalues of C(τm), respectively.

∑
k
′ indicates the sum-

mation over all degrees of freedom except the target state,
whose eigenvalue is 1. Consequently, the measurement prob-
ability of the mth round can be written as

P(m)
ϕ = Tr[C(τm)ρs(t )C†(τm)]

= Fm−1 +
∑

k

′
ε2

k (τm)〈ψk (τm)|ρs

⎛
⎝m−1∑

j=1

τ j

⎞
⎠|ψk (τm)〉.

(11)

The second part on the right-hand side of Eq. (11) is
associated with τm-dependent populations on the instanta-
neous eigenstates. And τm can be randomly chosen in our
framework. A τm-independent and close-to-unit measure-
ment probability P( j�m)

ϕ → 1 therefore requires vanishing
populations over |ψk (τm)〉, suggesting that the system has
been successfully prepared at the target state ρs(t ) = |�target〉
〈�target|.

Alternatively, one can find that the squares of the eigen-
values of the Kraus operator C(τm) are always lower than or
equivalent to 1. In particular, we have

ε2
k (τm) = |C(τm)|ψk (τm)〉|2 = |〈ϕ|U (τm)|ϕ〉|ψk (τm)〉|2

� |U (τm)|ϕ〉|ψk (τm)〉|2 = 1. (12)

It means that most populations on these eigenstates are re-
duced by measurements, except the target state and some
special states satisfying ε2

k (τm) = 1 for the mth measurement
performed at the moment t + τm. However, since the measure-
ment intervals for the free joint evolutions can be randomly
chosen, the protection over the population of such unwanted
states cannot last for a sufficient number of evolution-
measurement rounds. Only the target-state population will
eventually survive.

Our state-purification framework therefore promises the
uniqueness of the purified state, as long as the population on
the target state is not vanishing at the initial time. The POVM
induced by the purification operator acts as a sieve to filter out
the populations on unwanted states.

C. Purification by the general Hamiltonian

Under certain conditions, our purification framework can
be generalized to accommodate the effective Hamiltonian be-
yond the compact form in Eq. (1). In the Schrödinger picture,
we can consider the full Hamiltonian as

H = H0 + HP = HS + HA + HP, (13)

which consists of the system Hamiltonian, the ancillary-qubit
Hamiltonian, and the purification Hamiltonian expressed by
Eq. (1). For simplicity, H is assumed to be time inde-
pendent. HA = ωaA†A with ωa the characteristic frequency
of the ancillary qubit. With the same projective measure-
ment Mϕ on the initial state of the ancillary qubit, the
nonunitary operator for a period of free evolution can be
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expanded as

V (τ ) ≡ 〈ϕ|e−iHτ |ϕ〉 =
∑

n

(−iτ )n

n!
〈ϕ|Hn|ϕ〉

=
∑

n

(−iτ )n

n!
V (n), (14)

where V (n) ≡ 〈ϕ|Hn|ϕ〉. Note V (τ ) reduces to C(τ ) if H
can be written as HP in the interaction picture. Recalling
the purification Hamiltonian HP = ga(A†Q + AQ†), we have
〈ϕ|HP|ϕ〉 = 0. Then only the items consisting of an even
number of HP can survive in expansion. The first three orders
of V (n) are

V (1) = 〈ϕ|H |ϕ〉 = HS,

V (2) = 〈ϕ|H2|ϕ〉 = H2
S + gaQ†Q,

V (3) = 〈ϕ|H3|ϕ〉 = H3
S

+ g2
a(HSQ†Q + ωaQ†Q + Q†QHS + Q†HSQ). (15)

One can find that Q† and Q appear by ordered pairs in
each order of V (n). In particular, V (n) = Hn

S + D(n)
Q , where

Hn
S is the system Hamiltonian to the nth power and D(n)

Q =
D(n)

Q (HS, Q†, Q) is a function of HS and ordered pairs of
Q† and Q. According to the definition about the purifi-
cation operator in Eq. (2), we have D(n)

Q |�target〉 = 0 and

D(n)
Q |�k〉 = ∑

l
′
β

(n)
lk |�l〉, where

∑
l
′ represents the summa-

tion over all eigenstates of HS except the target state
and β

(n)
lk is the overlap coefficient between |�k〉 and |�l〉

under D(n)
Q .

