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Violation of the Finner inequality in the four-output triangle network
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Network nonlocality allows one to demonstrate nonclassicality in networks with fixed joint measurements,
that is, without random measurement settings. The simplest network in a loop, the triangle, with four outputs
per party is especially intriguing. The “elegant distribution” [Gisin, Entropy 21, 325 (2019)] still resists analytic
proofs, despite its many symmetries. In particular, this distribution is invariant under any output permutation.
The Finner inequality, which holds for all local and quantum distributions, has been conjectured to be also valid
for all no-signaling distributions with independent sources (NSI distributions). Here we provide evidence that
this conjecture is false by constructing a four-output network box that violates the Finner inequality and prove
that it satisfies all NSI inflations up to the enneagon. As a first step toward the proof of the nonlocality of the
elegant distribution, we prove the nonlocality of the distributions that saturates the Finner inequality by using
geometrical arguments.
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I. INTRODUCTION

The study of correlations in networks with independent
sources has attracted a lot of attention recently, notably be-
cause of its ability to provide nonlocality without input [1,2].
The first studies of nonlocality started in the well-known Bell
scenario [3]. In this scenario, two parties share some resources
and the goal consists in maximizing a score. More generally,
in Bell scenarios n parties share some common resources.
The parties can agree on a strategy before the start of the
game, but can no longer communicate once the game starts.
This game is used to prove that quantum mechanics cannot
be explained with local variables. In this scenario, building
Bell inequalities allows one to distinguish between local and
nonlocal correlations.

Nonlocality in networks differs fundamentally from the
standard Bell nonlocality, in that some resources are only
shared by a subset of the parties. In fact, Bell inequalities
do not allow one to characterize nonlocality in networks,
since the local regions in networks are nonconvex [4]. The
development of novel methods to study network nonlocality
is therefore needed.

The triangle network has been of particular interest due
to its minimal shape. The first example of triangle non-
locality comes from Fritz [5], though it uses the standard
Clauser-Horne-Shimony-Holt test [6]. More recently, some
distributions called “token counting” have been proved nonlo-
cal [7–10]. All these examples of nonlocal distribution in the
triangle are for the four-output case, but some distributions
with fewer outputs have been found [11]. The two-output
triangle has been studied in detail, no sign of quantum non-
locality has been found yet, and the regions where one could
still hope to find some gets smaller and smaller [12,13].

In this paper, we focus on distributions in the four-output
triangle network without inputs. We study the subspace with
distributions invariant under exchange of parties and outputs,

that we call “output permutation invariant” (OPI) for short.
This subspace contains the elegant distribution, introduced
in [14], obtained by using the elegant joint measurement on
shared maximally entangled two qubits states. This distribu-
tion is thought to be nonlocal [15], but a proof is still awaited.

To characterize this symmetric subspace, we use the in-
flation technique [16] to exclude regions of the symmetric
subspace that do not respect the no-signaling principle with
the independence of the sources (NSI). As a first step in the
direction of a proof of the nonlocality of the elegant distribu-
tion, we give a proof of the nonlocality of the distributions in
this subspace that saturates the Finner inequality (see Fig. 1).
This proof uses a method that relies on geometric arguments
that may also be useful for other distributions in the triangle
network.

II. PROBLEM AND NUMERICAL METHODS

The OPI subspace contains all the probability distributions
that satisfy the invariance under exchange of parties, i.e.,
pabc = pbca = . . ., and the symmetry between all outputs, i.e.,
p000 = p111 = . . . This subspace is two dimensional for the
four-output triangle. Indeed, the only three different possible
probabilities are p111, when all parties give the same output,
p112, when two parties give the same output but not the third,
and p123, when all parties give a different output. These three
probabilities have the additional constraint to sum to 1:

4p111 + 36p112 + 24p123 = 1. (1)

We can also parametrize this subspace with correlators.
We write the four outputs of each party with two bits a =
(a0, a1) ∈ {−1, 1}2. It is convenient to define an additional bit
a2 = a0 × a1. Then, the only two nonvanishing correlators are
the two-party marginal E2, later referred to as the “two-party
correlator,” and the three-party marginal in a loop Eo

