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In various fields from quantum physics to biology, the open quantum dynamics of a system consisting of
interacting subsystems emphasizes its fundamental functionality. The local approach, deriving a dissipator in
a master equation by ignoring the intersubsystem interaction, has been widely used to describe the reduced
dynamics due to its robustness to keep the positivity of a density operator. However, one critique is that a
stationary state obtained by the approach in the limit of weak system-environment coupling is written in the form
of the Gibbs state for the partial Hamiltonian by excluding the intersubsystem interaction from the total one of the
relevant system. As an alternative, the global approach, deriving a dissipator with including the intersubsystem
interaction, under the Born-Markov and secular approximations has attracted much attention, and there is debate
concerning its violation of positivity in the short-time region and/or limited parameter region for the Bohr
frequencies of the subsystems. In this paper, we present a formalism that leads to the time-convolutionless
(time-local) master equation obtained by extending the global approach beyond the Born-Markov and secular
approximations. We apply it to the excitation energy transfer between interacting sites in which only the terminal
site weakly interacts with a bosonic environment of finite temperature in a manner beyond the rotating-wave
approximation. We find that the formulation (1) gives the short-time behavior while preserving positivity, (2)
shows the oscillatory features that the secular approximation would obscure, and (3) leads to a stationary state
very near to the Gibbs state for the total Hamiltonian of the relevant system.
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I. INTRODUCTION

Quantum systems that are composed of interacting sub-
systems are encountered in various fields including physics,
chemistry, and biology [1–3]. Each of these systems inevitably
interacts with its environment, and the master equation is one
of the tools most widely used to extract its reduced dynamics.
However, in deriving the dissipator under weak system-
environment coupling, there remains controversy about the
inclusion of the intersubsystem interaction to obtain the eigen-
vectors of the relevant system. The distinctive approaches,
including or excluding the intersubsystem interaction, have
been recently referred to as the global approach (GA) and the
local approach (LA) [4].

The LA, which is conventionally applied to systems in
the field of quantum optics [7–15], has been criticized as its
stationary state is obtained as the Gibbs state for the partial
Hamiltonian of the relevant system that excludes the inter-
subsystem interaction [16–20]. In contrast, the stationary state
given by the GA is the Gibbs state for the total Hamiltonian of
the relevant system [16–20], which stimulates reconceiving
numerous interacting quantum systems with using the GA
[21–25]. The violation of the second law of thermodynamics
by the LA [26–29] has also attracted much interest recently
[30–66,104–109].
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The GA generally inherits the conventional approxima-
tions for weak system-environment coupling and factorized
initial conditions [7–15,67–69], such as the Born-Markov
approximation (BMA), with the secular approximation (SA)
[26–54] or coarse graining [66]. These approximations
have conventionally been used in the microscopic deriva-
tion [70,93] of the Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) dissipator [71,72].

The SA neglects the terms of the dissipator that have differ-
ent eigenfrequencies, with the rationale that rapid oscillating
terms in the interaction picture can be averaged out during the
relaxation time of the relevant system [93]. This means that
the SA prevents us from treating the system with similar Bohr
frequencies where the eigenfrequencies are not well separated
to give slower-oscillating terms which are difficult to be fully
averaged out [25,28]. Moreover, because it separates the time
evolution of the diagonal and off-diagonal elements of the
reduced density operator in the eigenstate basis, heat transport
features that are thermodynamically inconsistent have been
noted [28,43,44,46,62,64]. Previous proposals were intended
to overcome the above issues by partially [55–61] or fully
[62–65] removing the SA, or by combining it with coarse
graining [66], while they retained positivity with the use of the
GKSL dissipator. However, another problem remains rooted
in the BMA which assumes an infinitely short correlation time
of the environmental variable.

With the rapid development in quantum technology, the
time scale of measurements has shortened, and it now ap-
proaches the correlation time of the environmental variable
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[73–78], which has opened new research avenues for envi-
ronmental engineering [79–87]. When the finiteness of the
correlation time is considered, an extension beyond the BMA
is desirable to describe experimentally realized situations. The
extension could also provide a clue to overcoming the viola-
tion of positivity manifested beyond the SA.

A clue is found in the dynamics described by a master
equation, called the Redfield equation, which does not resort
to the GKSL dissipator [88–90]. The Redfield equation has
often been treated within the BMA that shows the violation of
positivity in the short-time region for a model composed of a
spin-half system interacting with a bosonic environment under
a factorized initial condition [88–90]. The violation of posi-
tivity could be resolved by changing the initial condition by
a quantity that stems from a system-environment correlation,
known as initial slippage [89–92]. However, the treatment
does not describe the very short-time behavior that starts from
the original initial condition. A similar violation has also been
reported in the case of a pair of interacting harmonic oscilla-
tors under a local interaction with a bosonic environment [66].
This implies that the GA needs to be extended to include the
very short-time behavior. Then, we need to consider the finite-
ness of the correlation time of the environmental variables
in constructing a system-environment correlation. For a finite
correlation time, numerous treatments have been intensively
studied to show the non-Markovian dynamics [93–103].

However, the non-Markovian dynamics for the GA were
mainly analyzed under the SA in [104–107]. We found recent
analyses that went beyond the SA in [108,109] and enabled a
comparison of the exact solutions of the Green function [108]
and the exact numerical solution [109]. Both analyses show a
fine coincidence with the exact solution to validate the Red-
field equation beyond the BMA and SA, which included the
violation of positivity in a limited parameter region reported in
[109]. With discussions mainly limited to two noninteracting
harmonic oscillators [108] and qubits [109] immersed in a
common bosonic environment, we are led to consider the
following question: How does the extension beyond the BMA
and SA affect the reduced dynamics of a quantum interacting
system that is partially coupled with an environment? This
question is answered in the present paper.

In this paper, we investigate the non-Markovian dynamics
of the GA beyond the SA by using a model that describes
excitation energy transfer: we consider a system composed of
interacting sites, where only the terminal site interacts with a
bosonic environment of finite temperature to trap excitation
energy in a sink site. With the time-convolutionless (time-
local) master equation (which corresponds to the Redfield
equation with a time-dependent tensor), we obtain a general
formula for the stationary state as well as for the reduced
dynamics up to the second-order cumulant. We find that the
non-Markovian dynamics resolve the violation of positivity
in the very short-time region even for the GA beyond the
SA. Furthermore, we also find considerable differences in
the dynamics, depending on the adoption of the SA or the
BMA in the shorter-time region and/or higher environmental
temperature. Although we find that the dissipator of the LA
reduces to the GKSL type, a numerical evaluation for the
Ohmic spectral density shows that the trace distance between
the stationary state and the expected Gibbs state is much larger

than that for the GA beyond the SA. The proposed treatment
may offer a way to increase the figure of merit of a quantum
device that is composed of interacting subsystems [78,110–
113].

This paper is organized as follows: In Sec. II, we provide
the formalism for treating the non-Markovian dynamics and
for evaluating the stationary state. After we outline the model
for the transfer of excitation energy to the sink site under
local interaction with the bosonic environment in Sec. III,
we present our numerical results in Sec. IV, a discussion in
Sec. V, and our conclusions in Sec. VI.

