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Transition from classical to quantum loss of light coherence
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Light is a precious tool to probe matter, as it captures microscopic and macroscopic information on the system.
However, the measurement will be limited by the coherence of the light, both spatial and temporal, which
itself reveals certain properties of the emitters. We here report on the transition from a thermal (classical) to
a spontaneous emission (SE) (quantum) mechanism for the loss of light temporal coherence from a macroscopic
atomic cloud. The coherence is probed by intensity-intensity correlation measurements realized on the light
scattered by the atomic sample, and the transition is explored by tuning the balance between thermal coherence
loss and SE via the pump strength. The transition occurs only at low temperatures, which illustrates the potential
of cold atom setups to investigate the classical-to-quantum transition in macroscopic systems.
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I. INTRODUCTION

Quantum mechanics has brought a completely new de-
scription of a physical system, introducing the possibility of
“entanglement” between its different states. However, this
diversity in possible states comes at the expense of a dramatic
increase in complexity of the phase space, which can be com-
pensated by deriving an effective dynamics for a selected set
of degrees of freedom, tracing over the less relevant ones. This
loss of information leads to the notion of decoherence [1], and
the partial knowledge of the system state allows for an accu-
rate prediction of the dynamics over a finite time only. From a
fundamental point of view, decoherence actually questions the
notions of measurement, collapse of the wave function [2,3],
and hidden variables in quantum mechanics [4].

Let us consider the prototypical example of spontaneous
emission (SE) (with rate �) for a quantum emitter: It arises
from tracing over the electromagnetic modes in which the
particle excitation may be emitted. Yet, while half of the
SE rate can be explained by the radiation reaction with a
classical approach, the other half was shown to stem from the
quantum fluctuations of the modes: “Die spontane Emission
ist somit eine durch die Nullpunktsschwingungen des leeren
Raumes erzwungene Emission eines Lichtquants,” as Weis-
skopf wrote[5,6]. These zero-point fluctuations do not result
from a set of unknown (or “hidden”) variables, as in classical
statistical physics when microscopic details are ignored, but
rather from Heisenberg’s uncertainty principle [7].

In the case of a quantum emitter, the decoherence mecha-
nism incarnated by SE leaves its mark on the radiated light,
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since signatures of the quantum nature of the emitter, such
as photon antibunching [8,9] or Rabi oscillations [10,11], are
visible on a time scale 1/�. When moving to many emit-
ters, the nature of the mechanism at the origin of the light
coherence loss can be more ambiguous, as one meets the
frontier between quantum physics and statistical ensembles.
For example, photon antibunching is observed in large sys-
tems under specific conditions such as phase matching [12]
or confinement of light in fibers [13]; SE then sets the time
scale of the light coherence. Differently, the reduction of this
coherence time due to the particles’ motion can be understood
from a classical perspective: macroscopic information (the
velocity distribution) is extracted from the reduction of the
light coherence, without the knowledge of the microscopic
trajectories, and this effect is at the core of the diffusive wave
spectroscopy technique [14–20]. This illustrates the variety of
phenomena that compete to set a limit to light coherence.

In this work, we report on the transition from a classical
to a quantum mechanism for the loss of coherence in the
light scattered by a macroscopic atomic cloud of cold neutral
atoms. In the weak drive regime, the atoms scatter light elasti-
cally, yet the finite cloud temperature induces a broadening
of the spectrum: the coherence loss is here a macroscopic
manifestation of the microscopic dynamics (see Fig. 1). Dif-
ferently, SE dominates the scattering from strongly driven
atoms, and the light coherence is then limited by the transition
rate �. In this regime, the emission of each atom is spectrally
broadened [21], and the reduction of coherence results from
zero-point fluctuations of the electromagnetic field rather than
from unknown microscopic details [22]. Experimentally, we
perform intensity-intensity correlation measurements to char-
acterize the (loss of) light coherence: the associated intensity
fluctuations are shown to also arise, depending on the regime
explored, from either the Doppler effect or SE. Furthermore,
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FIG. 1. Coherence time of the light radiated by a macroscopic
cloud, as a function of the saturation parameter (dashed: theory;
dots: experiment with error bars, see main text). Left inset: For a
weak drive on the atoms, the elastically scattered light acquires a
frequency shift due to the Doppler effect. The finite temperature of
the cloud broadens the light spectrum, setting the coherence time.
Right inset: Each of the strongly driven atoms emits a broadened
spectrum (Mollow triplet).

we show that a cold sample is necessary for the transition to
be observed. Alternatively, we monitor field-field correlations,
which confirm that the electric field coherence suffers from
the same mechanism as the intensity (Siegert relation), both
in the classical and in the quantum regime of coherence loss.