Then the POVM induced by measuring the initial state of
the ancillary qubit |ϕ〉 gives rise to the system state

ρs(t + τ ) ∼ M[ρs(t )] =
∑
n,m

(−iτ )n(iτ )m

n!m!
V (n)ρs(t )V (m)

=
∑
n,m

(−iτ )n(iτ )m

n!m!

[
Hn

S + D(n)
Q

]
× ρs(t )

[
Hm

S + D(m)
Q

]
. (16)

The population over each eigenstate of the target system reads

〈�k|M[ρs(t )]|�k〉 = ρkk (t ) +
∑

l

′
[

eiλkτ α∗
lk (τ )ρlk (t )

+ e−iλkτ αlk (τ )ρkl (t )

+
∑

j

′
α∗

jk (τ )αlk (τ )ρ jl (t )

]
, (17)

where ρi j (t ) ≡ 〈�i|ρs(t )|� j〉 and αlk (τ ) ≡ ∑
n

(iτ )n

n! β
(n)
lk . The

measurement probability of the current round can be obtained
by summing over Eq. (17) for every eigenstate:

Pϕ =
∑

k

〈�k|M[ρs(t )]|�k〉 = 1 + χ (τ ), (18)

where

χ (τ ) =
∑
l,k

′
[

eiλkτ α∗
lk (τ )ρlk (t ) + e−iλkτ αlk (τ )ρkl (t )

+
∑

j

′
α∗

jk (τ )αlk (τ )ρ jl (t )

]

is a function of the density-matrix elements in the subspace or-
thogonal to the target state. Generally, we have −1 � χ (τ ) �
0. As discussed in Sec. II B, Pϕ is close to unit and the target
system approaches a steady state after a sufficient number of
measurements. In this situation, χ (τ ) → 0. Assuming that the
magnitude of the coherent elements is negligible in compari-
son to the population when ρs(t ) becomes invariant with time,
then χ (τ ) → 0 renders

∑
k

′
[

eiλkτ α∗
kk (τ )ρkk (t ) + e−iλkτ αkk (τ )ρkk (t )

+
∑

l

′|αlk (τ )|2ρll (t )

]
= 0.

Since it is independent of τ , then the populations on the
unwanted eigenstates have to be vanishing:

∑
k
′
ρkk (t ) = 0.

It also indicates that the steady state under measurements is
coincident with the target one.

III. PREPARATION OF ENTANGLEMENT

Quantum information processing often requires entangled
states as a resource for, e.g., the working qubits in the quantum
teleportation protocol. However, a quantum system with chan-
nels to the external environment would be in general ended
with a mixed state [18,19]. It is thus interesting and important
to distill or generate entangled states from such a quantum
system. In this section, we apply our state-purification scheme
to prepare Bell states and the GHZ state from the maximally
mixed states ρs(0) = I/d [42] where d is the dimension of
the system and I is the identity matrix, which means the
initial system population has an even distribution over all the
eigenstates. Moreover for the GHZ state, we introduce an effi-
cient purification operator that avoids many-body interactions.
And our scheme is shown to be robust in the presence of the
nonideal purification operator.