II. FORMULATION

A. Time-convolutionless master equation

Let us consider the reduced dynamics of the relevant
system described with the time-convolutionless (time-local)
master equation, which is obtained microscopically using the
projection operator method [93,114–121]. We consider the
Hamiltonian of the total system to be H = H0 + H1 with
unperturbed Hamiltonian H0 and system-environment inter-
action H1, where we define the unperturbed Hamiltonian H0

to be H0 = HS + HE comprising the system Hamiltonian HS

and the environmental Hamiltonian HE . Assuming a factor-
ized initial condition between system and environment, we
obtain the equation for the reduced density operator ρ(t ) as

d

dt
ρ(t ) = − i

h̄
[HS, ρ(t )] + �(t ), (1)

where �(t ) denotes the dissipator defined in time-local form
as

�(t ) ≡
∞∑

n=2

ψn(t )ρ(t ), (2)

which is written with the “ordered cumulants.” A detailed
derivation of Eq. (1) is given in Appendix A.

In this paper, we focus on weak coupling of the system and
environment so that we can terminate the expansion of Eq. (1)
up to the second-order cumulant. Assuming the average of the
system-environment interaction to be zero, TrE (H1ρE ) = 0,
and introducing the equilibrium state of the environment ρE ,
the time-convolutionless master equation with the lowest or-
der of the dissipator becomes

d

dt
ρ(t ) = − i

h̄
[HS, ρ(t )] + D(ρ(t )), (3)

where we define D(ρ(t )) as

D(ρ(t )) ≡ ψ2(t )

=
(

i

h̄

)2 ∫ t

0
dt1TrE [H1, [H1(−t1), ρEρ(t )]], (4)

with H1(t ) = e(i/h̄)H0tH1e−(i/h̄)H0t .
Denoting the system-environment interaction as H1 =∑
α Aα ⊗ Bα , we obtain

D(ρ(t )) =
∑
α,β

∫ t

0
dt1[φα,β (t1){Aβ (−t1)ρ(t )Aα

− AαAβ (−t1)ρ(t )} + H.c.], (5)
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where the time evolution of Aα (t ) is governed by HS as
Aα (t ) = e

i
h̄ HSt Aαe− i

h̄ HSt . If the relevant system includes inter-
acting subsystems, the treatment of Aα (t ) differs depending on
the GA and LA. While the former uses the total system Hamil-
tonian HS to describe the time evolution, the latter uses a part
of HS omitting the interaction between subsystems. In Eq. (5),
we define the correlation function of the environment variable
Bα as φα,β (t ) ≡ TrE [BαBβ (−t )ρE ], in which Bα (t ) denotes
the time evolution of the environment variable with HE as
Bα (t ) = e

i
h̄ HE t Bαe− i

h̄ HE t , and ρE denotes the Gibbs state of
the environment of inverse temperature β(= 1/kBT ) written
as ρE = e−βHE /ZE with partition function ZE = TrEρE .

Denoting the eigenvalues and eigenstates of HS as λn and
|en〉, respectively, for n = 1, · · · , M and introducing the de-
composition of the system operator with the completeness
relation of the eigenstates as

Aα =
∑

ε

Aα (ε) =
∑

ε

∑
λm−λn=ε

|en〉〈en|Aα|em〉〈em|, (6)

we obtain

D(ρ(t )) =
∑

α,β,ε,ε′
[
α,β (ε, t ){Aβ (ε)ρ(t )A†

α (ε′)

− A†
α (ε′)Aβ (ε)ρ(t )} + H.c.], (7)

with


α,β (ε, t ) =
∫ t

0
dt1ψα,β (t1)e

i
h̄ εt1 , (8)

where we define ψα,β (t ) ≡ TrE [B†
αBβ (−t )ρE ]. The dissipator

obtained is the precursor to the SA and the BMA, whereas
the GA is often discussed under these approximations. The
BMA assumes that the correlation time of the environmental
variable is much shorter than the relaxation time of the system
and therefore extends the upper bound of integral Eq. (7) to
infinity, corresponding to the long-time limit. The SA fre-
quently means taking only terms with ε = ε′ in the dissipator
Eq. (7) under the BMA. Its physical meaning stems from the
interaction picture of the master equation in which we have an
extra factor e

i
h̄ (ε−ε′ )t in Eq. (7). The factor can be omitted as

describing rapid oscillations when (ε − ε′)−1 is much smaller
than the relaxation time of the system of interest.

By replacing the eigenstates and eigenvalues with those
associated with that part of the system Hamiltonian without
the interaction terms, we obtain the dissipator of the LA,
which amounts to describing only “local” relaxations of parts
of the system interacting with the environment. In Sec. V,
we discuss the difference between the GA and LA. For this
purpose, we provide in the next subsection a formula for the
stationary state.

B. Stationary state

To analyze features of the stationary state, we find that it
is convenient to transform the reduced density matrix ρ(t )
into a Hilbert-Schmidt vector �ρ(t ) = {ρ11, ρ12, · · · , ρMM} and
divide it into two parts: population (diagonal) elements,
�ρP(t ), and coherence (off-diagonal) elements, �ρC (t ). With this

decomposition, the time-local master equation, Eq. (1), is
rewritten as

d

dt
�ρP(t ) = �P(t )�ρP(t ) + �PC (t )�ρC (t ), (9)

d

dt
�ρC (t ) = �CP(t )�ρP(t ) + �C (t )�ρC (t ), (10)

where �μ(t ), {μ} = {P, PC,CP,C} denote matrices with
time-dependent coefficients. In the long-time limit, these ma-
trices become time independent as �μ ≡ �μ(∞) for {μ} =
{P, PC,CP,C}, corresponding to the BMA. The stationary
value of the reduced density operator is a solution of the
simultaneous equations subject to the time derivative being
zero. Despite the simplicity of the equations, solutions are
impossible when �μ for {μ} = {P,C} are not invertible. There
is an alternative way to find the stationary state that requires
obtaining the eigenstate associated with eigenvalue zero of the
matrix constructed with �μ(∞), {μ} = {P, PC,CP,C}, but
when the dimension is large it frequently becomes a difficult
task. To overcome the difficulty, we provide a tractable for-
mula using the final value theorem of the Laplace transform,
specifically,

�ρμ,s = lim
z→0

z�ρμ[z], (11)

with �ρμ[z] = ∫ ∞
0 �ρμ(t )e−zt dt for {μ} = {P,C}.

Using Eq. (10), we find the formal solution of coherence in
the form

�ρC[z] = (z − �C )−1{�CP �ρP[z] + �ρC (0)}. (12)

Substitution of Eq. (12) into the Laplace transform of Eq. (9)
yields a formal solution for the population as

�ρP[z] = 1

z − �P − �PC
1

z−�C
�CP

{�ρP(0)

+�PC
1

z − �C
�ρC (0)}, (13)

where �ρμ(0) for {μ} = {P,C} denotes the initial condition
of the population and coherence, respectively. The explicit
dependence on the initial condition means we can ease the
evaluation procedure if we assume that the initial condition
includes only the population. We outline the numerical evalu-
ations for our model of excitation energy transfer in Sec. IV B
for GA and Appendix D for LA. We identify the coefficients
for the GA and the LA using subscripts {α} = {G, L}, respec-
tively, i.e., �μ,α (t ) for {μ} = {P, PC,CP,C}.