II. EXPERIMENTAL SETUP

We here detail the setup presented in Fig. 2(a) (see
Refs. [23,24] for further details). The scattering medium is
produced by loading a magneto-optical trap from a vapor
of N ≈ 108 85Rb atoms, with a low atomic density ρ ≈
0.005/λ3 (λ = 2π/k the optical wavelength). After a 2-ms
time of flight, the cloud is illuminated by a flattop intensity
laser beam with a frequency ωL locked on the |3〉 → |4′〉
hyperfine transition of the D2 line. The beam diameter at the
atoms’ positions is 14.7 mm, which is much larger than the
cloud radius (∼0.4 and 0.8 mm in the two transverse direc-
tions). Hence, the intensity incident on the atoms is uniform
(within 10%), with Rabi frequency �. We use λ/2 and λ/4
plates to obtain a circularly polarized light, and the intensity
is changed to tune the saturation parameter s = 2�2/�2 be-
tween 0.004 and 60. To maintain similar heating effects over
the different regimes, the duration of the laser pulse, always
at resonance, is adjusted to get a constant number of photons
scattered per atom of ∼400.

The scattered light is collected at θ = 90◦ from the probe
beam axis, using a polarization-maintaining (PM) single-
mode fiber. The polarization is selected before the fiber with
a λ/2 plate and a polarization beam splitter (PBS) to maxi-
mize the amount of collected photons as well as to adjust the
incident polarization along the PM fiber axis. This PM fiber is
then connected to a fibered beam splitter (FBS) whose outputs
illuminate two single-photon counter detectors (avalanche
photodiodes, APDs) connected to a time-to-digital converter
(TDC). The latter device allows to time-tag the arrival of each
photon. The second input of the fibered beam splitter is used
to add a local oscillator (LO) derived from the laser which
delivers the probe beam. The LO is frequency shifted by
ωBN = 220 MHz with an acousto-optical modulator (AOM),

FIG. 2. (a) Schematic setup of the experiment (see main text
for details). (b) Temporal evolution of the second-order coher-
ence g(2)(τ ), in a low-saturation temperature-dominated regime [s =
(4.0 ± 0.8) × 10−3] and in a high-saturation SE-dominated regime
(s = 24 ± 5). Dashed lines: fits of the decay capturing the coherence
time; the solid thicker line is a fit containing the (coherent) Rabi
oscillation of the saturated regime. (c) Observation of the Siegert
relation, which writes g̃(2)(ω) = δ(ω) + g̃(1)(ω) � g̃(1)∗(ω) in the fre-
quency space [� the convolution and δ(ω) the Dirac function], for
the large-s regime, s ≈ 60. The elastic component is broadened by
the temperature; the spectra are normalized to one.

and its polarization is adjusted before the entrance of the fiber
to correspond to the PM fiber axis.

III. THERMAL COHERENCE LOSS VERSUS SE

Our experimental setup allows us to measure simultane-
ously the first-order (field-field) and second-order (intensity-
intensity) correlation functions of the scattered light [24]:

g(1)(τ ) = 〈Ê−(t )Ê+(t + τ )〉
〈Ê−(t )Ê+(t )〉 , (1)

g(2)(τ ) = 〈Ê−(t )Ê−(t + τ )Ê+(t + τ )Ê+(t )〉
〈Ê−(t )Ê+(t )〉2

. (2)

Ê+ refers to the positive frequency component of the electric
field in the measured mode, 〈.〉 either to the average over time
or to the expectation value [25], and we here consider the
steady-state limit, t → ∞. In all cases, we also average over
configurations.

Two examples of g(2)(τ ) correlation functions taken from
the experiment are presented in Fig. 2(b). Let us now discuss
how the coherence time, which is the typical time scale over
which the g(2)(τ ) falls to unity, is extracted. Two regimes
must be distinguished: First, for a weak pump (s � 1), most
light is scattered elastically by each atom in its own (moving)
frame. In the laboratory frame, this atomic motion translates
into a change in frequency of the light (Doppler effect), and
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the interference between the fields scattered by the disordered
ensemble of moving atoms leads to a Doppler-broadened
spectrum with coherence time τ T

c ∝ 1/
√

T [see red curve in
Fig. 2(b)], with T the temperature. In this limit case of s � 1,
the experimental g(2)(τ ) curve can be fitted by a decaying
exponential, and the coherence time corresponds to its half-
width at half-maximum (HWHM). The temperature-induced
τ T

c is extrapolated for s = 0 from measurements at several
low-s values, and the value obtained, τ T

c ≈ 260 ns, corre-
sponds to a temperature of about 200 µK and a cloud with
an optical depth of 6 [20], see Appendix A. This statistical
analysis is a purely classical mechanism of coherence loss.

