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Asymmetric one-sided semi-device-independent steerability of quantum discordant states
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Superlocality and superunsteerability provide operational characterization of quantum correlations in certain
local and unsteerable states, respectively. Such quantum correlated states have a nonzero quantum discord. A
two-way nonzero quantum discord is necessary for quantum correlations pointed out by superlocality. On the
other hand, in this work, we demonstrate that a two-way nonzero quantum discord is not necessary to demonstrate
superunsteerability. To this end, we demonstrate superunsteerability for one-way quantum discordant states. This
in turn implies the existence of one-way superunsteerability and also the presence of superunsteerability without
superlocality. Superunsteerability for nonzero quantum discord states implies the occurrence of steerability in
a one-sided semi-device-independent way. Just like one-way steerability occurs for certain Bell-local states
in a one-sided device-independent way, our result shows that one-way steerability can also occur for certain
nonsuperlocal states but in a one-sided semi-device-independent way.
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I. INTRODUCTION

Local quantum measurements on entangled states can be
used to demonstrate quantum nonlocality, originating from an
experimental situation proposed by Einstein, Podolsky and
Rosen [1] and the Bohm-Aharonov version of it [2]. Bell
proposed a framework to distinguish quantum nonlocality
from a local realistic description of the measurement results
by introducing an inequality, which is satisfied by any local
hidden variable model for the observed correlations between
spacelike separated observers [3]. Such an inequality is vio-
lated by certain quantum correlations and the phenomenon is
referred as Bell nonlocality [4]. There exists another form of
quantum nonlocality as pointed out by Schrödinger [5]. This
form of quantum nonlocality is called quantum steering and its
framework, analogous to the Bell’s framework, was proposed
by Wiseman, Jones, and Doherty (WJD) [6]. Apart from being
fundamental aspects of quantum theory, both of the forms of
quantum nonlocality find applications in quantum technolo-
gies (see Sec. IV in [4] and Sec. V in [7] for applications
of Bell nonlocality and quantum steering, respectively). In
contrast to Bell nonlocality of quantum correlations, quantum
steering is an asymmetric form of quantum correlations, both
from fundamental and application points of view. Quantum
steering can exist with the one-way property, that is, certain
entangled states have steerability from only one side [8] (also
see Sec. III. D in [7]) and quantum steering can only pro-
vide one-sided device-independent applications [9] (also see
Sec. V in [7]).
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The quantification of quantum resources through appropri-
ate quantifiers is an important aspect of quantum information
science [10]. The quantification of quantum correlations be-
yond entanglement, called quantum discord, was proposed in
[11,12]. This kind of quantum correlation has also emerged as
a quantum resource for applications in quantum information
science [13,14] (also see Sec. VI in [15]). From a quantum
foundational perspective [16], quantum discord was proposed
as Bohr’s notion of nonmechanical disturbance [17]. Cer-
tain distinguishing features of quantum discord to quantum
entanglement have been characterized, such as no death for
discord, [18] and quantum discord may increase under certain
decoherence conditions [19].

The simulation of certain local and unsteerable states using
finite shared randomness has been shown to motivate the
amount of shared randomness as a resource [20,21]. Super-
locality [22] and superunsteerability [23] have been recently
formalized to demonstrate a quantum advantage in simulat-
ing certain local and unsteerable correlations, respectively,
in terms of a local Hilbert space dimension over the mini-
mal amount of shared randomness required to simulate them.
Such quantum advantage has been invoked to provide op-
erational characterization of quantum correlations in certain
local and unsteerable states having a nonzero quantum discord
[24–26]. Superlocality or superunsteerability has also been
found to be useful for certifying quantum discord in a mea-
surement device-independent way [27] and also as a resource
for measurement device-independent quantum key distribu-
tion protocols [28], quantum random access codes [29], and
quantum random number generation [27].

Studying the precise relationships among quantum dis-
cord, i.e., superunsteerability and superlocality, could provide
a better understanding of quantum correlations as well as
their role as a resource in quantum information processing.
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Superlocality is inequivalent to quantum discord [24]. This
raises the question of whether superunsteerability is in-
equivalent to superlocality or quantum discord. Also, as
superunsteerability is an asymmetric concept, a natural ques-
tion that arises is whether superunsteerability can occur for
nonzero quantum discord states with the one-way property,
analogous to one-way quantum steering in the case of certain
entangled states. In this work, we answer this question in
the affirmative by demonstrating that quantum correlations
in certain one-way quantum discordant states can be op-
erationally captured by superunsteerability. For such states,
superunsteerability cannot occur both ways because the state
has zero quantum discord on one side. Thus, in this work,
we demonstrate the existence of one-way superunsteerability.
This in turn implies that superunsteerability is inequivalent to
superlocality.