III. MODEL

We next describe the model for excitation energy transfer
through the multiple interacting energy sites that has been
attracting attention experimentally and theoretically [2,3,122–
128]. Taking a site basis |n〉 representing a single excitation
located only on the nth component of the system, we focus
on transferring excitation energy from an input energy site
(n = 1) to a terminal energy site (n = N). Next to the terminal
site, we introduce a sink site (n = N + 1) to trap the energy
through interaction with an environment of finite tempera-
ture consisting of an infinite number of bosons. The total
Hamiltonian is H = H0 + H1 with H0 = HS + HE where
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HS represents the relevant energy-site system including the
sink site and HE represents the bosonic environment; explic-
itly, we write

HS = h̄
N+1∑
n=1

ωn|n〉〈n|

+ h̄
N∑

n<m

Vnm(|n〉〈m| + |m〉〈n|), (14)

HE = h̄
∞∑

k=1

νkb†
kbk, (15)

where ωn denotes the Bohr frequency of the nth site, Vnm

denotes the transition frequency between the nth and mth
sites, νk denotes the frequency of the kth boson, and b†

k (bk) de-
notes the creation (annihilation) boson operator of the bosonic
environment. The Hamiltonian of the system-environment in-
teraction is written as H1 = A ⊗ B with

A = (|N〉〈N + 1| + |N + 1〉〈N |), (16)

B = h̄
∞∑

k=1

gk (b†
k + bk ), (17)

where gk denotes the interaction strength between the system
and the kth boson of the environment. The interaction con-
sidered here goes beyond the rotating wave approximation
(RWA) to include the fast counter-rotating terms in the in-
teraction picture, the physical importance of which has been
indicated previously [129–135]. Let us note the difference
between the RWA in the Hamiltonian and the SA in the
dissipator. Our formulation goes beyond both approximations.
We present the numerical evaluation for this model in the next
section.

IV. NUMERICAL EVALUATION

A. Non-Markovian dynamics

Using the dissipator, Eq. (7), we obtain the non-Markovian
dynamics of the GA beyond the SA. We apply the formulation
to the system with two interacting sites by setting N = 2 in
Eqs. (14) and (16) where the eigenvalues of the system Hamil-
tonian HS are {λ1, λ2, λ3} = h̄{ 1

2 [(ω1 + ω2) + Dm], 1
2 [(ω1 +

ω2) − Dm], ω3} with Dm =
√

(ω1 − ω2)2 + 4V 2
12 , and

the corresponding eigenstates {|en〉} for n = 1, 2, 3 are
{[cos θ, sin θ, 0]T , [− sin θ, cos θ, 0]T , [0, 0, 1]T } in the site
basis; here, superscript T indicates the transpose operation
and θ is defined to satisfy the relation tan 2θ = 2V12

ω1−ω2
.

Focusing on the initial condition where only the first site
(N = 1) is fully excited, we find the off-diagonal elements of
the density matrix between the second site (N = 2) and the
sink site (N = 3) do not contribute to the dynamics, meaning
that we can set �ρP(t ) = {ρ11, ρ22, ρ33} and �ρC (t ) = {ρ12, ρ21}.
The time-dependent coefficients for the GA, �μ,G(t ) for
{μ} = {P, PC,CP,C}, are given in Appendix B 1. For nu-
merical evaluations, we set the spectral density as Ohmic,
J (ν) = ∑

k g2
kδ(ν − ωk ) ≡ s ν e−ν/�c defining the strength of

the system-environment interaction as s and the cutoff fre-
quency as �c.

FIG. 1. Time evolution of each element of ρ[t̃ (= ω2t )] ob-
tained by the GA beyond the SA and the BMA for the initial
condition, ρ11(0) = 1, with parameter settings ω̃1(≡ ω1/ω2) = 1/2,
ω̃3(≡ ω3/ω2) = 0, Ṽ12(≡ V12/ω2) = 3/10, �̃c(≡ �c/ω2) = 1, β̃[≡
h̄ω2/(kBT )] = 2, and s = 1/100. We find that the asymptotes ob-
tained from the GA give different values, and the stationary value of
coherence Re[ρG,12] has a finite value, the features of which differ
from those obtained from the LA given in Appendix D.

We display in Fig. 1 the time evolution of the elements of
the reduced density operator for the initial condition of the
first site being fully excited, ρ11(0) = 1, where we use ω2 as
a scaling parameter to denote the time variable t̃ ≡ ω2t . Our
parameter settings are given in the caption of Fig. 1. These
settings mean that the excitation energy at the first site is
transferred through the second site with the highest energy
going to the sink site with the lowest energy, approaching
stationary values, ρG,nm for {n, m} = {1, 2, 3}. These values
are obtained using Eqs. (11)–(13), with time-independent co-
efficients given in Appendices B 1 with C, and are marked
as dashed lines in Fig. 1. We find the steady population at
each site satisfying ρG,33 > ρG,11 > ρG,22; moreover, the co-
herence between the first and second sites, Re[ρG,12], is finite.
We discuss in the next subsection the difference between the
obtained stationary states and the Gibbs states using the trace
distance.

B. Stationary state

We evaluate the dependence of the stationary state on
inverse temperature β̃ and strength of the intersite inter-
action Ṽ12 for the GA [Fig. 2(a)] while other parameters
remain unchanged from those given in Fig. 1. Clearly, the
stationary population at the sink site, ρG,33, obtained us-
ing the GA, increases for lower temperatures and weaker
intersite interactions. This trend suggests that, as the inter-
site interaction weakens, environmental effects become more
dominant in trapping energy to the sink site, and the popu-
lation ρG,33 increases as the temperature of the environment
decreases. In contrast, as the intersite interaction strengthens,
transfers between the first and second sites become more
frequent, reducing the dominance of environmental effects
while elevating the absolute value of the steady coherence
Re[ρG,12].

We compare the stationary state in Fig. 2(a) with the Gibbs
state for the total system Hamiltonian, ρGibbs = e−βHS /ZS

with ZS = TrSe−βHS , by evaluating the trace distance defined
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FIG. 2. (a) Dependence of the stationary values of the density
matrix obtained by the GA beyond the SA on the inverse temperature
β̃ and interaction strength between sites Ṽ12. (b) Dependence of the
trace distance between the stationary state ρG and the expected Gibbs
state D(ρG, ρGibbs ). We find that this difference remains in the order
of the interaction strength O(s) in the range from β̃ to Ṽ12 even
beyond the SA. Other settings are the same as given in Fig. 1.

as

D(ρG, ρGibbs) = 1
2 Tr[

√
(ρG − ρGibbs)2]. (18)

Figure 2(b) presents the dependence of D(ρG, ρGibbs) on β̃ and
Ṽ12 and shows that its value is of the order of the strength of
the system-environment interaction, O(s), implying that the
stationary state obtained by the GA is almost near the Gibbs
state for the total Hamiltonian even beyond the SA.

C. Effect of approximations on the GA

Next, we show how approximations affect the dynamics
obtained by the GA. We compare the non-Markovian dynam-
ics obtained in Sec. IV with and without the SA and/or the
BMA.