In the second regime, the coherence loss is based on the
quantum randomness of SE, and it is reached using a strong
resonant pump (s � 1). Each atom then presents a spectrally
broadened fluorescence, the so-called Mollow triplet [21,26],
which is characterized by a peak at resonance and two side-
bands shifted by ±� from the carrier, with � the pump
Rabi frequency. The beating between these peaks of inelastic
scattering is manifested as Rabi oscillations in the g(2)(τ ),
whereas the widths of the peaks (�ω ≈ �) set the coherence
time of this spontaneously emitted light, see Fig. 2(b). In the
s � 1 limit, the g(2)(τ ) can be fitted by the square of a sum
of an exponential (for the peaks of the Mollow triplet) and a
cosine modulated by a decaying exponential (for the beating
between sidebands and the carrier). The coherence time is
then extracted as the HWHM of the nonoscillating part of the
fit, providing the value τ SE

c ≈ 16 ns (see Appendix A 2). This
broadening mechanism does not rely on the microscopic state
of the system (and macroscopically captured by temperature,
for example) or any “hidden variable,” but rather on zero-point
fluctuations [22].

In our experiment, the transition between the classical and
quantum regimes occurs when the ratio of spontaneously
emitted to elastically scattered power is inverted. This ratio
here corresponds to the saturation parameter s [8,21], tuned
via the pump strength �. In Fig. 1, we present the evolution
of the coherence time of the light when crossing from the
classical to the quantum regime of coherence loss. For arbi-
trary values of s, the coherence time is then extracted as the
HWHM of the nonoscillating part of the fit of the correspond-
ing g(2)(τ ) by the square of a weighted sum of the thermal and
Mollow fitting functions, and it is the method used to compute
τc throughout this work. The slightly larger coherence time
observed for intermediate s in the experiment (see Fig. 1),
as compared to the theoretical prediction, can be attributed
to the attenuation of the beam during its propagation in the
cloud, which results in an increase of the relative contribution
of elastic scattering. The overall agreement between the exper-
imental and theoretical curves shows that the proposed picture
of N � 1 independent atoms captures well the underlying
physical mechanisms of coherence loss for the light.

This classical-to-quantum transition is observed for low
temperatures such that the thermal coherence time τ T

c , of the
order of

√
M/kBT /k [20] (with M the atomic mass, kB the

Boltzmann constant, and k the light wave vector), is much
larger than the coherence time of SE τ SE

c , of the order of �−1.
In this regime, the Doppler broadening does not affect sub-
stantially the Mollow triplet, as is the case in our experiment.
However, for temperatures larger than Tcrit = (�/k)2M/kB

FIG. 3. Theoretical coherence time of the light scattered by the
atomic cloud, at an angle 90◦ from the probe beam axis, as a function
of the cloud temperature T and the saturation parameter s of the
probe. The small oscillations close to the transition originate from the
fitting procedure when the fitting model for the Doppler broadening
and for the SE are competing with comparable weights to fit the g(2)

curves.

(0.1 K for Rubidium atoms), the transition is attenuated since
the Doppler broadening starts to affect substantially the Mol-
low triplet (s � 1) of each atom. Then, the thermal motion
competes with the triplet as a mechanism for the loss of
light coherence. This dependence of the transition on the
temperature is illustrated in Fig. 3, and it demonstrates the
necessity of working with a cold platform to observe a clear
transition between the Doppler broadening and SE regimes of
light coherence loss.

IV. ORIGIN OF THE FLUCTUATIONS

The finite coherence time reflects the fluctuations of the in-
tensity over time, which can have different origins. Elastically
scattered light is usually treated as a continuously radiated
field, whose fluctuations result from the emitters’ motion,
whereas SE can be thought of as the emission of quanta of
light. Although the two pictures of continuous versus discrete
detection events can be reconciled [25,27], let us now discuss
how the fluctuations observed in each regime nevertheless
depend on the underlying physical mechanism.