A. Bell state preparation

We first choose the singlet Bell state |�target〉 = |�−〉 =
(|01〉 − |10〉)/

√
2 as the target stat, where |0〉 and |1〉 repre-

sent the excited state |e〉 and the ground state |g〉 of the target
qubits, respectively. For a double-qubit system with a strong
XX coupling [43], the system Hamiltonian can be written as
(h̄ = 1)

HS = ω1σ
+
1 σ−

1 + ω2σ
+
2 σ−

2 + gsσ
x
1 σ x

2 , (19)

where ωi and σ±
i are respectively the bare frequency and the

transition operators for the ith qubit and gs represents the
coupling strength between qubit 1 and qubit 2. Under the res-
onant condition, ω1 = ω2 = ω0, the target state is one of the
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system eigenstates HS|�target〉 = (ω0 − gs)|�target〉. To purify
the system into the target state, the purification Hamiltonian
can be chosen as

HP = ga(A†Q + AQ†), Q = σ+
1 + σ+

2 , (20)

which can be straightforwardly verified to satisfy the condi-
tion Q|�target〉 = 0. The initial state of the ancillary qubit is
set as the excited state |ϕ〉 = |e〉. Thus A = σ+

a = |e〉〈g|, A† =
σ−

a = |g〉〈e|, and the ancillary-qubit Hamiltonian is HA =
ωaσ

−
a σ+

a . The system qubits and the ancillary qubit are reso-
nant and their coupling strength is assumed to be much weaker
than the interaction between the two system qubits, i.e., ga 
gs. It is then reasonable to neglect the counter-rotating terms
σ+

a σ+
i and σ−

a σ−
i in HP under the rotating-wave approxima-

tion. Then the full Hamiltonian H = HS + HA + HP reads

H =
∑
i=1,2

ωiσ
+
i σ−

i + ωaσ
−
a σ+

a + gsσ
x
1 σ x

2

+ ga[σ−
a (σ+

1 + σ+
2 ) + σ+

a (σ−
1 + σ−

2 )]. (21)

The remaining three eigenstates of the system Hamiltonian
in Eq. (19) are

|�+〉 = 1√
2

(|01〉 + |10〉),

|�−〉 = 1

ξ−

[(√
g2

s + ω2
0 − ω0

)|00〉 − gs|11〉],
|�+〉 = 1

ξ+

[(√
g2

s + ω2
0 + ω0

)|00〉 + gs|11〉],
(22)

where ξ± ≡
√

g2
s + (ω0 ±

√
g2

s + ω2
0 )2 are the normaliza-

tion coefficients. And their eigenvalues are ω0 + gs, ω0 −√
ω2

0 + g2
s , and ω0 +

√
ω2

0 + g2
s , respectively. In the eigenba-

sis of the system, the purification operator can be rewritten
as

Q = ξ+√
2
(
g2

s + ω2
0

) |�+〉〈�+| + ξ−√
2
(
g2

s + ω2
0

) |�−〉〈�+|

+
√

2gs

ξ+
|�+〉〈�+| −

√
2gs

ξ−
|�+〉〈�−|, (23)

which involves the transitions among |�+〉, |�−〉, and |�+〉
as shown in Fig. 2(a). The coefficient for each transition in
the operator Q indicates the variation rate of the eigenstates’
population except the target one.

The system states after a certain number of rounds of
evolution and projective measurement Mϕ with random mea-
surement intervals are demonstrated in Figs. 2(b)–2(d). The
initial state is the maximally mixed state with population
equally distributed on all eigenstates, which can be remark-
ably modified by only two rounds of measurements [see
Fig. 2(b)]. After M = 20 measurements [see Fig. 2(c)], the
population over the target state |�−〉 has been raised from 0.25
to 0.55 (over one half); the population over |�+〉 becomes
almost vanishing; and the populations over |�−〉 and |�+〉
are about 0.07 and 0.38, respectively. These results can be
understood by the transition rates presented in the Q operator
in Eq. (23). For example, the transition rate for |�+〉 → |�+〉
is

