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Universe as a nonlinear quantum simulation: Large-n limit of the central-spin model
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We investigate models of nonlinear qubit evolution based on mappings to an n-qubit central-spin model
(CSM) in the large-n limit, where mean-field theory is exact. Extending a theorem of Erdös and Schlein
[J. Stat. Phys. 134, 859 (2009)], we establish that the CSM is rigorously dual to a nonlinear qubit when n → ∞.
The duality supports a type of nonlinear quantum computation in systems, such as a condensate, where a
large number of ancillas couple symmetrically to a central qubit. It also enables a gate-model implementation
of nonlinear quantum simulation with a rigorous error bound. Two variants of the model, with and without
coupling between ancillas, map to effective models with different nonlinearity and symmetry. Without coupling
the CSM simulates initial-condition nonlinearity, where the Hamiltonian is a linear combination of tr(ρ0σ

x )σ x ,
tr(ρ0σ

y )σ y, and tr(ρ0σ
z )σ z, where σ x , σ y, and σ z are Pauli matrices and ρ0 is the initial density matrix. With

symmetric ancillas coupling it simulates linear combinations of tr(ρσ x )σ x , tr(ρσ y )σ y, and tr(ρσ z )σ z, where
ρ is the current state. This case can simulate qubit torsion, which has been shown by Abrams and Lloyd
[Phys. Rev. Lett. 81, 3992 (1998)] to enable an exponential speedup for state discrimination in an idealized
setting. The duality discussed here might also be interesting from a quantum foundation perspective. There has
long been interest in whether quantum mechanics might possess some type of small unobserved nonlinearity.
If not, what is the principle prohibiting it? The duality implies that there is not a sharp distinction between
universes evolving according to linear and nonlinear quantum mechanics: A one-qubit universe prepared in a
pure state |ϕ〉 at the time of the big bang and symmetrically coupled to ancillas prepared in the same state
would appear to evolve nonlinearly for any finite time t > 0 as long as there are exponentially many ancillas
n � exp[O(t )].

DOI: 10.1103/PhysRevA.108.042210

I. INTRODUCTION

There is a growing interest in exploring, as a purely theoret-
ical question, the computational power of hypothetical forms
of quantum nonlinearity [1–17]. One motivation is the intrigu-
ing paper by Abrams and Lloyd [2] arguing that evolution
by certain nonlinear Schrödinger equations, in an idealized
setting, would allow NP-complete problems to be solved ef-
ficiently. Meanwhile, there is a growing body of algorithms
developed to simulate nonlinear problems, such as dissipa-
tive fluid flow, with a linear quantum computer [18–33].
Such algorithms provide a link between linear and nonlin-
ear representations of the same problem and might teach us
something about quantum nonlinearity itself. Here we explore
this question in the context of a recent algorithm proposal
by Lloyd et al. [23] for the quantum simulation of nonlinear
differential equations. In their mean-field approach, nonlinear
evolution of a quantum state |ϕ〉 is generated through coupling
to many identical, weakly interacting copies of |ϕ〉, as in a
Bose-Einstein condensate. In quantum many-body models for
n indistinguishable atoms satisfying Bose statistics and pre-
pared in a product state, it has been rigorously established that
the nonlinear Gross-Pitaevskii equation for the one-particle
density matrix becomes exact in the large-n or thermody-
namic limit, i.e., the one-particle nonlinear Gross-Pitaevskii
equation is dual to the n-particle linear Schrödinger equa-
tion when n → ∞ [34–48]. As with bosons and some spin
models [34,49], the mean-field approach of Ref. [23] is also

expected to become exact in the large-n limit, but the precise
form of this convergence has not been determined.

Here we extend the linear-nonlinear duality to n qubits sub-
jected to arbitrary one-qubit and SWAP-symmetric two-qubit
unitaries, a generalized central-spin model (CSM) [50–59].
The objectives are as follows. (i) Use mean-field theory to
construct a rigorous duality between nonlinear qubits and
a many-body CSM evolving under standard linear quantum
mechanics. (ii) Provide an upper bound for the model error
associated with the use of mean-field theory and investigate
its breakdown at large times. (iii) Highlight the origin of qubit
torsion (twisting of the Bloch ball) which leads to expansive
dynamics, where the trace distance between a pair of close
qubit states increases with time [1–6]. Section II defines the
CSM. Section III employs the proof techniques of [40,60] to
establish the duality. Section IV explains the origin of qubit
torsion within this framework and contains the conclusions.
Simulated examples are provided in Ref. [61].