II. WJD’S FORM OF QUANTUM STEERING

Let us consider a steering scenario where two spatially sep-
arated parties, say Alice and Bob, share an unknown quantum
system ρAB ∈ B(HA ⊗HB). Here, B(HA ⊗HB) stands for
the set of all bounded linear operators acting on the Hilbert
space HA ⊗HB. Alice performs a set of black-box measure-
ments and the Hilbert-space dimension of Bob’s subsystem
is known. Such a scenario is called one-sided device inde-
pendent since Alice’s measurement operators {Ma|x}a,x, which
are positive operator-valued measures (POVM), are unknown.
The steering scenario is completely characterized by the set
of unnormalized conditional states on Bob’s side, {σa|x}a,x,
which is called an unnormalized assemblage. Each element
in the unnormalized assemblage is given by σa|x = p(a|x)ρa|x,
where p(a|x) is the conditional probability of getting the out-
come a when Alice performs the measurement x; ρa|x is the
normalized conditional state on Bob’s side. Quantum theory
predicts that all valid assemblages should satisfy the following
criteria:

σa|x = TrA(Ma|x ⊗ 1ρAB) ∀σa|x ∈ {σa|x}a,x. (1)

Definition 1. In the above scenario, Alice demonstrates
Wiseman, Jones, and Doherty’s (WJD) form of steerability to
Bob [6] if the assemblage does not have a local hidden state
(LHS) model, i.e., if for all a, x, there is no decomposition of
σa|x in the form

σa|x =
∑

λ

p(λ)p(a|x, λ)ρλ, (2)

where λ denotes the classical random variable which occurs
with probability p(λ). ρλ are called local hidden states which
satisfy ρλ � 0 and Trρλ = 1.

We can further define the detection of the above phe-
nomenon from the no-signaling (NS) boxes (see Sec. I in the
Supplemental Material [30]) as follows:

Definition 2. Suppose Bob performs a set of projective
measurements {�b|y}b,y on {σa|x}a,x. Then the scenario is
characterized by the set of measurement correlations, or box
between Alice and Bob, P(ab|xy):={p(ab|xy)}a,x,b,y, where
p(ab|xy) = Tr(�b|yσa|x ). The box P(ab|xy) detects WJD’s
steerability from Alice to Bob, iff it does not have a decompo-

sition, as follows [6,31]:

p(ab|xy) =
∑

λ

p(λ)p(a|x, λ)p(b|y, ρλ) ∀a, x, b, y, (3)

where
∑

λ p(λ) = 1, p(a|x, λ) denotes an arbitrary probability
distribution arising from the local hidden variable (LHV) λ

[λ occurs with probability p(λ)], and p(b|y, ρλ) denotes the
quantum probability of outcome b when measurement y is
performed on local hidden state (LHS) ρλ.

III. QUANTUM DISCORD

In the following, we present the definition of quantum dis-
cord [11,12] from Alice to Bob, D→(ρAB). Quantum discord
is defined as

D→(ρAB) = I (ρAB) − C→(ρAB) = S(ρB|A) − S̃(ρB|A). (4)

Here, I (ρAB) = S(ρB) − S̃(ρB|A) is the quantum mutual infor-
mation and can be interpreted as the total correlations in ρAB.
S(σ ) = −tr(σ log2 σ ) is the von Neumann entropy of a den-
sity matrix σ . S̃(ρB|A) = S(ρAB) − S(ρA) is the “unmeasured”
quantum conditional entropy [32] (see, also, [33–35]). On the
other hand, C→(ρAB) = S(ρB) − S(ρB|A) can be interpreted as
the classical correlations in ρAB, where the quantum condi-
tional entropy is defined as S(ρB|A) = min{MA

i }
∑

i piS(ρB|i ),
with the minimization being over all POVMs, {MA

i }, per-
formed on subsystem A. Here, pi = trAB(MA

i ⊗ IBρABMA
i ⊗

IB) is the probability of obtaining the outcome i, and the
corresponding postmeasurement state for the subsystem B is
ρB|i = 1

pi
trA(MA

i ⊗ IBρMA
i ⊗ IB).