√
2gs/ξ+, whose magnitude is the smallest one among all

FIG. 2. (a) Transition diagram for the purification operator Q
defined in Eq. (23), where the bidirectional arrows represent the
back-and-forth transitions between a pair of eigenstates. (b–d) To-
mographies of the density matrix in the system eigenbasis after
(b) M = 2, (c) M = 20, and (d) M = 200 rounds of measurements.
The measurement interval for each round is τi = τ0 + δt , where δt is
a uniformly distributed random number in the region (−τ0/2, τ0/2).
τ0 = 2/ω0, |ωa| = ω0, ga/ω0 = 0.2, and gs = 5ga.

the rates, leading to an inefficient population transfer from
|�+〉 to the other states. After M = 200 measurements [see
Fig. 2(d)], all the populations have been cumulated onto the
target state, which means the other states are filtered out by the
measurement-induced purification. In particular, it is found
that the state fidelity is F ≈ 0.98 and the success probability
is Ps ≈ 26%.

Our framework of measurement-based purification is much
simpler than state steering based on nonselective measure-
ments [39], which employs one ancillary qubit for every
transition from unwanted states to the target state and also
involves three-body interactions. Alternatively, the number of
ancillary qubits can be reduced at the cost of extra unitary
rotations with respect to the system Hamiltonian, which re-
quires frequently switching on and off the interaction between
the system and the ancillary qubit. In contrast, our framework
contains only a single ancillary qubit and two-body interac-
tions, because of no direct transitions to the target state.

The target state is arbitrary in our framework. Based on
the basic condition in Eq. (2), three main methods can be
followed to design the purification operator for a desired tar-
get state: (i) Q = ∑′

k ak|�target〉〈�k|, collecting the transitions
from all the other eigenstates to the target state; (ii) Q =∑′

k ak|�k〉〈�k+1|, building transitions between every pair of
neighboring states ordered in a certain way, e.g., the annihi-
lation operator of a resonator; and (iii) Q = ∑′

k ak|�k〉〈�k|,
mapping all the other eigenstates to themselves, i.e., a col-
lection of projective operators. Here ak’s are arbitrary and
nonvanishing coefficients.
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FIG. 3. Population dynamics of eigenstates as functions of the
measurement number with various purification operators: (a) Q�− ,
(b) Q�+ , (c) Q�− , and (d) Q�+ . The other parameters are the same as
those in Fig. 2.

For the two-qubit system in Eq. (19), all the eigenstates
in Eq. (22) could be prepared via the measurement-based
purification. The purification performance as well as the pu-
rification operators could be efficiently simulated in digital
quantum circuits [44]. We here follow the third method in the
preceding discussion to demonstrate the purification process,
which avoids setting up transitions among unwanted states
and those towards the target state. And for simplicity, we
suppose all the self-projectors are the same in weight. Then
the purification operators for the eigenstates in Eq. (22) could
be constructed as

Q� = I − |�〉〈�|, � ∈ {�−, �+,�−,�+}. (24)

Figure 3 demonstrates the population dynamics about the
four eigenstates of Hamiltonian (19) with various target states,
whose purification operators could be given by Eq. (24). It is
found that the system can be prepared as the desired target
eigenstates within M = 50 rounds of free evolution and mea-
surement. They are ended with a fidelity over F = 0.98 and
a success probability over Ps = 25%. The populations over
the unwanted states decrease gradually to zero with almost
the same rate. The general purification operator in Eq. (24)
can involve many-body interactions, when the target state is
a multiparticle entangled state or the system eigenstructure
becomes degenerate. In the following section, it is shown that
our framework could be still efficient if initially the target state
is the only occupied one in its degenerate subspace.