Let us first consider motionless particles scattering light
elastically. One may expect the light emitted by the cloud to
inherit the same statistics of the pump, g(2)(0) = 1 for a laser.
Yet this classical picture presents a loophole, as one already
perceives from the test case of a pair of two-level atoms.
Under a resonant drive with wave vector kL, two remote
(noninteracting) two-level atoms at positions r1,2 exhibit a
second-order correlation function at zero delay which satisfies
[28] (see also Appendix B)

g(2)(0) = (s + 1)2

(s + 1 + cos [(kn̂ − kL ) · (r2 − r1)])2 , (3)

in the far field and in the steady state, and with n̂ the direc-
tion of observation. The cosine is an interference term that
produces an angular dependence for the g(2)(0). For N = 2
this term is present in the intensity 〈Ê−Ê+〉, yet absent from
the two-photon term G(2) = 〈Ê−Ê−Ê+Ê+〉, and it leads to the
spatial modulation of the light statistics reported in pairs of
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FIG. 4. (a) Evolution of the emitted intensity from a cloud of
moving classical dipoles with positions r j (t ), where the Doppler
effect combines with interference to provide temporal fluctuations:
I ∝ | ∑ j exp[(kL − kn̂) · r j (t )]|2, with n̂ the direction of observation,
and 〈ṙ2

j 〉 = kBT/M. (b) Stochastic evolution of the excited population
of an ensemble of N atoms driven by a strong pump, in the steady
state, obtained from exact simulations of strongly driven two-level
atoms [32] (with N = 10 and s = 8). The quantum jumps toward
a lower population state correspond to the emission of a photon
(photodetection events in red).

trapped ions [29]. This result is at odds with a linear optics
approach mentioned above, where motionless scatterers emit
a constant electric field, corresponding to g(2)(0) = 1 (coher-
ent light). The flaw in the latter approach is that the emission
of two photons, as measured by the g(2) function, cannot be
described classically. Note that this feature is absent from
field-field correlations (1), which is equal to one at zero delay
by definition: the g(1) function does not address photons, but
only fields.

In particular, the angles such that (kn̂ − kL ) · (r2 − r1) =
π mod 2π correspond to destructive interference, at which
the emission computed from the optical coherences of the
two-level atoms (that is, the elastically scattered component)
cancels. In those particular directions, only a contribution
from the doubly excited state remains and one obtains
g(2)(0) = (s + 1)2/s2, which diverges in the s → 0 limit [28],
even in the large N case (see Appendix B). Yet far from any
divergence, the intensity correlations observed in the experi-
ment lead to g(2)(0) ≈ 2 in the low-s regime, expected from
chaotic light. This finite value is due to the finite temperature
of the cloud, along with the finite time necessary to evaluate
the g(2)(τ ), see Appendix A. Indeed, the atomic motion results
in spatiotemporal fluctuations of the speckle field. Thus, the
measurement of the g(2) over a time scale much larger than the
coherence time of the speckle provides a finite averaged value
of the intensity, and thus a finite intensity variance g(2)(0). In
other words, in the classical regime, the notation 〈·〉 refers to
a statistical average on the thermal probability distribution of
atomic positions and velocities. In our experiment, the average
is realized over the duration of the experiment (>20 µs), much
larger than the coherence time τ T

c of the speckle grain, and
over different clouds, which explains why the value g(2)(0) =
2 is observed. In this low-s regime, a description of the scatter-
ers as moving classical dipoles leads to the same conclusion
[30,31]. An example of this classical description is illustrated
in Fig. 4(a), where the intensity emitted in a given direction by
classical dipoles with ballistic trajectories is shown. The value
g(2)(0) = 2 and the coherence time τ T

c ≈ 260 ns obtained
from this approach are the same as the ones observed in the

experiment, which supports the classical origin of coherence
loss in this regime.

Differently, SE gives rise to intensity fluctuations even in
the absence of any motion. The random nature of the photon
emission in this regime is best understood by adopting the
quantum jump approach [33]. While the atomic ensemble
undergoes coherent Rabi oscillations under the action of the
drive, it also stochastically decays toward a lower population
state when a photon is spontaneously emitted. This process
is illustrated in Fig. 4(b), where the total excited population
of a cloud of N atoms is presented for a given realization (or
“trajectory”). At each decay event, a photodetection occurs
(see red lines). In the experiment [inset in Fig. 2(a)], the
correlation between the detection event times of the two detec-
tors is computed, before a binning over a time window much
smaller than the coherence time of the light is applied. This
experimental protocol effectively measures the expectation
value, with a temporal average, of the operators involved in the
definition of g(2)(τ ), see Eq. (2), and it provides the continuous
curves presented in Fig. 2(b).

In the experiment [APDs’ signal in Fig. 2(a)], the cor-
relation between the detection events of the two detectors
is computed, before a binning over a time window much
smaller than the coherence time of the light is applied. This
experimental protocol effectively measures the expectation
value, with a temporal average, of the operators involved in
the definition of g(2)(τ ), and it provides the continuous curves
presented in Fig. 2(b).