1. Secular approximation

We first study the effect of the SA on the non-Markovian
dynamics by the GA, omitting the terms for ε �= ε′ in the
dissipator Eq. (7). The approximation excludes the oscillating
terms including e±i(ε−ε′ )t in the dissipator in the interaction
picture, on the assumption that the difference ε − ε′ is suffi-
ciently large so that the terms can be averaged out during the
relaxation time of the relevant system.

Denoting the population at the sink site by ρ33(t̃ ), we
summarize in Fig. 3 the dynamics with and without the SA,

FIG. 3. Comparison of the non-Markovian dynamics of the sink
site, ρ33(t̃ ), obtained by the GA with and without the SA shown
as dashed and solid lines, and labeled “NM SA” and “NM BS,”
respectively. We show the dynamics for three sets of parameters
{ω̃1, β̃} as { 1

2 , 2}, { 1
2 , 1

2 }, and { 19
20 , 1

2 } and marked by stars, asterisks,
and circles, respectively. Other settings are fixed as in Fig. 1. We find
that the SA worsens in the short-time region and/or high temperature
other than for the large difference between eigenvalues of the relevant
system.

corresponding to the dashed and solid lines labeled “NM SA”
and “NM BS,” respectively. In our model, the difference be-
tween the eigenvalues ε and ε′ depends on the Bohr frequency,
ω̃1, ω̃2, and the intersystem interaction Ṽ12. With the contribu-
tions of these parameters being similar, we focus on trends
by changing ω̃1 while maintaining Ṽ12 and ω̃2 constant. By
changing parameters systematically, we find that the environ-
ment temperature β̃ also contributes considerably to ρ33(t̃ ).
To clarify the dependence on these parameters, we consider
three cases by setting {ω̃1, β̃} to { 1

2 , 2}, { 1
2 , 1

2 }, and { 19
20 , 1

2 }
(see Fig. 3). The numerical evaluations show that the SA
considerably reduces the oscillation amplitude. Though these
evaluations are for finite temperature, the qualitative trend of
the SA is consistent with the evaluation of non-Markovianity
for the model of a spin-half system interacting with a bosonic
environment at zero temperature [135]. We find that the SA
becomes more effective for low temperatures in addition to
the expected region where the difference between ω̃1 and ω̃2

becomes large. However, even in this instance, we can see
that, with and without the approximation, the difference is
clear, particularly in the short-time region. We also reasonably
find that the effect of the SA is seen for a longer time for
small ω̃1 − ω̃2 and high temperatures. This means that we
need to pay attention to the effect of the SA to discuss the
short-time region even if the approximation is applied to the
non-Markovian dynamics. We show in the next section the
effect of the BMA by comparing the trends shown in Fig. 3.

2. Born-Markov approximation

The BMA describes the reduced dynamics under the ef-
fects from the environment for which the correlation time
is infinitely short. However, in the microscopically derived
master equation, the correlation time of the environment vari-
ables is finite, which stems from the finite setting of the cutoff
frequency �c in the spectral density J (ν). We reveal the effect
of the BMA on the GA for {ω̃1, β̃} = { 1

2 , 2} by comparing the
non-Markovian dynamics shown in Fig. 3.
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FIG. 4. Comparison of the dynamics of the sink site, ρ33(t̃ ),
obtained by the GA with and without the BMA and/or the SA for
{ω̃1, β̃} = { 1

2 , 2}; the other parameters are fixed as in Fig. 1. The dot-
ted and dot-dashed lines, labeled “M SA” and “M BS,” respectively,
show the dynamics under the BMA with and without the SA. The
arrow below the horizontal axis indicates the point where the sign
of the values from “M BS” changes from negative to positive. For
comparison, we show the non-Markovian dynamics with and without
the SA (dashed and solid lines labeled “NM SA” and “NM BS,”
respectively.

We present the dynamics of ρ33(t̃ ) under the application
of both the BMA and the SA (Fig. 4, dotted line labeled “M
SA”), which is frequently taken as the GA. Combining the
approximations reduces the dissipator to the GKSL form. We
find that the dynamics show their fastest increase without the
“inertial” feature compared with the non-Markovian dynam-
ics. Moreover, when we remove the SA, the dynamics for
which are marked by the dot-dashed line labeled “M BS” in
Fig. 4, we find violations of positivity in a very-short-time
region up to the time indicated by an arrow. The violation is
not surprising because the finiteness of the correlation time
does not match the condition for applying the BMA, which is
consistent with conventional studies [89,90]. For comparison,
we show the non-Markovian dynamics with and without the
SA (dashed and solid lines labeled “NM SA” and “NM BS”)
shown in Fig. 3. We find that the violation of positivity is
resolved by including the non-Markovian effect.

To discuss whether the violation of positivity in ρ33(t̃ )
under the BMA beyond the SA (“M BS”) is limited to the
parameter settings specified in Fig. 4, we display in Fig. 5(a)
the dependence of ρ33(t̃ = 0.1) on the inverse temperature β̃

and the interaction strength between sites Ṽ12. We find that the
values are negative throughout the parameter region, which is
the opposite to that obtained by the non-Markovian dynamics
beyond the SA [Fig. 5(b), curve “NM BS”].

From the evaluations shown in Figs. 1–5, we find that the
non-Markovian dynamics for the GA beyond the SA show
the stationary state of the Gibbs state for the total system
Hamiltonian without positivity violation in the very short-time
region. However, because non-Markovian dynamics reduce
to the dynamics of the BMA in the long-time region, this
approximation in the low-temperature region is an issue need-
ing further study [34,136], which we discuss in the next
section.

V. DISCUSSION

Using the time-convolutionless master equation, this paper
demonstrates that the extension of the GA beyond the BMA
and the SA affects the reduced dynamics of a quantum inter-
acting system. It preserves positivity in the short-time region
and describes the stationary state as close to the Gibbs state
of the total Hamiltonian of the relevant system. Several topics
remain for further discussion, as follows.

First, we discuss the difference between the GA and the
LA. Because the latter assumes that the intersubsystem inter-
action does not contribute to the dissipation, the dissipator,
Eq. (4), is obtained by excluding the intersite interaction
V12 from Eq. (14), which provides the time-dependent co-
efficients as expressed in Appendix B 2. Considering the
Born-Markovian (long-time) limit, we obtain an analytic form
of the stationary state for the LA beyond the SA, Eq. (D1),
which is different from the Gibbs state for the total Hamilto-
nian of the relevant system (see Fig. 7).

The next issue is the positivity of time evolution obtained
by the GA beyond the SA. In the analysis presented in Sec. IV,
we showed that the violation of positivity in the short-time

(a) (b)

FIG. 5. Dependence of ρ33(t̃ = 0.1) obtained by the GA beyond the SA on the inverse temperature β̃ and the interaction strength between
sites Ṽ12; all other parameters are fixed as in Fig. 1. (a) Under BMA beyond the SA (“M BS”) the values are negative, and (b) under non-
Markovian dynamics beyond the SA (“NM BS”) the values are strictly positive. We find that the positivity in the short-time region is recovered
by the treatment “NM BS.”
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FIG. 6. Time evolution of each element of ρ[t̃ (= ω2t )] obtained
by the LA beyond the BMA and the SA with the same settings as
given in Fig. 1. We find that the stationary values of the populations
at the sites 1 and 2 coincide, ρL,11 = ρL,22, and the stationary value
of coherence Re[ρL,12] vanishes.

region is resolved by including the non-Markovian effect.
However, for the stationary state, we find the parameter region
in which the smallest eigenvalue of the stationary state be-
comes negative, corresponding to low temperatures and strong
intersite interaction for large Bohr frequency of site 1 (see
Appendix E). We find two possible sources of negativity: in
assuming an Ohmic spectral density [34,136] and in the ac-

(a)

(b)

FIG. 7. (a) Dependence of the stationary values obtained by the
LA on the inverse temperature β̃ and interaction strength between
sites Ṽ12. (b) Dependence of the trace distance, D(ρL, ρGibbs ), on β̃

and Ṽ12. The difference between the obtained stationary state, ρL ,
and the Gibbs state for the total relevant system, ρGibbs, is much larger
compared with D(ρG, ρGibbs ) [Fig. 2(b)].

curacy of the master equation when taken to the second-order
cumulant [137,138].