Quantum discord D→(ρAB) as defined above captures
quantum correlation in the state from Alice to Bob. Similarly,
quantum discord from Bob to Alice, D←(ρAB), can be de-
fined. D→(ρAB) vanishes for a given ρAB if and only if it is
a classical-quantum state of the form

ρCQ =
∑

i

|i〉 〈i|A ⊗ ρ
(i)
B , (5)

where {|i〉} forms an orthonormal basis on Alice’s Hilbert
space and ρ

(i)
B are any quantum states on Bob’s Hilbert space.

On the other hand, D←(ρAB) vanishes for a given ρAB if and
only if it is a quantum-classical state of the form

ρQC =
∑

i

ρ
(i)
A ⊗ |i〉 〈i|B , (6)

where now {|i〉} forms an orthonormal basis on Bob’s Hilbert
space and ρ

(i)
A are any quantum states on Alice’s Hilbert space.

IV. SUPERUNSTEERABILITY

We are going to present the formal definition of the notion
superunsteerability for boxes having a LHV-LHS model [23].
Before that, we present the definition of superlocality for local
correlations [22,24]. Consider a Bell scenario, where both
parties perform black-box measurements. In this scenario,
superlocality is defined as follows:

Definition 3. Suppose we have a quantum state in CdA ⊗
CdB and measurements which produce a local bipartite box
P(ab|xy) := {p(ab|xy)}a,x,b,y. Then, superlocality holds iff
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there is no decomposition of the box in the form

p(ab|xy) =
dλ−1∑
λ=0

p(λ)p(a|x, λ)p(b|y, λ) ∀a, x, b, y, (7)

with dimension of the shared randomness or hidden vari-
able dλ � min(dA, dB). Here,

∑
λ p(λ) = 1, p(a|x, λ), and

p(b|y, λ) denote arbitrary probability distributions arising
from LHV λ [λ occurs with probability p(λ)].

In Ref. [24], an example of superlocality has been demon-
strated with the noisy Clauser-Horne-Shimony-Holt (CHSH)
local box given by

P(ab|xy) = 2 + (−1)a⊕b⊕xy
√

2V

8
, (8)

with 0 < V � 1/
√

2. Such local correlations can be produced
by a two-qubit pure entangled state or a two-qubit Werner
state having entanglement or a nonzero quantum discord for
appropriate local noncommuting measurements. On the other
hand, it cannot be reproduced by a LHV model with dλ = 2,
as shown in Ref. [24].

Now, consider a different scenario where one of the parties
(say, Alice) performs black-box measurements and another
party (say, Bob) performs quantum measurements. In this
steering scenario, the notion of superunsteerability has been
defined as follows:

Definition 4. Suppose we have a quantum state in CdA ⊗
CdB and measurements which produce a unsteerable bipartite
box P(ab|xy) := {p(ab|xy)}a,x,b,y. Then, superunsteerability
holds iff there is no decomposition of the box in the form

p(ab|xy) =
dλ−1∑
λ=0

p(λ)p(a|x, λ)p(b|y, ρλ) ∀a, x, b, y, (9)

with dimension of the shared randomness or hidden variable
dλ � dA. Here,

∑
λ p(λ) = 1, p(a|x, λ) denotes an arbitrary

probability distribution arising from LHV λ [λ occurs with
probability p(λ)] and p(b|y, ρλ) denotes the quantum proba-
bility of outcome b when measurement y is performed on LHS
ρλ in CdB .

In Ref. [23], two examples of superunsteerability have been
demonstrated. In one of these examples, the unsteerable white
noise BB84 family, given by

P(ab|xy) = 1 + (−1)a⊕b⊕x.yδx,yV

4
, (10)

with 0 < V � 1/
√

2, can be produced by a two-qubit Werner
state having entanglement or a nonzero quantum discord for
appropriate local noncommuting measurements. On the other
hand, it cannot be simulated by a LHV-LHS model with dλ =
2, as shown in Ref. [23]. These two examples demonstrate
superunsteerability in both ways, as they are symmetrical with
respect to interchanging Alice and Bob. In the following,
we demonstrate an example of superunsteerability asymmet-
rically.