3 defined
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FIG. 1. Scheme of the OPI subspace of probability distribu-
tion with the Finner inequality and the distribution obtained with
the elegant joint measurement (EJM point). Here, this subspace
is parametrized using the two-party marginal and the three-party
marginal in a loop, respectively E2 and Eo

3 , defined in Eq. (2). All
distributions in the four-output OPI triangle must be in the above
triangle because of the positivity of all probabilities.

as

E2 = 〈a jb j〉 = 〈a jc j〉 = 〈b jc j〉,
Eo

3 = 〈a jbkcl〉, (2)

where j, k, l ∈ {0, 1, 2}, j �= k �= l �= j. A linear transforma-
tion allows one to go from one parametrization to the other
with the relation (3):⎛

⎝ 1
E2

Eo
3

⎞
⎠ =

⎛
⎝4 36 24

4 4 −8
4 −12 8

⎞
⎠

⎛
⎝p111

p112

p123

⎞
⎠. (3)

The Finner inequality [17] implies that

pabc �
√

p(a)p(b)p(c) (4)

for any local or quantum distributions [18], with p(a), p(b),
and p(c) the one-party marginals. This inequality is illustrated
in Fig. 1 together with the positivity constraints that form
a triangle, the distribution obtained with the elegant joint
measurement, and the fully noisy distribution. Note that here
the nonlinear Finner inequality (4) appears linear because
all marginals p(a), p(b), and p(c) are set to 1

4 by the OPI
condition.

To bound the NSI region, we consider polygon inflations to
find an upper bound on the two-party correlator E2. Increasing
the number of parties allows one to get more constraints on
this correlator, because it appears in all polygons. One should
notice that one cannot constrain the other correlator of the
triangle, Eo

3 , the tripartite correlator in a loop, since bigger
polygons do not contain it. We introduce polygon inflations
with more details in Appendix A.

The constraints come from the NSI condition, as in
Ref. [12]. If Alice locally modifies the topology of the net-
work, the statistics should not be modified for Bob and
Charlie, otherwise Alice could signal to Bob and Charlie.

For instance, in the first level of the inflation, inflating the
topology from a triangle to a square, the nontrivial correlator
appears:

E = 〈a jc j〉 = 〈b jd j〉
= 〈a j〉〈c j〉
= 0. (5)

This correlator E is the two-party correlator for noncon-
nected parties in the square network. The independence of
the sources allows one to separate this two-party correlator
by the product of the two one-party marginals in Eq. (5).
The symmetries of the problem implies that the one-party
marginal is null, leading to the constraint that this correlator
is null. The NSI condition allows one to conclude that the
correlator E2 in the square network has to be the same as
the one in the triangle network. This allows the use of the
inflated network to constrain correlators in the triangle. With
the relation between the correlators and the probabilities [see
Eq. (3) for the triangle and Eq. (B1) for the square network]
this leads to constraints on the probabilities too. We build all
the constraints in this way and list them in Appendix B.

Our approach is not completely general because we sup-
pose that all the sources are identical (but independent). In
principle, the sources could distribute different correlations,
which may lead to OPI distribution unachievable with identi-
cal sources. This additional assumption simplifies the problem
significantly. Without this assumption, one could still use in-
flations with a number of parties that are a multiple of 3 (as
in Ref. [12]), so that each source appears the same number of
times in the inflated network. Here, this constraint leads to a
stricter bound on E2 compared to the general NSI condition.

For the inflation, we use two different numerical methods.
The first method exploits the GUROBI optimizer [19] that al-
lows one to optimize an objective with linear and quadratic
constraints. We set the permitted violation of the constraint
to the smallest possible value, 10−9, in order to recover more
precise results. The second method linearizes the quadratic
constraints. This allows one to significantly speed up the
optimization. For this method, we replace the correlator E2

2
by Ē2

2 + ε, with Ē2 a constant that approximates the maximal
value for E2, our target. The parameter ε becomes the new
parameter to maximize over. The linearization of the quadratic
constraint uses the approximation for a small ε � Ē2

2 :

E2 =
√

Ē2
2 + ε ≈ Ē2

(
1 + ε

2Ē2
2

− ε2

8Ē4
2

)

� Ē2

(
1 + ε

2Ē2
2

)
. (6)