Concerning the assumption on the spectral density, we find
a recurrent theme in the lengthening of the correlation time of
the bosonic environment for low temperatures for the Ohmic
spectral density, which does not match the assumptions of the
BMA [34,136]. Because a negative stationary value is indi-
cated for the long correlation time of the phenomenological
exponential correlation function for the GA beyond the SA
[109], and because the non-Markovian dynamics eventually
reduce to the dynamics under the BMA in the long-time
region, we regard it as a source of negativity.

For accuracy in the stationary values of the second-order
master equation, unbalanced accuracy between the population
and coherence is indicated [137,138]. To overcome this dif-
ficulty, an analytic continuation for approaching the second
order of the mean-force Gibbs state is proposed [139,140].
We find its recent extension to the master equation adopting
the SA [141], but the negative stationary values remain. This
suggests that higher-order cumulants are necessary, as was
concluded in [93,121,142].

As the GA beyond the SA gives the non-GKSL dissipator,
Eq. (7), there may be concerns with its positivity violation.
For the reduced dynamics of two noninteracting bosonic
modes [108] or qubits [109] that are immersed in a common
bath, the numerical evaluation of Eq. (7) matches the ana-
lytic or numerical solution. This suggests that the non-GKSL
dissipator itself is not the only reason for the violation of
positivity. Indeed, recent studies on canonical forms prove
that Eq. (7) could be transformed into a GKSL dissipator
with time-dependent coefficients [143]. However, because the
transformation does not guarantee positivity and even com-
plete positivity, the authors of [143] also mention the need
to identify the region satisfying the legitimate dynamics as
shown in [143–145] for the spin-half case. This case corre-
sponds to the numerical evaluation in Appendix E, although
we discuss only the positivity aspect.

Finally, we discuss the possibility of simulating the model
presented in this paper for validation. The candidates are
roughly divided into (1) analytically and (2) numerically exact
methods. For method 1, two possibilities exist: (1) the Heisen-
berg equations of motion and (2) the pseudomode model. The
application of mode 1 produces a finite set of coupled differ-
ential equations for two noninteracting harmonic oscillators
that are immersed in a common bosonic environment within
the RWA in [108]. We find the set for our model to be infinite,
and this precludes us from obtaining an exact solution. The
application of mode 2 to the two noninteracting qubits that
commonly couple with a bosonic environment beyond the
RWA enabled the authors of [109] to replicate the dynamics
obtained from the Redfield (time-convolutionless) equation.
Their replication was based on the Lorentzian-like spectral
density to describe system-environment interaction, accord-
ing to [146,147]. However, we find that we need an infinite
number of the pseudomodes to replicate the dynamics of our
model based on the Ohmic spectral density [148], and this
precludes us from applying the model.

For method 2, some typical examples are (1) the multilayer
formulation of the multiconfiguration time-dependent Hartree
theory [149,150], (2) the quasiadiabatic path-integral method
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[151], (3) the hierarchical equations of motion [152–154]
and its variants [155], and (4) the hierarchy of pure states
[156,157]. In these methods, the environmental effect is rep-
resented by discretizing or approximating the spectral density
[149,150], the influence functional [151], and the correlation
function [152–157] at some stage. Thus, it would be necessary
to increase terms and/or equations obtained by the discretiza-
tion until the evaluation converges. However, the number of
terms and/or equations that are needed to reach convergence
strongly depends on the environmental temperature, cutoff
frequency, and time region to be simulated [158]. Obtaining
convergence over a wide range of time intervals up to the
stationary state is challenging for various environmental tem-
peratures and long correlation time; thus, this will be explored
in future studies.

VI. CONCLUSION

We studied the reduced dynamics of excitation energy
transfer through interacting sites that were partially coupled
with a bosonic environment. Using the GA beyond the BMA
and the SA, we found the dynamics to asymptotically ap-
proach the stationary state near the expected Gibbs state with a
trace distance of the order of system-environment interaction.
Comparisons with and without the SA revealed the role of
the SA in reducing the oscillation of the non-Markovian dy-
namics. Specifically, the difference persists for the long-time
region in a high-temperature environment.

These findings suggest that it is feasible and plausible to
adopt the GA without resorting to the BMA and the SA. As for
the stationary state specifically in the low-temperature region,
the evaluation by the GA with the SA is still a reasonable
choice.
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APPENDIX A: APPENDIX A: DERIVATION
OF THE TIME-CONVOLUTIONLESS (TIME-LOCAL)

TYPE OF MASTER EQUATION

We provide a derivation of the time convolutionless (time-
local) type of master equation in the Schrödinger picture,
Eq. (1), which describes the time evolution of the system of
interest extracted from that of the total system given by the
Liouville–von Neumann equation:

d

dt
W (t ) = −iLW (t ), (A1)

where W (t ) denotes the density operator for the total system
and L denotes the Liouville operator representing the opera-
tion LA = 1

h̄ [H, A] for the Hamiltonian of the total system H
when acting on an arbitrary operator A. We consider dividing

the Hamiltonian into unperturbed and perturbed parts denoted
H0 and H1, respectively. We denote the corresponding Liou-
ville operator as LμA = 1

h̄ [Hμ, A] with μ = {0, 1}.
To extract the time evolution of the system of interest from

Eq. (A1), we use the projection operator method [93,114–
121], which is summarized as follows: We introduce a pro-
jection operator, P , which satisfies the idempotent property
P2 = P to divide Eq. (A1) into a relevant part PW (t ) and
an irrelevant part QW (t )[≡ (1 − P )W (t )]. When we reduce
them to a single equation PW (t ) and define the projec-
tion operator as PW (t ) = ρE TrEW (t ), we obtain the master
equation for the reduced density operator, namely, ρ(t ) =
TrEW (t ), where ρE denotes the environment density operator
and TrE denotes the partial trace operation over environment
variables. We present a detailed derivation below.