V. ONE-WAY SUPERUNSTEERABILITY

Consider that the two spatially separated parties (say, Alice
and Bob) share the following separable two-qubit state:

ρ = 1
2 (|00〉〈00| + | + 1〉〈+1|), (11)

where |0〉 and |1〉 are the eigenstates of the operator σz

corresponding to the eigenvalue +1 and −1, respectively;
|+〉 is the eigenstate of the operator σx corresponding to
the eigenvalue +1. The above state has quantum discord
D→(ρAB) > 0 and D←(ρAB) = 0 since it is not a classical-
quantum state, but a quantum-classical state [11,12]. If Alice
performs the projective measurements of observables corre-
sponding to the operators A0 = σx and A1 = σz, and Bob
performs projective measurements of observables correspond-
ing to the operators B0 = σx and B1 = σz, then the following
correlation is produced from the above quantum-classical
state:

P(ab|xy) =

�����(x, y)
(a, b)

(0, 0) (0, 1) (1, 0) (1, 1)

(0, 0)
1

2

1

4
0

1

4

(0, 1)
3

8

3

8

1

8

1

8

(1, 0)
1

4

1

2

1

4
0

(1, 1)
3

8

3

8

1

8

1

8
(12)

Here, x, y denote the input variables on Alice’s and Bob’s
sides, respectively, and a, b denote the outputs on Alice’s and
Bob’s sides, respectively. In the following, we demonstrate
that the box (12) detects superunsteerability of the quantum-
classical state (11).

Let us now proceed to analyze simulating the correlation
given by Eq. (12) with LHV at one side and LHS at another
side. Before proceeding, let us define the following (for de-
tails, see the Supplemental Material [30]), which will be used
throughout the article:

Pαβ
D (a|x) =

{
1, a = αx ⊕ β

0 otherwise ,

Pγ ε
D (b|y) =

{
1, b = γ x ⊕ ε

0 otherwise.

The correlation given by Eq. (12) has the following LHV-
LHS model:

P(ab|xy) =
2∑

λ=0

p(λ)P(a|x, λ)P(b|y, ρλ), (13)
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where p(0) = 1
2 , p(1) = p(2) = 1

4 ; P(a|x, 0) = P00
D (a|x),

P(a|x, 1) = P10
D (a|x), P(a|x, 2) = P11

D (a|x), and

P(b|y, ρ0) =
�����(y)

(b)
(0) (1)

(0) 1
2

1
2

(1) 1
2

1
2

= 〈ψ ′
0|{�b|y}b,y|ψ ′

0〉,

P(b|y, ρ1) =
�����(y)

(b)
(0) (1)

(0) 1 0

(1) 1
2

1
2

= 〈ψ ′
1|{�b|y}b,y|ψ ′

1〉,

P(b|y, ρ2) =
�����(y)

(b)
(0) (1)

(0) 0 1
(1) 1

2
1
2

= 〈ψ ′
2|{�b|y}b,y|ψ ′

2〉,

where {�b|y}b,y corresponds to two arbitrary projective mu-
tually unbiased measurements in the Hilbert space C2

corresponding to the operators B0 = |↑0〉〈↑0 |−|↓0〉〈↓0 | and
B1 = |↑1〉〈↑1 |−|↓1〉〈↓1 |; here, {|↑0〉, |↓0〉} is an arbitrary or-
thonormal basis in the Hilbert space C2, and the orthonormal
basis {|↑1〉, |↓1〉} in the Hilbert space C2 is such that the afore-
mentioned two measurements define two arbitrary projective
mutually unbiased measurements in the Hilbert space C2.
The |ψ ′

λ〉s that produce the p(b|y, ρλ)s given above are given
by |ψ ′

0〉 = 1√
2
|↑0〉 + i 1√

2
|↓0〉, |ψ ′

1〉 = |↑0〉, and |ψ ′
2〉 = |↓0〉,

which are all valid states in the Hilbert space C2.
Hence, the LHV-LHS decomposition of the correlation

given by Eq. (12) can be realized with a hidden variable
having dimension 3 (with two arbitrary projective mutually
unbiased measurements at the trusted party). This is also the
minimal hidden variable dimension needed to simulate the
correlation, as we show in the following lemma.

Lemma 1. The LHV-LHS decomposition of the correlation
given by Eq. (12) cannot be realized with a hidden variable
having dimension 2.