B. GHZ state preparation

Our measurement-based purification framework can adapt
to generating an entangled state for a multiple qubit system. In
the absence of a transversal magnetic field, we consider a one-
dimensional chain of three spins 1/2 linked by the nearest-
neighbor Ising bonds, i.e., HS = J (σ z

1σ z
2 + σ z

2σ z
3 ), where J is

the coupling strength [45]. It is a typical degenerate system
whose eigenbasis is not uniquely determined. The target state
is set as one of the maximally entangled states for this discrete

FIG. 4. Tomographies of the density matrix for the Ising chain
of three qubits after (a) M = 2 and (b) M = 10 rounds of evolution
and measurement. The system state starts from a mixed state with
an even distribution over populations on system eigenstates. The
measurement interval for each round is τi = τ0 + δt , where δt is a
uniformly distributed random number in the region (−τ0/2, τ0/2).
τ0 = 2/J , ga/J = 0.4, and ωa/J = 1.

system:

|GHZ〉 = |�1,+〉 = 1√
2

(|000〉 + |111〉). (25)

And the other eigenstates of the system can also be regarded
as the general GHZ states:

|�1,−〉 = 1√
2

(|000〉 − |111〉),

|�2,±〉 = 1√
2

(|010〉 ± |101〉),

|�3,±〉 = 1√
2

(|001〉 ± |100〉),

|�4,±〉 = 1√
2

(|011〉 ± |110〉).

(26)

To filter out the populations on these unwanted eigenstates,
the purification operator can be constructed by a collection of
self-projectors as in Eq. (24):

Q = I − |�1,+〉〈�1,+|
= |�1,−〉〈�1,−| + |�2,+〉〈�2,+| + |�2,−〉〈�2,−|

+ |�3,+〉〈�3,+| + |�3,−〉〈�3,−| + |�4,+〉〈�4,+|
+ |�4,−〉〈�4,−|. (27)

For this system, the effective Hamiltonian can be the purifi-
cation Hamiltonian in the formation of Eq. (1), where A† =
σ+ = |e〉〈g|. The system states after M = 2 and 10 rounds of
measurements are shown in Figs. 4(a) and 4(b), respectively. It
is found that even from the maximally mixed state, the system
can be purified into the valuable GHZ state by several random
measurements. After M = 10 measurements, the state fidelity
is close to unit and the success probability is Ps = 12.5%,
which is equivalent to the initial population on the target state.

For both the Bell state and GHZ state, the initial state of
the interested system so far is chosen as the maximally mixed
state with the maximal von Neumann entropy S[ρs(0)] =
log(d ) [46]. It is surely a “hard mode” choice for state
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FIG. 5. Tomographies of the density matrix for the system after
(a) M = 2 and (b) M = 20 rounds of evolution and measurement
under Q′. The system state starts from a superposed state |+〉|+〉|+〉.
ga/J = 0.2, ωa/J = 1, and τ0 = 2/J .

purification. In a less extreme condition, e.g., when the system
starts from a state with vanishing population on the eigen-
state that is degenerate with the target state, the many-body
interactions in Eq. (27) could be avoided and then our scheme
could become scalable. As for discriminating the unwanted
degenerate state, the techniques beyond our scheme, e.g., the
parity subspace projections [47,48], could be applied to deal
with a more general initial state.

We here introduce an alternative purification operator
based on subspace purification, which is able to purify the
system from a separable state into the GHZ state with only
two-body interactions between the ancillary qubit and the
target qubits. Following the necessary condition in Eq. (2), it
could be designed as Q′ = aσ z

1 + bσ z
2 − (a + b)σ z

3 with ab �=
0, and

Q′|�1,±〉 = 0,

Q′|�2,±〉 = −2b|�2,∓〉,
Q′|�3,±〉 = 2a|�3,∓〉 + b(|�3,∓〉 + |�3,±〉),

Q′|�4,±〉 = 2a|�4,∓〉 + b(|�4,∓〉 − |�4,±〉). (28)

In measurement-based purification, Q′ can be used to filter
out all the populations outside the degenerate space spanned
by |�1,±〉. If the system state is initially orthogonal to the
unwanted degenerate state |�1,−〉, then the target GHZ state
|�1,+〉 could be eventually attained by a sufficient number of
measurements. In this case, the purification Hamiltonian in
Eq. (1) becomes

HP = gaσ
x
a

(
σ z

1 + σ z
2 − 2σ z

3

)
, (29)

where σ x
a = A + A† with A = σ−

a . It involves only two-body
ZX interactions that can be realized in superconducting qubits
[49,50]. In Fig. 5, we demonstrate the system tomographies
during the purification by measurements, where the initial
state is set as |+〉|+〉|+〉 with |+〉 = (|e〉 + |g〉)/

√
2. The

system is transformed from a state that is diversely popu-
lated in the whole space to the GHZ state. After M = 20
measurements, the populations over all unwanted states are
almost filtered out and the final fidelity of the target GHZ state
approaches unit.