For the formal solution of Eq. (A1), given as W (t ) =
U (t )W (0) with U (t ) = exp[−iLt], we separate the relevant
part P and the irrelevant part Q(≡ 1 − P ) of U (t ),

x(t ) ≡ PU (t ), y(t ) ≡ QU (t ), (A2)

and derive their simultaneous differential equations:

d

dt
x(t ) = P (−iL)x(t ) + P (−iL)y(t ) , (A3)

d

dt
y(t ) = Q(−iL)x(t ) + Q(−iL)y(t ) . (A4)

We obtain the formal solution of the irrelevant part Q as

y(t ) =
∫ t

0
e−QiL(t−τ )Q(−iL)x(τ )dτ + e−QiLtQ. (A5)

The rewriting of x(τ ) in Eq. (A5) with x(t ) and y(t ) using the
relation

x(τ ) = PeiL(t−τ )e−iLt = PeiL(t−τ )[x(t ) + y(t )] (A6)

leads to the formal solution of y(t ) in the form

y(t ) = θ (t )−1{[1 − θ (t )]x(t ) + e−QiLtQ}, (A7)

where we define

θ (t ) = 1 −
∫ t

0
e−QiLτQ(−iL)PeiLτ dτ ≡ 1 − σ (t ). (A8)

Substitution of the formal solution of y(t ) into Eq. (A3) gives

d

dt
x(t ) = P (−iL)θ (t )−1x(t ) + P (−iL)θ (t )−1eQ(−iL)tQ.

(A9)

Using the relations θ (t )−1 = ∑∞
n=0 σ (t )n, PL0 = L0P ,

PQ = 0, and

e−QiLtQ = e−QiL0t T+exp[
∫ t

0
dt ′eiL0t ′Q(−iL1)Qe−iL0t ′

],

(A10)

the first term on the right-hand side of Eq. (A9) is rewritten as

P (−iL)θ (t )−1x(t )

= P (−iL)x(t ) + P (−iL)σ (t )x(t ) + · · ·

= P (−iL)x(t ) +
∞∑

n=2

kn(t )x(t ), (A11)
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where we define

kn(t ) ≡
∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−2

0
dtn

× e−iL0t 〈iL̂1(t )iL̂1(t1) · · · iL̂1(tn − 1)〉OCeiL0t ,

(A12)

with

L̂1(t ) = eiL0tL1e−iL0t . (A13)

In Eq. (A12), 〈· · · 〉OC means the “ordered cumulant” [93,114–
121]; the second-order term is

k2(t ) = P (−iL1)
∫ t

0
Q[−iL̂1(−τ )]Pdτ. (A14)

Multiplying W (0) from the right on both sides of Eq. (A9),
we obtain

d

dt
ρ(t ) = TrE [(−iL)ρEρ(t )] + �(t ) + I (t ), (A15)

with

�(t ) ≡
∞∑

n=2

ψn(t )ρ(t ), (A16)

I (t ) ≡ TrE [(−iL)θ (t )−1eQ(−iL)tQW (0)]. (A17)

When we assume the factorized initial condition between
the system and the environment satisfies QW (0) = 0, we
find the inhomogeneous term I (t ) = 0. Moreover, assuming
TrE (H1ρE ) = 0 where H1 is denoted as the multiplica-
tive of the system and environment operators, we find the
first term in Eq. (A15) is rewritten as TrE [(−iL)ρEρ(t )] =
TrE [(−iL0)ρEρ(t )]. Denoting H0 = HS + HE with the sys-
tem Hamiltonian HS and the environmental one HE , and
on the condition of [HE , ρE ] = 0, we obtain Eq. (1). Using
Eqs. (A14) and (A16), we obtain the second order of the
dissipator Eq. (3).

APPENDIX B: COEFFICIENT MATRICES
FOR NON-MARKOVIAN DYNAMICS

For the two-site model (N = 2), the matrices of coefficients
in Eqs. (9) and (10) are given by

�P,α (t ) =
⎡
⎣0 0 0

0 η+,α (t ) η−,α (t )
0 −η+,α (t ) −η−,α (t )

⎤
⎦, (B1)

�PC,α = �PC,sys +
⎡
⎣ 0 0

−γ1,α (t ) −γ ∗
1,α (t )

γ1,α (t ) γ ∗
1,α (t )

⎤
⎦, (B2)

�C,α (t ) = �C,sys −
[
γ2,α (t ) 0

0 γ ∗
2,α (t )

]
, (B3)

�CP,α = �CP,sys +
[−γ ∗

1,α (t ) 0 γ3,α (t )
−γ1,α (t ) 0 γ ∗

3,α (t )

]
, (B4)

where α = G, L indicate matrices pertaining to the GA and
the LA, respectively, and the first terms in Eqs. (B2)–(B4)

denote the matrices of coefficients describing the contribu-
tions from the system Hamiltonian; more specifically,

�PC,sys = iV12

⎡
⎣ 1 −1

−1 1
0 0

⎤
⎦, (B5)

�C,sys = i(ω1 − ω2)

[−1 0
0 1

]
, (B6)

�CP,sys = iV12

[
1 −1 0

−1 1 0

]
. (B7)

In the following, we present explicit expressions for the ele-
ments of these matrices.

1. Global approach beyond the secular approximation

The elements of the matrices for the GA coefficients are
given by

η±,G(t ) ≡ ∓2{sin2 θ Re[
(±λ13, t )]

+ cos2 θ Re[
(±λ23, t )]},
γ1,G(t ) ≡ V12

Dm
[
(λ13, t ) − 
(λ23, t )],

γ2,G(t ) ≡ sin2 θ 
S (−λ13, t ) + cos2 θ 
S (−λ23, t ),

γ3,G(t ) ≡ V12

Dm
[
(−λ13, t ) − 
(−λ23, t )], (B8)

with sin2 θ = (1 − ω1−ω2
Dm

)/2, cos2 θ = (1 + ω1−ω2
Dm

)/2, and

λnm ≡ 1
h̄ (λn − λm) representing the frequency difference be-

tween the nth and mth eigenvalues of the unperturbed
Hamiltonian, and


(μ, t )

≡
∫ t

0
dτ

∫ ∞

0
dνJ (ν){[1 + 2n(ν)] cos ντ − i sin ντ }eiμτ

= 
S (−μ, t )∗, (B9)

defining n(ν) = 1
eβ h̄ν−1 and the spectral density J (ν) as

J (ν) ≡
∑

k

g2
kδ(ν − ωk ). (B10)

When we assume the spectral density to be Ohmic with an
exponential cutoff function, J (ν) ≡ s ν e−ν/�c , denoting the
strength of system-environment interaction by s and the cutoff
frequency by �c, we obtain


(μ, t ) =
∫ t

0
dτ

1

2
[D1(τ ) − iD2(τ )]eiμτ , (B11)

where D1(τ ) and D2(τ ) are termed the noise and dissipation
kernels [100,101] defined as

D1(τ ) = 2
∫ ∞

0
dνJ (ν)[1 + 2n(ν)] cos ντ

= 2s

{
−�2

c

(�cτ )2 − 1

[1 + (�cτ )2]2

+ 2

β2
�

[
ψ ′

(
β�c + i�cτ + 1

β�c

)]}
, (B12)

D2(τ ) = 4sτ�3
c

[1 + (�cτ )2]2
, (B13)
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with ψ ′(z) denoting the derivative of the Euler digamma func-
tion ψ (z) = �′(z)/�(z).