The proof of this lemma is given in Sec. II in the
Supplemental Material [30]. We now show the following re-
sult:

Theorem 1. The correlation given by Eq. (12) demonstrates
superunsteerability from Alice to Bob while having no supe-
runsteerability from Bob to Alice.

Proof. We have shown that the unsteerable correlation
given by Eq. (12) can have a LHV-LHS model, with the
minimum dimension of the hidden variable being 3. On the
other hand, we have seen that the unsteerable correlation
given by Eq. (12) can be simulated by using a 2 ⊗ 2 quantum
system (11). This is an instance of superunsteerability since
the minimum dimension of shared randomness needed to sim-
ulate the LHV-LHS model of the correlation (12) is greater
than the local Hilbert-space dimension of the shared quan-
tum system (reproducing the given unsteerable correlation) at

the untrusted party’s side (who steers the other party, in the
present case Bob).

On the other hand, the box (12) does not have superun-
steerability from Bob to Alice. This is because it arises from
a unsteerable state having zero discord from Bob to Alice,
whereas nonzero discord from Bob to Alice is necessary for
producing the superunsteerable (from Bob to Alice) correla-
tion [23]. It can also be checked by providing a LHS-LHV
model with dλ = 2 as follows. From the decomposition of the
box (12) in terms of the local deterministic boxes, we obtain
the following LHS-LHV model:

P(ab|xy) =
1∑

λ=0

p(λ)P(a|x, ρλ)P(b|y, λ), (14)

where p(0) = 1
2 , p(1) = 1

2 ;

P(a|x, ρ0) =
�����(x)

(a)
(0) (1)

(0) 1 0
(1) 1

2
1
2

= 〈ψ ′
0|{�a|x}a,x|ψ ′

0〉,

P(a|x, ρ1) =
�����(x)

(a)
(0) (1)

(0) 0 1
(1) 1

2
1
2

= 〈ψ ′
1|{�a|x}a,x|ψ ′

1〉,
where {�a|x}a,x corresponds to two arbitrary projective
mutually unbiased measurements in the Hilbert space C2 cor-
responding to the operators A0 = |↑0〉〈↑0 | − |↓0〉〈↓0 | and
A1 = |↑1〉〈↑1 | − |↓1〉〈↓1 |; here, {|↑0〉, |↓0〉} and {|↑1〉, |↓1〉}
define two arbitrary projective mutually unbiased measure-
ments in the Hilbert space C2. The |ψ ′

λ〉s that produce
the p(b|y, ρλ)s given above are given by |ψ ′

0〉 = |↑0〉 and
|ψ ′

1〉 = |↓0〉, which are all valid states in the Hilbert space
C2; and P(b|y, 0) = [P00

D (b|y) + P10
D (b|y)]/2 and P(b|y, 1) =

[P00
D (b|y) + P11

D (b|y)]/2. �
Note that Eq. (14) can be seen as a LHV-LHV decom-

position for the correlation with hidden variable dimension
dλ = 2. Hence, the box (12) is not superlocal. In a similar
way, it can be easily checked that any correlation, which is not
superunsteerable at least in one direction, is not superlocal as
well. Though the one-way discordant state (11) does not have
quantum correlation pointed out by superlocality, the above
result implies that it still have quantum correlation pointed
out by superunsteerability asymmetrically. As an implication
of this result, in Fig. 1, we depict a new hierarchy of quantum
correlations in nonzero quantum discord states.

VI. A WEAK FORM OF QUANTUM STEERING

Here we address the connection of superunsteerability to a
weak form of steering and its distinction from WJD’s form of
steerability at the level of certification of steerability. To this
end, we note that in the given steering scenario, WJD’s form
of quantum steering implies the presence of steerability in a
one-sided device-independent way, i.e., without making any
assumption about the device used by the steering side (i.e.,
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FIG. 1. Hierarchy of correlations in bipartite quantum states.
The regions I , II , III , IV , and V represent the convex subset of
correlations in separable states. The complement set, i.e., regions
V I , V II , and V III , represent nonseparable correlations in entan-
gled states. Within the nonseparable correlations, the regions V II
and V III represent one-sided device-independent steerable and Bell-
nonlocal correlations, respectively, while the region V I represents the
nonseparable correlations which are neither steerable nor Bell non-
local. On the other side, within the correlations in separable states,
correlations in one-way discordant states and two-way discordant
states are depicted in regions II and III and regions IV and V ,
respectively, while the region I represents the classical correlations
that do not require a discordant state to be produced. Within the
discordant separable correlations, the regions II and IV represent
the one-way superunsteerable and superlocal correlations that can be
produced from one-way discordant and two-way discordant states,
respectively. Whether one-way superunsteerable correlations form a
strict subset of the correlations in one-way discordant states is an
open question. Further, whether all correlations in regions IV , V ,
and V I are two-way superunsteerable and whether all correlations in
regions V , V I , and V II are superlocal remain to be explored. Note
that the noisy CHSH local box (8) exhibiting superlocality belongs to
the regions V , V I , and V II; on the other hand, the unsteerable white
noise BB84 family (10) exhibiting two-way superunsteerability and
superlocality belongs to the regions IV , V , and V I .