FIG. 6. (a) Fidelities of the GHZ state as a function of measure-
ment number with errors in Q′. (b) Fidelities of the GHZ state after
M = 20 measurements as a function of the error. Parameters are the
same as those in Fig. 5.

The efficiency of our scheme can be benchmarked by eval-
uating the fidelity under rounds of evolution and measurement
in the presence of imperfections in the purification operator. In
practice, it is assumed that

Q′ = σ z
1 + σ z

2 − (2 + ξ )σ z
3 , (30)

where ξ represents an error in the nonideal purification
operator. In Fig. 6, the fidelities of the GHZ state FM =
〈�1,+|ρs(t = ∑M

j=1 τ j )|�1,+〉 are plotted as a function of the
measurement number M and the value of ξ . It is interesting to
find an asymmetry dependence of the fidelity on ξ . As shown
in Fig. 6(a), the purification process is slightly accelerated
under a positive ξ and the final results of ξ = 0.5 and 1.0 are
almost the same as the ideal case ξ = 0. In contrast, the final
fidelity of M = 20 significantly declines under a negative ξ .
For ξ = −1.0, we have FM ≈ 0.33. Figure 6(b) presents that
in a wide range of error, about [−0.5, 2], the fidelity can be
maintained above 0.9. This result justifies the robustness of
our scheme in realization of the purification operator.

IV. ACCELERATION OF ADIABATIC PASSAGE

The conventional stimulated Raman adiabatic passage in a
three-level system is used to faithfully transfer the population
on an eigenstate to another one with dark states [15]. It could
be realized by properly driving the transitions in the system
as shown in Fig. 7(a). Under the assumption that the external
driving fields are resonant with the corresponding frequency
splittings between the driven levels, the system Hamiltonian
in the interaction picture can be written as [51]

H1 = �12(t )σ x
12 + �23(t )σ x

23, (31)

where σ x
12 ≡ |ε1〉〈ε2| + |ε2〉〈ε1| and σ x

23 ≡ |ε2〉〈ε3| + |ε3〉〈ε2|
are the transition operators in the three-level system. One of
eigenstates of the system

|E0(t )〉 = 1√
2

[
�23(t )

�(t )
|ε1〉 − �12(t )

�(t )
|ε3〉

]
(32)

constitutes the time-dependent adiabatic path for state engi-
neering. In particular, when the system is initialized at the
ground state |ε1〉, a perfect population transfer to |ε3〉 could
be realized by a slowly decreasing field �23(t ) and a slowly
increasing field �12(t ). If the Rabi frequencies of these fields
are rapidly varying with time, then the system evolution can
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FIG. 7. (a) Sketch for the conventional STIRAP protocol in a
three-level cascade system, where two resonant driving fields �12

and �23 are coupled to the transitions of |ε1〉 ↔ |ε2〉 and |ε2〉 ↔ |ε3〉,
respectively. (b) State-purification model for an ancillary qubit of fre-
quency ωa coupled to the three-level system with a coupling strength
ga. To push the system into the pure state |ε3〉, the driving field �23 is
removed due to the setting of our state-purification scheme in Fig. 1.
(c) Transition diagram of the purification operator Q provided by
Eq. (37) in the eigenbasis of the system. Directed cycles represent
the self-transitions for the unwanted eigenstates.

deviate significantly from the adiabatic path, resulting in an
incomplete population transfer to |ε3〉. Our state-purification
scheme could be applied to modify, complete, and accelerate
STIRAP.