2. Local approach beyond the secular approximation

Omitting the interaction between sites in the dissipator,
we obtain the master equation for the LA beyond the SA.
In this instance, the eigenvalues {λ1, λ2, λ3} reduce to the
energy of each site, specifically, h̄{ω1, ω2, ω3}, and the cor-
responding eigenstates {|en〉} for n = 1, 2, 3 are unit vectors
of the site basis. The time-dependent coefficients �μ,L(t ) for
{μ} = {P, PC,CP,C} are obtained with the elements given as

η±,L(t ) ≡ ∓2Re[
(±λ23, t )], γ1,L (t ) ≡ 0,

γ2,L(t ) ≡ 
S (−λ23, t ), γ3,L(t ) ≡ 0. (B14)

Comparing Eqs. (B8) and (B14), we find that the dissipator of
the LA reasonably corresponds to that of the GA for V12 = 0
because at this value sin2 θ = 0, and cos2 θ = 1. We also find
that the dissipator by the LA reduces to the GKSL form with
time-dependent coefficients.

APPENDIX C: COEFFICIENT MATRICES
UNDER THE BMA

We obtain the coefficients in the BMA by setting the upper
limit of Eq. (B9) to infinity and introducing �μ,α ≡ �μ,α (∞)
for {μ} = {P, PC,CP,C} and {α} = {G, L}, corresponding to
the long-time limit, which requires obtaining 
(μ,∞). For
the Ohmic spectral density, its analytic form is given by


(μ,∞) =
∫ ∞

0
dτ

1

2
[D1(τ ) − iD2(τ )]eiμτ

= lim
ε→0

∫ ∞

0
dτ

∫ ∞

0
dνJ (ν){n(ν)ei(ν+μ)τ

+ [1 + n(ν)]e−i(ν−μ)τ }e−εt

=
∫ ∞

0
dνJ (ν){n(ν)F+(μ, ν) + [1 + n(ν)]F−(μ, ν)}

(C1)

with

F±(μ, ν) ≡ ±iP 1

ν ± μ
+ πδ(ν ± μ), (C2)

which is obtained using the relation

lim
ε→0

1

t ∓ iε
= P 1

t
± iπδ(t ), (C3)

where P means Cauchy’s principal value.

APPENDIX D: NUMERICAL EVALUATIONS
FOR THE LOCAL APPROACH

We display the non-Markovian reduced dynamics obtained
by the LA beyond the SA graphically (Fig. 6). The initial
condition and parameters are the same as set for the GA
(Fig. 1). We find that the populations of sites 1 and 2 approach
the same respective values ρL,11 and ρL,22, which is consistent
with the coherence Re[ρL,12] vanishing and therefore the van-
ishing of the transition between sites 1 and 2. These features

FIG. 8. Dependence of the smallest eigenvalue of the stationary
state obtained by the GA beyond the SA on the inverse temperature β̃

and the interaction strength between sites Ṽ12 with setting ω̃1 = 5/4.
The white line marks the boundary between positive and negative
values; below the line, the eigenvalues are positive and in crossing
the boundary change to very small negative values. Other parameters
are set the same as given in Fig. 1.

are supported by an analytic solution of the stationary state
obtained using Eq. (C1) in Eq. (B14):

ρL,11 = ρL,22 = e−β h̄ω2

ZL
, ρL,33 = e−β h̄ω3

ZL
,

ρL,12 = ρL,21 = 0, (D1)

with ZL = 2e−β h̄ω2 + e−β h̄ω3 , which means that both sites 1
and 2 are populated in local equilibrium with site 3. We
present the dependence of the stationary values for the LA
on β̃ and Ṽ12 in Fig. 7(a). From a comparison with Fig. 2(a),
we find the LA does not provide the stationary state of the
Gibbs state for the total Hamiltonian HS , which is consis-
tent with conventional studies [16–20]. Evaluating the trace
distance between the stationary state ρL and the Gibbs state
for HS , D(ρL, ρGibbs), its dependence on β̃ and Ṽ12 [Fig. 7(b)]
shows that the values are much larger than those for the GA
[Fig. 2(b)].

APPENDIX E: POSITIVITY OF THE STATIONARY STATE

When adopting the GA beyond the SA, we find no vio-
lation of positivity within the parameter range in Figs. 1–5.
In the evaluations, we found that the violation of positivity
in the short-time region is resolved by including the non-
Markovian effect. This means the remaining possibility of
violation is in the stationary state, which requires us to study
its positivity by enlarging the parameter region of the inverse
temperature of the environment, β̃, the strength of intersite
interaction, Ṽ12, and the Bohr frequency of the site 1, ω̃1.
Changing these parameters, we identify the region for which
the smallest eigenvalue of the stationary state is positive
(Fig. 8). We then find violations of positivity occurring at
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low environment temperatures and large ω̃1 and large Ṽ12, al-
though their explicit values are small. Incidentally, the scaled
temperature, β̃ = 4, corresponds to about 13 mK when the

scaling Bohr frequency ω2 is assumed to be 7 GHz, which is
much lower than the case in the heat rectification experiment
[110].
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[60] D. Davidović, Completely positive, simple, and possibly
highly accurate approximation of the Redfield equation,
Quantum 4, 326 (2020).

[61] A. Trushechkin, Unified Gorini-Kossakowski-Lindblad-
Sudarshan quantum master equation beyond the secular
approximation, Phys. Rev. A 103, 062226 (2021).

[62] H. Wichterich, M. J. Henrich, H.-P. Breuer, J. Gemmer, and M.
Michel, Modeling heat transport through completely positive
maps, Phys. Rev. E 76, 031115 (2007).

[63] B. Palmieri, D. Abramavicius, and S. Mukamel, Lindblad
equations for strongly coupled populations and coherences
in photosynthetic complexes, J. Chem. Phys. 130, 204512
(2009).

[64] A. Purkayastha, A. Dhar, and M. Kulkarni, Out-of-equilibrium
open quantum systems: A comparison of approximate quan-
tum master equation approaches with exact results, Phys. Rev.
A 93, 062114 (2016).

[65] A. Purkayastha, G. Guarnieri, M. T. Mitchison, R. Filip, and
J. Goold, Tunable phonon-induced steady-state coherence in
a double-quantum-dot charge qubit, npj Quantum Inf. 6, 27
(2020).

[66] D. Farina, G. De Filippis, V. Cataudella, M. Polini, and V.
Giovannetti, Going beyond local and global approaches for lo-
calized thermal dissipation, Phys. Rev. A 102, 052208 (2020).

[67] A. G. Redfield, On the theory of relaxation processes, IBM J.
Res. Dev. 1, 19 (1957).

[68] E. B. Davies, Markovian master equations. II, Math. Ann. 219,
147 (1976).

[69] R. Alicki and K. Lendi, Quantum Dynamical Semigroups and
Applications (Springer-Verlag, Berlin, 1987).

[70] G. Schaller and T. Brandes, Preservation of positivity by dy-
namical coarse graining, Phys. Rev. A 78, 022106 (2008).

[71] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, Com-
pletely positive dynamical semigroups of N-Level systems,
J. Math. Phys. 17, 821 (1976).

[72] G. Lindblad, On the generators of quantum dynamical semi-
groups, Commun. Math. Phys. 48, 119 (1976).

[73] E. T. J. Nibbering, D. A. Wiersma, and K. Duppen, Femtosec-
ond non-Markovian optical dynamics in solution, Phys. Rev.
Lett. 66, 2464 (1991).