The amplitude of the fluctuations that we observe,
g(2)(0) ≈ 2, is consistent with the value for chaotic light. A
common picture for a gas of particles is when each emit-
ter emits a field with a given phase, yet with a mechanism
that randomizes this phase [25]. In our experiment, the tem-
perature provides this dephasing mechanism for the elastic
component of the scattering, which dominates at low s.
Nonetheless, the calculation of g(2)(0) shows that the classical
and quantum regimes studied here are qualitatively different
(see Appendix B). In the quantum regime (s � 1), the absence
of a well-defined phase for the field from each two-level emit-
ter is a result of the SE of the photons, and the atomic motion,
or other classical dephasing mechanisms such as collisions,
are unnecessary to explain the fluctuations in the intensity of
spontaneously emitted light. An additional signature that the
emission in the large-s regime comes from quantum emitters
is the Rabi oscillation observed in the g(2)(τ ) of Fig. 2(b),
which results from the coherent dynamics between the two
levels of the atoms (with a circularly polarized large-s pump,
the atoms are driven to an extreme Zeeman sublevel, from
which a two-level transition only is explored).

V. FIELD FLUCTUATIONS AND SIEGERT RELATION

Elastically scattered light has a well-defined phase, which
is determined by the incident laser and the trajectories of
the atoms. For SE, the broadened fluorescence spectrum of
even single atoms, along with the absence of a phase operator
[34,35], prevent a direct analogy. Nevertheless, the electric
field from SE possesses a temporal coherence, which is cap-
tured by field-field correlations, see Eq. (1). In our setup,

042214-4



TRANSITION FROM CLASSICAL TO QUANTUM LOSS OF … PHYSICAL REVIEW A 108, 042214 (2023)

it is obtained from the homodyne measurements described
previously.

In Fig. 2(c), we present simultaneous measurements of the
g(1) and the g(2) functions, in the strong drive regime (s ≈ 60).
The excellent match between intensity-intensity correlations
and the square modulus of field-field correlations corresponds
to the Siegert relation, g(2)(τ ) = 1 + |g(1)(τ )|2, which estab-
lishes an equivalence between the (loss of) coherence for the
field and the intensity [36].

The textbook derivation of the Siegert relation [25] relies
on three conditions: a large number of scatterers, the absence
of correlations between the emitters (here supported by the
negligible interactions), and a zero average electric field 〈Ê j〉
for each emitter j. The latter condition is provided, for elastic
scattering, by thermal motion [25]. For SE, the absence of
coherence between ground and excited states of each atom
j guarantees 〈Ê−

j 〉 = 0 (despite 〈Ê−
j Ê+

j 〉 �= 0), even in the
absence of motion. Yet, even the sum of the two kinds of emis-
sion, as encountered in the intermediate s regime, satisfies the
Siegert relation V. The reason is that elastically scattered and
spontaneously emitted light are uncorrelated fields, with inde-
pendent mechanisms to provide the zero average of the field:
Thermal motion relies on the external degrees of freedom of
the emitters, whereas SE stems from zero-point fluctuations.

VI. CONCLUSIONS

We have investigated the transition from thermal to SE for
loss of light coherence in a macroscopic cold atomic cloud
using intensity-intensity correlation measurements. This tran-
sition is monitored by tuning the pump power, which controls
the ratio between elastic scattering (subjected to thermal
broadening) and SE. We also demonstrated that a low tem-
perature is required to observe the transition, which highlights
the potential of cold atomic samples to explore the frontier be-
tween statistical physics and quantum effects in large systems.

The transition occurs in the absence of interactions be-
tween the emitters. An open question is how collective effects
arising, for example, from dipole-dipole interactions (super-
and subradiance) may leave a mark on light coherence. The
original configuration envisioned for superradiance was the
decay cascade from a fully excited state to the ground state
of a many-atom cloud [37], which is intrinsically an out-of-
equilibrium dynamics. Steady-state signatures of collective
effects for atoms in free space remain to be explored, which
could lead to new phase transitions [38–40]. In this context,
it is worth mentioning a recent report of steady-state superra-
diance in intensity correlations measurements in a four-wave
mixing experiment [41].
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APPENDIX A: THEORETICAL APPROACH
FOR THE LIGHT COHERENCE TIME