This approximation gets better by recursively maximizing
ε and updating our value for Ē2. When ε gets comparable
with the numerical imprecision, ε ≈ 10−10, the error due to
the approximation becomes negligible, and the bound found
for E2 is very reliable. The same method is used for other
nonlinear constraints, such as correlators equal to E2 × E3

in the heptagon, where E3 is the three-party correlator in a
line (see Appendix B). As shown in Eq. (6), the value one
converges to is ideally slightly greater than the exact bound
for E2. This is better than converging to a smaller value, since
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TABLE I. Results of inflations with both numerical methods for
polygons with up to nine edges. When the second method gives a
different upper bound than GUROBI, its value is given in brackets.
The first column considers only constraints from the current polygon,
while the column “E2 max with smaller polygons” also considers
constraints due to all the smaller polygons. We could not find the
result for nine vertices without the smaller polygons with GUROBI in
a respectable amount of time (see end of Appendix B).

Nb vertices E2 max E2 max with smaller polygons

3 1 1
4 0.5 0.5
5 5/11 5/11
6

√
2 − 1 0.404040

7 0.393141 0.392034 (0.392037)
8 0.381966 (0.381966) 0.38003 (0.379197)
9 (0.376608) 0.37491 (0.375051)

we are looking for an upper bound on E2. It is the reason
we add this ε to Ē2

2 instead of E2, since the approximation
would be smaller than the exact bound on E2. This second
method is much faster than the quadratic solver GUROBI. As
a tradeoff, it does not give a solution containing exact zeros,
which is relevant in Sec. III B. Moreover, GUROBI is able to
give the number of optimal solutions by scanning exhaustively
the parameters linked with the nonlinear constraints.

III. NSI BOUND ON E2

A. Numerical inflation

We consider that the sources distribute some correlations
to the parties and that all the sources distribute the same
correlations. The inflations up to five vertices lead to lin-
ear constraints that can be solved with linear programming.
The inflations with at least six vertices contain quadratic
constraints, because two independent E2 are allowed in the
hexagon (see Appendix B for more details on correlators).

The maximal values of the correlator E2 given by both
numerical methods for any inflation up to 9 are given in
Table I. In general, we can keep the constraints from the
smaller polygons, but we add the results obtained by using
the constraints from the largest polygon only. This could help
to find an analytical structure to the results, as initiated in
Sec. III B. We could not get a value with GUROBI for the last
polygon without the smaller ones because the optimization
was too slow.

Note that the upper bound on E2 has to stay above E2 = 1
3 ,

since a local model reaching this value has been found [20] in
this OPI subspace. Interestingly, E2 = 1

3 is also obtained at the
special point, where the Finner inequality meets the positivity
constraint, as well as the straight line going through the fully
noisy distribution and the elegant distribution.

Surprisingly, the upper bound imposed by the NSI condi-
tion seems to converge to a value greater than 1

3 . This suggests
that NSI distributions can violate the Finner inequality, which
goes against the conjecture proposed in Ref. [18], stating
that the Finner inequality captures the limit of correlations
possible in any NSI theory. To prove that our conjecture is
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FIG. 2. Results of the inflation for different sizes of the polygon.
An exponential fit is added with the value it converges to.

true, one would need to show that no polygon inflation allows
one to violate the Finner inequality, which could only be done
analytically. We give the first analytical result in Sec. III B.

We could not give a tight upper bound for E2, but we can
certify that it is between 0.374 91 and 1

3 . An exponential fit
plotted in Fig. 2 converges to ≈0.36. The only motivation
for this exponential fit is empirical. In principle, the upper
bound on E2 could follow any decreasing function greater than
1
3 , and it is possible that this upper bound does not follow
any analytical function. We additionally plot in Fig. 3 the
symmetric subspace with the bounds given by each order of
the inflation.

We can use the same method to minimize E2 and find a
lower bound. The inflation of the order 8 and 9 gives us a
nontrivial bound plotted in Fig. 3. As for the upper bound,
we could not find an optimal value for the lower bound. The
lowest E2 obtained with a known local model is − 2

9 = −0.2̄
[20], which is not very far from our lower bound at E2 =
−0.269 092 8.