In our theoretical framework, STIRAP is integrated with
a purification Hamiltonian consisting of only one resonant
driving field �12(t ) for the chosen target state |�target〉 = |ε3〉,
i.e., the system Hamiltonian now reads

HS = �12(t )σ x
12. (33)

In accordance with state purification, the target state is an
eigenstate of the system Hamiltonian HS|ε3〉 = 0. As shown in
Fig. 7(b), the purification operator associated with the ancil-
lary qubit can be set as Q = σ−

12 = |ε1〉〈ε2|. Straightforwardly
one can confirm the purification condition Q|ε3〉 = 0. The
initial state of the qubit is the ground state |ϕ〉 = |g〉 that
determines A. Then the purification Hamiltonian is

HP = ga(σ+
a σ−

12 + σ−
a σ+

12) (34)

where σ+
12 = |ε2〉〈ε1|. The full Hamiltonian of our scheme

in the rotating frame with respect to H0 = ∑3
i=1 εi|εi〉〈εi| +

ωaσ
+
a σ−

a reads

H = HS + HP = �12(t )σ x
12 + ga

(
σ+

a σ−
12 + σ−

a σ+
12

)
, (35)

where the ancillary qubit is assumed to be resonant with the
splitting between |ε1〉 and |ε2〉, i.e., ωa = ε2 − ε1. For the
system Hamiltonian in Eq. (33), the three eigenstates are

|E0〉 = |ε3〉,

|E−〉 = 1√
2

(|ε1〉 − |ε2〉),

|E+〉 = 1√
2

(|ε1〉 + |ε2〉),

(36)

by which the purification operator Q could be rewritten as

Q = |E−〉〈E+| − |E+〉〈E−| + |E+〉〈E+| − |E−〉〈E−|. (37)

Transitions presented in the operator Q are demonstrated in
Fig. 7(c), where there is no transition towards the target
state |ε3〉.

FIG. 8. Population on |ε3〉 under various strategies. In hybrid
1, the original control time for STIRAP is set as tc = 7/�0 and
M = 10 rounds of the state purification are discretely implemented
during the integrated procedure. The full running time is then t (1)

c =
tc + τp, where τp = ∑10

i=1 τi is the accumulated time for purification.
In hybrid 2, the control time τc is the same as that in hybrid 1,
after which M = 15 rounds of measurements are repeatedly per-
formed to achieve almost a unit fidelity as in hybrid 1. The reference
measurement intervals for the purification process in both hybrid 1
and hybrid 2 are set as τ0 = 0.1/�0 and τ0 = 0.3/�0, respectively.
The coupling strength between the ancillary qubit and the system
is ga = 10�0. The brown-dotted line labeled with t (1)

c indicates an
unfaithful STIRAP within a control time equivalent to the full time
for hybrid 1. The orange dot-dashed line labeled with t (2)

c indicates a
faithful STIRAP with a sufficiently long control time t (2)

c = 15/�0.
The vertical black-dashed lines indicate the moments when the pop-
ulation on |ε3〉 approaches 0.99 under various strategies except the
unfaithful STIRAP.

To explore the purification-induced acceleration of the
population transfer when the system deviates from adiabatic
evolution, we propose two hybrid models combining STI-
RAP and measurement-based purification. During the stage
of STIRAP, the system is driven by the Hamiltonian (31) with
�12(t ) = �0 f (t ) and �23(t ) = �0[1 − f (t )], where �0 rep-
resents the maximal magnitude of driving strength and f (t ) is
a dimensionless function that satisfies f (0) = 0 and f (tc) = 1
with a desired control time tc. Here we take the hyperbolic sine
function f (t ) = sinh(ct/τ ), where c is a scaling factor for the
boundary conditions. During the state purification, the driving
field between |ε2〉 and |ε3〉 is temporally switched off, i.e.,
�23 = 0, and the Rabi frequency of the driving field between
|ε1〉 and |ε2〉 is set as a constant �12 = �0. In the first hybrid
model, the adiabatic evolutions and the purification processes
present alternatively on stage. In particular, the original con-
trol time tc for both �12(t ) and �23(t ) can be divided into M
parts. A round of state purification consisting of a free evo-
lution lasting a random τi and an instantaneous measurement
on the ancillary qubit is performed at the end of each part.
Accounting for the time for M rounds of state purification, the
full running time for the first hybrid model is t (1)