1. Modeling

We assume that the atomic cloud has a Maxwell-
Boltzmann distribution of velocities (temperature T ) and, at
first, a low optical thickness so that multiple scattering and
collective effects can be neglected. The probe is a monochro-
matic wave with a frequency set to the atomic resonance. The
scattered spectrum is computed for the different atomic ve-
locity classes, between v, v + dv. For each velocity class, this
spectrum is the sum of an elastic and an inelastic component.
The elastic one corresponds to a Dirac function, yet Doppler
shifted from the probe frequency. As for the inelastic part, we
first compute the Mollow spectrum for the saturation param-
eter s, taking into account the detuning of the probe beam by
moving to the atom frame, before converting back this spec-
trum to the observation frame. Finally, we integrate the sum
of the elastic and inelastic components over the distribution
of atomic velocities to obtain the total scattered spectrum,
related to the Fourier transform of the field-field correlation
function g(1)(τ ). Assuming the Siegert relation, one computes
the g(2)(τ ) function to extract its temporal coherence τc, as
presented in Fig. 1. For the theory curve in Fig. 1, the effective
temperature Teff = 1.7 mK is used, which accounts for the
multiple scattering in a cloud with optical thickness b ≈ 6
in the low-s regime, as discussed in Ref. [20]. Multiple scat-
tering by moving atoms indeed results in a reduction of the
thermal coherence time, as compared to the single scattering
regime. Because our analysis relies on a single scattering
assumption (independent scatterers hypothesis), we resort to
this effective temperature to describe the loss of coherence
by thermal motion. This choice is motivated by the challenge
of dealing simultaneously with multiple and inelastic scatter-
ing in the moderate-s regime, which is beyond the scope of
our work. In summary, this reduced coherence time can be
taken into account by either multiple scattering and the “real
temperature” of the cloud or, alternatively, using a simpler
single parameter with a larger “effective temperature,” which
in our case corresponds to an effective temperature of 1.7 mK
(instead of the “real temperature” of 200 μK).

2. Fitting protocol

To extract the temporal coherence from the g(2)(τ ) func-
tions, either modeled theoretically or obtained experimentally,
we first assume that these curves are the sum of a contribution
from (1) the thermal motion and (2) the temporal counterpart
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of the Mollow triplet for the inelastic component. The former
corresponds to a Gaussian in time for the single scattering
regime (theoretical curves of Fig. 3); for the experimental
data in Fig. 1, we have used a decaying exponential in time
to account for the presence of multiple scattering, which re-
sults from the Lorentzian shape of the elastic component in
frequency space [20]. The relative weight of each component
is determined by taking into account the saturation parameter
[8]. This leads to a g(2)(τ ) function of the form

g(2)(τ ) − 1 =
∣∣∣A fel(τ ) + (1 − A)

×
(

1
2 e−|τ |/τ SE

c + 1
4 (ei��Bτ + e−i��Cτ )e−|τ |/τs

)∣∣∣2
,

(A1)

with the generalized Rabi frequency �2
� = �2 − ( �

4 )2, the
Rabi frequency � = �

√
s/2 [8], and fel(τ ) = e−|τ |/τel or

e−τ 2/τ 2
el the elastic scattering component. Our experimental

intensity correlation functions are fitted by this formula, with
A, B, C, τel, τ SE

c , and τs as free parameters [solid thicker
line in Fig. 2(b)] and � and s being obtained from the direct
measurement of the probe intensity. As mentioned previously,
the coherence time is then defined as the HWHM of the
nonoscillating part of the former fit (that is, the complex
exponentials in the fitting formula are set to one for �� real).
Since the theoretical g(2)(τ ) functions do not present noise, we
directly fit the nonoscillating part on the monotonous part of
the curve computed, which provides τ SE

c ≈ 16 ns. Note that
the decay constants τ SE

c and τs are treated as two independent
fitting parameters, to account for the fact that the carrier and
the Mollow sidebands suffer from several broadening mecha-
nisms (fluctuations in the probe profile, Doppler broadening).

APPENDIX B: SECOND-ORDER CORRELATION
FUNCTION g(2)(0) FOR N NONINTERACTING ATOMS

We derive here the analytical expression for the second-
order correlation function at zero delay g(2)(0) for an ensemble
of N two-level noninteracting atoms. The detected electric
field is assumed to be measured in the far-field and along a
direction n̂, so it reads

Ê+ = E0

N∑
a=1

e−ikn̂·ra σ̂−
a , (B1)

with ra the position vector of atom a, σ̂∓
a the two-level lower-

ing or raising spin operation, and E0 a normalization prefactor.
Without loss of generality, we hereafter set E0 = 1, resulting
in a normalized electric field intensity that peaks at unity for
a single atom. We also assume that the atomic cloud is dilute,
thus interaction between the atoms can be disregarded and the
steady state of the system is separable. We can then write the
state of the system as a direct product as follows:

ρ̂ =
N⊗

a=1

ρ̂a, (B2)

where ρ̂a is the single-particle density matrix.