B. Analytical computation of a bound on a correlator

In order to find an exact bound for the correlator E2, one
needs to find a structure in order to prove analytically a
convergence when the number of vertices becomes arbitrar-
ily large. With this objective, we give a method that allows
one to give an exact value for the hexagonal inflation, the
first order unsolvable with linear programming because of
the quadratic constraints. Indeed, for the hexagon, one can
analytically prove with the output of GUROBI that the value
is exactly

√
2 − 1 in the following way: some probabilities pj

in this hexagonal network that maximizes E2 are zero. These
probabilities p j are the probabilities of the 33 different outputs
given by all parties. We have for instance the probability
that all parties give the same output, and all the other OPI
outcomes.

One has p j = 0 ⇒ ∑
k CjkEk = 0 with Cjk the matrix that

relates the probabilities to the correlators. For each of them,
one has one parameter q j that we can vary to cancel nonzero
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FIG. 3. Space of probability distributions with E2 and Eo
3 (left) and the probabilities p111, p112, and p123 (right). The known local region

[20] is colored in light orange. The EJM point is the distribution obtained with the elegant joint measurement. The lines referenced in the
legend are the bound on E2 obtained with different levels of the inflation.

correlators. At the end, this leads to the equation∑
j

∑
k

q jCjkEk = 0,

const + xE2 + yE2
2 + 0 (other correlators) = 0. (7)

The constant comes from the normalization that has to be
added to relate probabilities to correlators. The correlators E2

and E2
2 are the only two correlators one does not need to

cancel, since they only contain the correlator E2 that appears
in the triangle. This leads to an exact number for the upper
bound on E2.

This method works for the hexagon, and we have 22
parameters q j and 20 correlators to cancel. It leads to the
equation

1
256 + E2

2 × (− 1
256

) + E2 × (− 1
128

) = 0

⇒ E2 =
√

2 − 1. (8)

This method does not allow one to find an exact value for
the next order of the inflation. Indeed, the solution given by the
quadratic solver does not contain enough zeros to generate a
nontrivial null space of the matrix Cjk .

IV. RESULT ON THE NONLOCALITY OF THE
DISTRIBUTIONS SATURATING THE FINNER

INEQUALITY

Proving the nonlocality of a given distribution is a difficult
problem. This can be done in some cases with an inflation
of the network or, if the distribution is token counting, it is
possible to prove its nonlocality in some cases.

A local distribution is a distribution that can be ob-
tained using classical resources. It is sufficient to consider
that each source distributes a number of symbols to the
connected parties [21]. We can then map this problem to

a three-dimensional cube, where each axis represents one
source [18]. Each point (α, β, γ ) ∈ [0, 1]3 in the cube cor-
responds to the case when the sources have distributed
the value (α, β, γ ) and the three parties Alice, Bob, and
Charlie have outputted a = sA(β, γ ), b = sB(α, γ ), and c =
sC (α, β ), with sA, sB, and sC the local strategies of the three
parties. The probability pabc of Alice outputting a, Bob out-
putting b, and Charlie outputting c corresponds now to a
volume in this cube.

Any local distribution can then be constructed in this cube.
Let us choose the colors white, blue, red, and green for the
four outputs 0, 1, 2, and 3. The local strategy of each party will
then be a colored square, illustrating the output of the party
given the received symbols. These squares are the faces of the
cube that uniquely define the final distribution. Alternatively,
one can start building the distribution from different proba-
bilities pabc represented as volumes in the cube and deduce
the local strategy of each party ultimately. We use this second
approach for our proof.

We present now a method to prove the nonlocality of a
distribution using geometrical arguments in this cube. This
method allows one to have a simple and understandable proof
that does not rely on complicated inequality found by a com-
puter, as we get with inflations. The proof is illustrated in
Appendix C. We first introduce Lemma 1 that we use in the
proof of Theorem 1.

Lemma 1. If p000 = 1
8 and the marginals are p(a = 0) =

p(b = 0) = p(c = 0) = 1
4 , then p000 is equivalent to a cube in

the cube representation.
Proof. The Finner inequality implies pabc �√

p(a)p(b)p(c). The values we have in the lemma imply
that we saturate the Finner inequality, so the shape of p000

is a rectangular parallelepiped in the cube. The rectangular
parallelepiped has length x, y, and z and because the marginals
are the same we have xz = yz = xy. The first equality
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implies x = y, and the last implies x = z, so the proof is
complete. �

Theorem 1. No local distribution can saturate the Finner
inequality and be OPI in the four-output triangle network.