c = tc + τp,
where τp = ∑M

i=1 τi. In the second hybrid model, the state
purification is performed after the accelerated (diabatic and
unfaithful) STIRAP is completed. In another word, the final
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state of STIRAP is the initial state for starting the purification
process.

In Fig. 8, we demonstrate the dynamics of the population
on |ε3〉 using the two hybrid models. To show the power of our
state-purification scheme, we also present two results under
the pure strategy of STIRAP. One is unfaithful with a shorter
running period (see the brown-dotted line) and another one is
faithful with a much longer period (see the orange dot-dashed
line). The “hybrid 1” strategy indicates that the STIRAP is
divided into a certain number of parts and concatenated with
discrete rounds of state purification. And “hybrid 2” describes
that an intact STIRAP is followed with the purification by
measurements. It is found that the strategy of hybrid 1 (see
the blue solid line) prevails over the other strategies in the
running period for population transfer. In particular, hybrid
1, hybrid 2, and “t (2)

c ” cost 6.9/�0, 10.0/�0, and 13.6/�0

in time to achieve F = 0.99, respectively. With no assistance
from the state purification, one can find that the same
running period for the “t (1)

c ” strategy is too short to achieve a
faithful population transfer. Both hybrid strategies overwhelm
the faithful STIRAP of the t (2)

c strategy and the success
probabilities for hybrid 1 and hybrid 2 are, respectively, about
Ps = 69% and 84%.

V. DISCUSSION AND CONCLUSION

Motivated by inverse engineering or steering with directly
performing a dense sequence of measurements on the system
of interest along a predesigned path [23,24], our framework
of POVM on the system of interest by indirected measure-
ments on the ancillary system provides a much broader regime
for purification by measurements. It also suggests that local
operations can be used to control a much larger coupled sys-
tem. Previous works about the projection-based purification
[29,52,53] are devoted to optimizing measurement intervals
to enhance the population of the target state with a given

interaction. They place a severe constraint over the target
states and suffer from purification inefficiency under a sig-
nificant systematic error about measurement intervals. Our
scheme in this paper, however, is mainly based on the pu-
rification operators and is capable of preparing an arbitrary
eigenstate of the system with random time intervals. Thus, it
is naturally robust against errors with respect to the measure-
ment moment and does not require a hybrid quantum-classical
feedback control with observing the system state [54,55]. In
sharp contrast to the steering protocol based on nonselec-
tive measurements, our scheme does not involve the complex
many-body interaction and multiple ancillary qubits in prepar-
ing the Bell state.

In summary, we present an eigenstate purification frame-
work by repeatedly measuring the ancillary qubit coupled to
the system. The purification operator is built up without direct
transitions towards the target state. Thus measurements on the
initial state of the ancillary qubit induce positive operator-
valued measures that can purify the system into an arbitrarily
chosen eigenstate by filtering out the populations over all
the other states. In qubit systems, we apply our purification
scheme to generate Bell states and GHZ states. Integrated with
the conventional STIRAP protocol in a three-level system, we
realize a much accelerated adiabatic population transfer with a
high success probability. Our scheme can serve as a promising
candidate for error correction when the system state deviates
from the desired one due to environment-induced decoher-
ence, which is of great interest in the noisy intermediate-scale
quantum era. Much broadly, our scheme on quantum mea-
surement contributes to a generic state preparation of the
multiparticle system.
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