1. Scattered field intensity

Let us first calculate the intensity of the field scattered by
the atomic ensemble, which reads

I = 〈Ê−Ê+〉 =
∑

ab

Treikn̂·ra σ̂+
a e−ikn̂·rb σ̂−

b ρ̂

=
∑

a

Trσ̂+
a σ̂−

a ρ̂ +
∑

ab

′
Treikn̂·ra σ̂+

a e−ikn̂·rb σ̂−
b ρ̂, (B3)

where we have introduced the notation
∑′

a,b,...,n ≡∑
a

∑
b�=a . . .

∑
n �=a,b,...,n−1.

Using now the separability of the atomic state as in
Eq. (B2) and conveniently introducing the excited population

na ≡ Trσ̂+
a σ̂−

a ρ̂a (B4)

and the coherence

βa ≡ e−ikn̂·ra Trσ̂−
a ρ̂a ⇒ β∗

a ≡ eikn̂·ra Trσ̂+
a ρ̂a, (B5)

we can rewrite Eq. (B3) as

I =
∑

a

na +
∑

ab

′
β∗

a βb,

=
∑

a

na +
∣∣∣∣∣
∑

a

βa

∣∣∣∣∣
2

−
∑

a

|βa|2. (B6)

2. Unnormalized second-order correlation function

Similarly, following the separability of the atomic state, the
second-order correlation reads

G(2)(0) = 〈Ê−Ê−Ê+Ê+〉
= 2

∑
ab

′
Trσ̂+

a σ̂−
a ρ̂aTrσ̂+

b σ̂−
b ρ̂b

+ 4
∑
abc

′
Trσ̂+

a σ̂−
a ρ̂aTreikn̂·rb σ̂+

b ρ̂b

× Tre−ikn̂·rc σ̂−
c ρ̂c

+
∑
abcd

′
Treikn̂·ra σ̂+

a ρ̂aTreikn̂·rb σ̂+
b ρ̂b

× Tre−ikn̂·rc σ̂−
c ρ̂cTre−ikn̂·rd σ̂−

d ρ̂d . (B7)

Using the definitions in Eqs. (B4) and (B5), we are left with

G(2)(0) = 2
∑

ab

′
nanb + 4

∑
abc

′
naβ

∗
b βc +

∑
abcd

′
β∗

a β∗
b βcβd .

(B8)

Reorganizing the expression using sums without index exclu-
sion, one can expand the expression above as

G(2)(0) = 2

( ∑
a

na

)2

− 2
∑

a

n2
a

+ 4

( ∑
a

na

)(∣∣∣∣
∑

b

βb

∣∣∣∣
2

−
∑

b

|βb|2
)

− 8Re

{( ∑
a

naβ
∗
a

)(∑
b

βb

)}
+ 8

∑
a

na|βa|2
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+
∣∣∣∣
∑

a

βa

∣∣∣∣
4

− 6
∑

a

|βa|4−4

∣∣∣∣
∑

a

βa

∣∣∣∣
2( ∑

b

|βb|2
)

+8Re

{(∑
a

βa

)( ∑
b

|βb|2β∗
b

)}
+2

( ∑
a

|βa|2
)2

− 2Re

{( ∑
a

βa

)2( ∑
b

(β∗
b )2

)}
+

∣∣∣∣
∑

a

β2
a

∣∣∣∣
2

.

(B9)

3. Separable steady state as a function
of the saturation parameter

Considering a laser with wave vector kL driving a two-level
atom on its resonance at a Rabi frequency �, the single-atom
density matrix in the steady state is given by

ρ̂a = ρ (a)
ee |e〉〈e| + ρ (a)

eg |e〉〈g| + ρ (a)
ge |g〉〈e| + ρ (a)

gg |g〉〈g|, (B10)

with

ρ (a)
ge =

(
ρ (a)

eg

)∗
= −i

e(−ikL )ra

1 + s

√
s

2
,

ρ (a)
ee = s

2(1 + s)
,

ρ (a)
gg = 2 + s

2(1 + s)
, (B11)

where s ≡ 2�2/(�2 + 4�2) is the saturation parameter,
which on resonance (� = 0) reduces to the ratio s =
2�2/�2 = PSE/PEL, as discussed in the main text.