Proof. (by contradiction)
Let us take a probability distribution and suppose it sat-

urates the Finner inequality and is invariant under exchange
of parties and output. We now build the most general local
strategy that achieves this probability distribution.

The distributions that saturate the Finner inequality have
p000 = √

p(a = 0)p(b = 0)p(c = 0). Since p(a = 0) =
p(b = 0) = p(c = 0) and p(a = 0) = p(a = 1) = p(a =
2) = p(a = 3) = 1

4 we have p000 = p111 = p222 = p333 = 1
8 .

Let us choose the output zero. We can choose to order the
labels to start in each axis with the column that contains the
most of output zero, here it means that we place the volume
corresponding to p000 in a corner. We know that the volume
of this region corresponding to the output p000 is 1

8 (Fig. 4).
Because the strategy is invariant under exchange of par-

ties and outputs, we necessarily have p(a = x) = p(b = x) =
p(c = x) = 1

4 for x any outputs because pxxx = 1
8 for all x,

so the only possible shape for pxxx are cubes as implied by
Lemma 1 (Fig. 5).

For the same reason, the volume corresponding to the other
pxxx will necessarily have a shape equivalent to a cube (mean-
ing there exists a reorder of the symbols that leads to a cube).

In fact, p111, p222, and p333 will be three cubes because
p000 being a cube imposes for instance that A, B, and C out-
put zero if they receive α, β, γ � 1

2 , with α, β, γ the shared
randomness. So for p111, at least two of the parameters α, β, γ

should be greater than 1
2 . This can only be achieved by a shape

equivalent to a cube taking place for α, γ � 1
2 or any other

pair of α, β, γ . This shape equivalent to a cube can only be
a sliced cube. This cube can be sliced in the direction of the
β axis (or the last direction we did not pick in the pair of
α, β, γ previously, Fig. 6). Finally, if p111 is not a cube for
exactly α, γ � 1

2 and β � 1
2 , there is not enough room left for

p222 = 1
8 . Indeed, the maximum volume of p222 is given by

1
2 × 1

2 × ( 1
2 − δ), with δ the total length of β � 1

2 . The only
solution for p222 = 1

8 is δ = 0, meaning that p111 has the shape
of a cube.

So the only possibility for pxxx are cubes (Fig. 7), which
does not lead to a distribution invariant under the symmetries
we suppose (some p123 = 0, but four of them are 1/8), and
this contradiction ends the proof. �

V. CONCLUSION

We have shown with the inflation technique that a large re-
gion of the OPI subspace is not NSI. Interestingly, our method
seems to leave a NSI region above the Finner inequality. This
makes us conjecture that NSI correlations exist beyond the
Finner inequality.

More specifically, for the OPI subspace, we could not find
a tight upper bound of the two-party marginal E2. This would
require proving a structure for every level of the inflation
and computing where it converges. We could only find an
analytical expression in the hexagon and the smaller polygons.
Therefore, a novel idea is needed to find an exact bound for
E2.

As a first step to prove the nonlocality of the elegant
distribution, we gave an analytical proof of the nonlocality
of the distributions that saturate the Finner inequality on the
OPI subspace. To prove this, we used an idea using geometric
arguments.

A proof of the nonlocality of the elegant distribution is
naturally still a crucial direction for future research. Using a
similar idea to the proof we gave may be helpful. It would
require abandoning the properties of the distribution that satu-
rates Finner, leading in general to many more local models to
rule out.

For the code to realize the inflations with GUROBI, see
Ref. [22].
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APPENDIX A: POLYGON INFLATIONS

The inflation technique consists in inflating the network
in order to constrain the correlations in the original network.
Depending on the type of constraints one adds on the inflated
network, it is possible to constrain local, quantum, or NSI
correlations.

We consider a polygon inflation. To the best of our knowl-
edge, this is the only useful NSI inflation for the triangle
network. By supposing that all sources are equal, it is possible
to consider every polygon, starting from the triangle (see
Fig. 8), where the vertices represent the parties, and the edges
show where the sources distribute correlations. The first level
of the inflation has the shape of a square, with an additional
source and a fourth party. The procedure can be continued for
an arbitrarily large number of sources and parties.