untrusted side). On the other hand, in the following, we define
another inequivalent form of steerability to imply the pres-
ence of steerability in a one-sided semi-device-independent
way, i.e., by assuming only the dimension of the steering
side.

Definition 5. In the steering scenario as described before for
defining WJD’s form of steering, Alice demonstrates steering
to Bob in a one-sided semi-device-independent way if the
assemblage does not have a LHS model with a restricted
hidden variable dimension, i.e., if for all a, x, there is no

decomposition of σa|x in the form

σa|x =
dλ−1∑
λ=0

p(λ)p(a|x, λ)ρλ, (15)

with dλ � dA.
Note that for a given assemblage which has a LHS model

with the hidden variable dimension dλ as in Eq. (15), there
exists a suitable choice of POVMs on Bob’s side, {Mb|y}, such
that it produces a LHV-LHS correlation P(ab|xy) as in Eq. (9)
with p(b|y, ρλ) = Tr(Mb|yρλ) and the same dλ. This implies
that in the context of the above definition of steering, we have
the following observation for the detection of it in a steering
scenario where Bob performs particular measurements:

Observation 1. A bipartite box detects steerability in a one-
sided semi-device-independent way if and only if there is no
decomposition of the box in the form given by Eq. (9) with
dλ � dA.

From the above discussions, it is clear that the correlation
given by Eq. (12) detects one-way steerability in a one-sided
semi-device-independent way. We have thus identified a dif-
ferent nonconvex subset of correlations in one-way discordant
states, i.e., one-way superunsteerable correlations which do
not exhibit superlocality as in Fig. 1, but exhibit one-sided
semi-device-independent steerability asymmetrically. There
are superlocal correlations which exhibit two-way superun-
steerability as in the example given by Eq. (10) [23] and,
hence, they exhibit two-way steerability in a one-sided semi-
device-independent way.

VII. CONCLUSION

In this work, we have demonstrated the existence of a
different asymmetric nature of quantum correlations in quan-
tum discordant states. This asymmetric nature of quantumness
arises due to one-way superunsteerability. For quantumness
pointed out by superlocality, a two-way nonzero quantum
discord is necessary. Whereas, superunsteerability being an
asymmetric concept, to reveal quantumness pointed out by
superunsteerability, a one-way nonzero discord suffices, as we
demonstrated in this work. This result helps us to obtain a pre-
cise relationship among quantum discord, superunsteerability,
and superlocality. We hope that this relationship stimulates
the investigation of superunsteerability as a distinct resource
rather than superlocality for quantum information processing.

Superunsteerability indicates a weak form of steerability,
i.e., if an assemblage is produced in a one-sided semi-device-
independent (SDI) steering scenario, then demonstrating
superunsteerability is equivalent to steerability of the as-
semblage. This form of steerability is due to the quantum
advantage in using a quantum system of lower local Hilbert-
space dimension over the requirement of high dimensionality
of the hidden variables. Since steering is truly a quantum
phenomenon [5], superunsteerability captures a genuinely
quantum effect, although it does not indicate steerability in
the strongest way as the WJD’s form of steerability occurs
for certain entangled states [6]. Just like the WJD’s form of
steerability can be witnessed through a suitable inequality
or criterion, in Ref. [27], we have shown a certification of
quantum discord which provides sufficient criterion for deter-
mining superunsteerability of the two-qubit discordant states.
While discord has been operationally understood as having
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classical correlations assisted by quantum coherence rather
than quantum correlations [36], our results in this work and
our other recent works on superunsteerability [23,27,29] thus
provide insight that certain discordant states also have quan-
tum correlations exhibiting quantum steering, just like certain
entangled states have steerability, though in a weaker form.
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