Substituting the elements of the single-particle density ma-
trix in the definition of g(2)(0) = G(2)(0)/I2, one is left with

g(2)(0) = 1

(Ns + |�1|2)2

(
2Ns[2 + (N − 1)s]

+ 4s(N − 2)|�1|2 + ∣∣�2
1 − �2

∣∣2)
, (B12)

where we have defined

�1 =
∑

a

ei(kn̂−kL )·ra ,

�2 =
∑

a

ei2(kn̂−kL )·ra . (B13)

For s → ∞, one recovers the formula g(2)(0) = 2(1 − 1/N )
[42], which goes to 2 in the large N limit. In the limit
s → 0 where elastic scattering dominates, the destructive
interference condition �1 = 0 leads to a g(2)(0) scaling as
(|�2|/sN )2, which diverges for s → 0 at fixed N . In this
regime, thermal motion or another dephasing mechanism is
necessary to recover the value g(2)(0) = 2 of chaotic light.

APPENDIX C: SIEGERT RELATION
FOR TWO INDEPENDENT FIELDS

Here we show in a condensed manner that the sum of two
fields, each satisfying the Siegert relation and the associated

conditions described in the main text, also satisfies the rela-
tion, provided that the fields are uncorrelated. The derivation
is provided for two arbitrary electric fields Ê+

e and Ê+
i cor-

responding, for example, to the elastically and inelastically
(that is, spontaneously emitted) electric fields of the main
text. The total electric field is Ê+ = Ê+

e + Ê+
i , and it presents

the following second-order correlation function in the steady
state:

G(2)(τ ) =〈[Ê−
e (t ) + Ê−

i (t )][Ê−
e (t + τ ) + Ê−

i (t + τ )]

× [Ê+
e (t + τ ) + Ê+

i (t + τ )][Ê+
e (t ) + Ê+

i (t )]〉.
(C1)

Both elastic and inelastic terms of the electric field have a
zero average: 〈Êe,i〉 = 0, so their sum as well: 〈Ê〉 = 0. Fur-
thermore, the absence of correlation between the fields means
that the contributions from the elastic and inelastic terms can
be factorized in the above expression of G(2), which in turn
leads to the cancellation of several terms:

G(2)(τ ) = 〈Ê−
e (t )Ê−

e (t + τ )Ê+
e (t + τ )Ê+

e (t )〉
+ 〈Ê−

i (t )Ê−
i (t + τ )Ê+

i (t + τ )Ê+
i (t )〉

+ 2〈Ê−
e (t )Ê+

e (t )〉〈Ê−
i (t )Ê+

i (t )〉
+ 2Re[〈Ê−

e (t + τ )Ê+
e (t )〉〈Ê−

i (t )Ê+
i (t + τ )〉].

(C2)

Considering now that each scatterer presents the same single-
particle correlation functions Gs(1)

e,i (τ ) and contributes equally
to the total field, then the single emitter correlation func-
tion of the field writes Gs(1)(τ ) = Gs(1)

e (τ ) + Gs(1)
i (τ ), where

we have used that the fields are uncorrelated and have zero
average. The correlation function of the total field is then
equal to 〈Ê−(t )Ê−(t + τ )〉 = NGs(1)(τ ), with N the number
of scatterers. Calling G(2)

e,i (τ ) the non-normalized second-
order correlation function of the total elastic or inelastic terms,
respectively, we obtain

G(2)(τ ) = G(2)
e (τ ) + G(2)

i (τ ) + 2N2Gs(1)
e (0)Gs(1)

i (0)

+ 2N2Re
[
Gs(1)

e (τ )Gs(1)∗
i (τ )

]
. (C3)

Assuming that the spectrum emitted by a single atom is sym-
metric, its Fourier transform Gs(1)

e,i (τ ) is real. We also assumed
that both the elastic and inelastic fields satisfy the Siegert
relation, so (C3) can be rewritten as

G(2)(τ ) = N2
([

Gs(1)
e (0)

]2 + [
Gs(1)

e (τ )
]2

)

+ N2
([

Gs(1)
i (0)

]2 + [
Gs(1)

i (τ )
]2

)

+ 2N2Gs(1)
e (0)Gs(1)

i (0) + 2N2Gs(1)
e (τ )Gs(1)

i (τ ).
(C4)

This can be simplified to

g(2)(τ ) =
[
Gs(1)

e (0) + Gs(1)
i (0)

]2 + [
Gs(1)

e (τ ) + Gs(1)
i (τ )

]2

[
Gs(1)

e (0) + Gs(1)
i (0)

]2

= 1 + |g(1)(τ )|2. (C5)

Thus, the sum of two uncorrelated Siegert-satisfying
fields still satisfies the Siegert relation. For our particu-
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lar system, it implies that in the intermediate saturation
regime, where both elastic and inelastic scattering occur,

the Siegert relation is verified for a large number of
scatterers.
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