For each level of the inflation, new constraints can be
added using the no-signaling condition (see Appendix B). The
two-party correlator E2 that appears in the original triangle
network as well as in every inflated network can then be con-
strained. This polygon inflation technique does not allow one
to constrain the other correlator of the triangle, the three-party
correlator in a loop Eo

3 , since no such loop exists in the other
polygons.

APPENDIX B: TECHNICAL DETAILS ABOUT
CORRELATORS

As mentioned in the main text, we write the four outputs
of each party with two bits a = (a0, a1) ∈ {−1, 1}2, and de-
fine an additional bit a2 = a0 × a1. In general, we denote the
correlators as abcde. . ., with each letter the label j, k, l ∈
{0, 1, 2} of the correlated bit for the corresponding party. If
the party does not have a correlated bit, we write a zero
instead. The correlator E2 = 〈a jb j〉 in the triangle will be
written as j j0. In the square, the three-party correlator in a
line 〈ajbkd jdk〉 = 〈a jbkdl〉 = 〈a jbkcl〉 will be noted jkl0. Be-
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cause of the symmetries, we have j j0 = 0 j j = j0 j = kk0 =
. . ..

In the triangle, only two correlators are not trivially zero:
E2 = j j0 and Eo

3 = jkl . In this network with these symme-
tries, we only have three different probabilities: the probability
p111 that all outputs are the same, the probability p112 that two
outputs are the same and the last is different, and finally p123,
the probability that all outputs are different. We can relate the
probabilities to the correlators with Eq. (3).

For the square, we have six different correlators: j j j j,
j jkk, j j00, jk jk, jkl0, and j0 j0; we have only one linear
constraint j0 j0 = 0, because j0 j0 = j00 × j00 and j00 =
E1 = 0 is imposed by the symmetries. The matrix C that links
the correlators to the probabilities is given in Eq. (B1) with
the first line being the normalization:

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 48 24 96 12 48 24
4 −16 24 −32 12 −16 24
4 −16 8 0 −4 16 −8
4 16 8 0 −4 −16 −8
4 −16 −8 32 12 −16 −8
4 0 −8 0 −4 0 8
4 16 −8 −32 12 16 −8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B1)

For the pentagon, we have ten different correlators: j j j j0,
j j jkl , j jk jl , j jkk0, j jk0k, j j000, jk jk0, jkl00, jk0l0, and
j0 j00.

The two linear constraints are jk0l0 = 0 and j0 j00 = 0.
For the hexagon, we have 32 correlators: j j j j j j, j j j jkk,

j j j j00, j j jk jk, j j jkl0, j j jk0l , j j j0 j0, j jk j jk, j jk jl0,
j jk j0l , j jkkll , j jkk00, j jkl j0, j jklkl , j jkllk, j jk0k0,
j jk00k, j j0 j j0, j j0kk0, j j0000, jk jk00, jk jl j0, jk jlkl ,
jk j0k0, jkl jkl , jkl000, jk0 jk0, jk0k j0, jk0l00, j0 j000,
j0k0l0, and j00 j00.

We have ten linear constraints: j j j0 j0 = 0, j jk0k0 = 0,
jk j0k0 = 0, jk0 jk0 = 0, jk0k j0 = 0, jk0l00 = 0,
j0 j000 = 0, j0k0l0 = 0, j00 j00 = 0, and j j0kk0 =
j j0 j j0.

The quadratic constraint is j j0 j j0 = j j0000 × j j0000.
For the heptagon, we have 72 correlators: j j j j j j0,

j j j j jkl , j j j jk jl , j j j jkk0, j j j jk0k, j j j j000, j j jk j jl ,
j j jk jk0, j j jk j0k, j j jkk j0, j j jkkkl , j j jkklk, j j jkl00,
j j jk0l0, j j jk00l , j j j0 j00, j j j0kl0, j jk j jk0, j jk jk j0,
j jk jkkl , j jk jklk, j jk jlkk, j jk jl00, j jk j0 jk, j jk j0l0,
j jk j00l , j jkk j j0, j jkk jlk, j jkkll0, j jkkl0l , j jkk000,
j jkl j00, j jklkl0, j jklk0l , j jkllk0, j jkl0 j0, j jkl0kl ,
j jkl0lk, j jk0 jl0, j jk0 j0l , j jk0k00, j jk0l j0, j jk00k0,
j jk000k, j j0 j j00, j j0 jkl0, j j0 j0 j0, j j0k jl0, j j0kk00,
j j0k0k0, j j00000, jk jk jkl , jk jkl0l , jk jk000, jk jl j00,
jk jlkl0, jk jlk0l , jk jl0 j0, jk j0 jl0, jk j0k00, jkl jkl0,

jkl j0 j0, jkl0000, jk0 jk00, jk0 j0k0, jk0k j00, jk0k0 j0,
jk0l000, jk00l00, j0 j0000, j0k0l00, and j00 j000.