[74] J.-Y. Bigot, M. T. Portella, R. W. Schoenlein, C. J. Bardeen,
A. Migus, and C. V. Shan, Non-Markovian dephasing of
molecules in solution measured with three-pulse femtosecond
photon echoes, Phys. Rev. Lett. 66, 1138 (1991).

[75] L. Bányai, D. B. Tran Thoai, E. Reitsamer, H. Haug, D.
Steinbach, M. U. Wehner, M. Wegener, T. Marschner, and
W. Stolz, Exciton-LO-Phonon quantum kinetics: Evidence
of memory effects in bulk GaAs, Phys. Rev. Lett. 75, 2188
(1995).

042212-12

https://doi.org/10.1155/2015/615727
https://doi.org/10.1103/PhysRevE.91.012143
https://doi.org/10.1016/j.optcom.2016.10.017
https://doi.org/10.1088/1367-2630/aa964f
https://doi.org/10.1142/S1230161217400108
https://doi.org/10.1103/PhysRevE.98.012131
https://doi.org/10.1103/PhysRevA.97.032133
https://doi.org/10.1103/PhysRevA.98.052123
https://doi.org/10.1103/PhysRevResearch.4.013171
https://doi.org/10.1088/2058-9565/ab1a71
https://doi.org/10.1103/PhysRevA.102.012217
https://doi.org/10.1103/PhysRevA.102.042219
https://doi.org/10.1103/PhysRevA.103.052209
https://doi.org/10.1103/PRXQuantum.2.030344
https://doi.org/10.1103/PhysRevB.103.214308
https://doi.org/10.1103/PhysRevA.105.032208
https://doi.org/10.1088/1751-8113/40/48/015
https://doi.org/10.1063/1.4907370
https://doi.org/10.1088/1367-2630/ab54ac
https://doi.org/10.1103/PhysRevA.100.012107
https://doi.org/10.1103/PhysRevA.101.042108
https://doi.org/10.22331/q-2020-09-21-326
https://doi.org/10.1103/PhysRevA.103.062226
https://doi.org/10.1103/PhysRevE.76.031115
https://doi.org/10.1063/1.3142485
https://doi.org/10.1103/PhysRevA.93.062114
https://doi.org/10.1038/s41534-020-0256-6
https://doi.org/10.1103/PhysRevA.102.052208
https://doi.org/10.1147/rd.11.0019
https://doi.org/10.1007/BF01351898
https://doi.org/10.1103/PhysRevA.78.022106
https://doi.org/10.1063/1.522979
https://doi.org/10.1007/BF01608499
https://doi.org/10.1103/PhysRevLett.66.2464
https://doi.org/10.1103/PhysRevLett.66.1138
https://doi.org/10.1103/PhysRevLett.75.2188


DYNAMICS OF A QUANTUM INTERACTING SYSTEM: … PHYSICAL REVIEW A 108, 042212 (2023)

[76] Y. Masumoto, F. Suto, M. Ikezawa, C. Uchiyama, and M.
Aihara, Non-Markovian tunneling-induced dephasing in InP
quantum dots, J. Phys. Soc. Jpn. 74, 2933 (2005).

[77] P. Lodahl, S. Mahmoodian, and S. Stobbe, Interfacing single
photons and single quantum dots with photonic nanostruc-
tures, Rev. Mod. Phys. 87, 347 (2015).

[78] J. P. Pekola and B. Karimi, Colloquium: Quantum heat trans-
port in condensed matter systems, Rev. Mod. Phys. 93, 041001
(2021).

[79] P. G. Kwiat, A. J. Berglund, J. B. Altepeter, and G. W.
Andrew, Experimental verification of decoherence-free sub-
spaces, Science 290, 498 (2000).

[80] D. Kielpinski, V. Meyer, M. A. Rowe, C. A. Sackett, W. M.
Itano, C. Monroe, and D. J. Wineland, A Decoherence-free
quantum memory using trapped ions, Science 291, 1013
(2001).

[81] L. Viola, E. M. Fortunato, M. A. Pravia, E. Knill, R. Laflamme,
and D. G. Cory, Experimental realization of noiseless subsys-
tems for quantum information processing, Science 293, 2059
(2001).

[82] Y. Kondo, M. Nakahara, S. Tanimura, S. Kitajima, C.
Uchiyama, and F. Shibata, Generation and suppression of de-
coherence in artificial environment for qubit system, J. Phys.
Soc. Jpn. 76, 074002 (2007).

[83] B.-H. Liu, L. Li, Y.-F. Huang, C.-F. Li, G.-C. Guo, E.-M.
Laine, H.-P. Breuer, and J. Piilo, Experimental control of
the transition from Markovian to non-Markovian dynamics of
open quantum systems, Nat. Phys. 7, 931 (2011).

[84] A. Chiuri, C. Greganti, L. Mazzola, M. Paternostro, and P.
Mataloni, Linear optics simulation of quantum non-Markovian
dynamics, Sci. Rep. 2, 968 (2012).

[85] Z.-D. Liu, H. Lyyra, Y.-N. Sun, B.-H. Liu, C.-F. Li, G.-C. Guo,
S. Maniscalco, and J. Piilo, Experimental implementation of
fully controlled dephasing dynamics and synthetic spectral
densities, Nat. Commun. 9, 3453 (2018).

[86] S. Yu, Y.-T. Wang, Z.-J. Ke, W. Liu, Y. Meng, Z.-P. Li, W.-H.
Zhang, G. Chen, J.-S. Tang, C.-F. Li, and G.-C. Guo, Exper-
imental investigation of spectra of dynamical maps and their
relation to non-Markovianity, Phys. Rev. Lett. 120, 060406
(2018).

[87] D. Khurana, B. K. Agarwalla, and T. S. Mahesh, Experimental
emulation of quantum non-Markovian dynamics and coher-
ence protection in the presence of information backflow, Phys.
Rev. A 99, 022107 (2019).

[88] W. J. Munro and C. W. Gardiner, Non-rotating-wave master
equation, Phys. Rev. A 53, 2633 (1996).

[89] A. Suárez, R. Silbey, and I. Oppenheim, Memory effects in the
relaxation of quantum open systems, J. Chem. Phys. 97, 5101
(1992).

[90] P. Gaspard and M. Nagaoka, Slippage of initial conditions
for the Redfield master equation, J. Chem. Phys. 111, 5668
(1999).

[91] I. Prigogine, Quantum theory of dissipative systems and scat-
tering processes, in Fast Reactions and Primary Processes in
Chemical Kinetics, edited by S. Claesson, Proceedings of the
Nobel Symposium Vol. 5 (Wiley, New York, 1967), p. 99.

[92] C. George, Quasiparticles and contracted description, Physica
37, 182 (1967).

[93] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University, New York, 2002).

[94] M. M. Wolf, J. Eisert, T. S. Cubitt, and J. I. Cirac, Assess-
ing non-Markovian quantum dynamics, Phys. Rev. Lett. 101,
150402 (2008).

[95] H.-P. Breuer, E. M. Laine, and J. Piilo, Measure for the degree
of non-Markovian behavior of quantum processes in open
systems, Phys. Rev. Lett. 103, 210401 (2009).

[96] Á. Rivas, S. F. Huelga, and M. B. Plenio, Entanglement and
non-Markovianity of quantum evolutions, Phys. Rev. Lett.
105, 050403 (2010).
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