The 27 linear constraints are j j jk0l0 = 0, j j j0 j00 =
0, j j j0kl0 = 0, j jk j0l0 = 0, j jkl0 j0 = 0, j jk0 jl0 =
0, j jk0 j0l = 0, j jk0k00 = 0, j jk0l j0 = 0, j jk00k0 =
0, jk jl0 j0 = 0, jk j0 jl0 = 0, jk j0k00 = 0, jkl j0 j0 =
0, jk0 jk00 = 0, jk0 j0k0 = 0, jk0k j00 = 0, jk0k0 j0 =
0, jk0l000 = 0, jk00l00 = 0, j0 j0000 = 0, j0k0l00 =
0, j00 j000 = 0, j j0 j0 j0 = 0, j j0k0k0 = 0, j j0k jl0 =
j j0 jkl0, and j j0kk00 = j j0 j j00.

The two quadratic constraints are j j0 j j00 = j j00000 ×
j j00000 and j j0 jkl0 = j j00000 × jkl0000.

With the same method we have 236 correlators for the
octagon, 114 linear constraints, and 6 quadratic ones.

Finally, for the enneagon, we have 702 correlators, 395
linear constraints, and 14 quadratic ones. For this poly-
gon, we have correlators like j j0 j j0 j j0 = j j0000000 ×
j j0000000 × j j0000000, but we can replace this cubic
equation with the quadratic one j j0 j j0 j j0 = j j0000000 ×
j j0 j j0000 since we already have the constraint j j0 j j0000 =
j j0000000 × j j0000000.

The computational time is too big to continue this inflation
for higher polygons. On an Intel Core i7-1185G7, the GUROBI

optimization took 7 min for the heptagon, but could not finish
in 24 h for the octagon. The solution given in Table I was
found after 5 h. We could not find a solution in 168 h for the
enneagon with GUROBI.

In Table I, we have added a column “E2 max with pre-
vious polygons.” These results are obtained by adding the
constraints of all previous polygons and constraints like j j0 =
j j00, meaning that the two-party correlator should be the
same for any polygon. This allows a slightly better upper
bound on E2 and simplifies the computations because replac-
ing correlators in the large polygon by the same one in the
smaller polygons leads to simpler constraints. For instance,
for the enneagon, the constraints with an E2

2 have 703 proba-
bilities linked with the E2 correlator that need to be squared,
leading to many possible branchings during theGUROBI opti-
mization procedure. When replacing this E2 in the enneagon
by the E2 in the triangle, the 703 probabilities are replaced
by only three, reducing the number of quadratic terms and the
computational time. For comparison, the heptagon with previ-
ous polygons takes 5 s, we have a solution for the octagon after
a few seconds, and the full optimization takes a few hours.

APPENDIX C: ILLUSTRATIONS OF THE PROOF
OF THEOREM 1

See Figs. 4–7.

042213-6



VIOLATION OF THE FINNER INEQUALITY … PHYSICAL REVIEW A 108, 042213 (2023)

FIG. 4. Cube with ordered output zero (white) in the cube rep-
resentation. This white box has a volume that corresponds to the
probability p000.

FIG. 5. Cube with the only possible size for the output zero (a
cube of side 1/2).

FIG. 6. A sliced cube strategy for the output 1 (blue). This blue
volume corresponds to the probability p111. Its shape is equivalent to
a cube, in the sense that there exists a reordering of the axis β that
leaves it as a cube.

FIG. 7. Fully colored cube that saturates the Finner inequality
and satisfies the condition p111 = 1/8, but does not give an OPI
distribution.
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FIG. 8. Left: The original triangle network. Middle: The first level inflation, the square inflation. Right: The general polygon inflation for
an arbitrary number of parties.
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