II. CENTRAL-SPIN MODEL

A. Model definition

Let {1, 2, . . . , n} denote the vertices of a star graph of n
qubits. Qubit 1 is the central qubit and the remaining an-
cilla qubits {2, . . . , n} are used to simulate a certain type of
environment for the central qubit. However, this simulated
environment is far from that of a random noisy bath. Instead,
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the ancilla qubits are initialized in the same pure state |ϕ〉 and
they couple symmetrically to the central qubit. We consider a
generalized homogeneous CSM with the Hamiltonian

H =
n∑

i=1

H0
i + 1

n − 1

⎛
⎝ n∑

j>1

V1 j + λ

n−1∑
i>1

n∑
j>i

Vi j

⎞
⎠,

[Vi j, χi j] = 0, −1 � λ � 1. (1)

The Hamiltonian H0
i acts as H0 ∈ su(2) on qubit i and as the

identity otherwise. Each qubit i ∈ {1, 2, . . . , n} sees the same
single-qubit Hamiltonian H0. This can be further expanded
in a basis of Pauli matrices as H0

i = ∑3
μ=1 Bμσ

μ
i , where the

field �B = (B1, B2, B3) ∈ R3 has no dependence on the qubit
index i. The interaction Vi j acts as V ∈ su(4) on the edge (i, j)
and as the identity otherwise. In addition, we require Vi j to be
SWAP symmetric, where SWAP is a two-qubit operator that acts
on a product state as χi j |α〉i ⊗ |β〉 j = |β〉i ⊗ |α〉 j . Note that
the interaction in (1) has infinite range, favoring a mean-field
description. A factor O(1/n) is needed to control the large-n
limit and is typical in large-n problems.

The parameter λ controls the ancilla-ancilla coupling and
therefore affects the permutation symmetry of the Hamilto-
nian. We are mainly interested in λ = 0 but also consider
cases with |λ| � 1. A CSM with λ 	= 0 might apply to two
species of atomic qubits with inhomogeneous interactions.
The case λ = 1 applies when all qubits are symmetrically
coupled and the interaction graph is complete. Call this the
complete graph (CG) model:

HCG =
n∑

i=1

H0
i + 1

n − 1

n−1∑
i=1

n∑
j>i

Vi j . (2)

The CG model (2) is a qubit analog of a weakly interacting
monatomic Bose gas. Although we treat it as a special case of
the CSM, they are distinct models with different symmetries.

A general SWAP-symmetric interaction can be obtained
from the Cartan decomposition of su(4) [62], with which any
U ∈ SU(4) can be written as an element of SU(2)i ⊗ SU(2) j ,
followed by a symmetric entangling gate exp(−i

∑
μ Jμσ

μ
i ⊗

σ
μ
j ) and then a second SU(2)i ⊗ SU(2) j . SWAP symmetry

requires that the SU(2) unitaries in Vi j are the same on ev-
ery qubit. They can therefore be generated by a single-qubit
Hamiltonian H0 and are not explicitly included in the interac-
tion, which then takes the form

Vi j =
3∑

μ=1

Jμσ
μ
i ⊗ σ

μ
j , �J = (J1, J2, J3) ∈ R3, (3)

where the couplings Jμ have no dependence on the edge label
(i, j). The qubits interact via a vector coupling and have three
coupling constants J1, J2, and J3 instead of one as in the
monatomic Bose gas case.

The operators H0
i and Vi j are time dependent and subject to

the conditions that the quantities

ν0 := sup
t

∥∥H0
i (t )

∥∥
∞, J0 := sup

μ,t
|Jμ(t )| (4)

exist and are finite. Here ‖ · ‖∞ is the operator norm (relevant
norm properties are collected in Appendix B). The quantity J0

bounds the coupling, and hence the buildup of multiqubit cor-
relation and corresponding breakdown of mean-field theory.

The time-evolution operator for the CSM is

Ut = T exp

(
−i

∫ t

0
H (τ )dτ

)
,

dUt

dt
= −iH (t )Ut , U0 = I, (5)

where T is the time-ordering operator, I is the identity, i =√−1, and factors of h̄ are suppressed throughout this paper.
We will also need the time-evolution operator for any single
uncoupled qubit, which is

ut = T exp

(
−i

∫ t

0
H0(τ )dτ

)
,

dut

dt
= −iH0(t )ut , u0 = I. (6)

The CSM with λ = 0 has a long history and many vari-
ants have been investigated [50–59]. Models with XXX
symmetry [by which we mean �J = (J1, J1, J1)] and some
with XXZ symmetry [ �J = (J1, J1, J3)] are integrable and ex-
actly solvable by the Bethe ansatz [50–54]. The λ = 0 CSM
with Heisenberg interaction, XXX , has been studied exten-
sively [50–57]. Time-dependent mean-field solutions in the
XXX case have been obtained in terms of hyperelliptic func-
tions [51]. Phase transitions have also been studied [58,59]. In
this paper we study solutions of the CSM with XY Z interac-
tion [arbitrary bounded �J = (J1, J2, J3)], general λ, and high
degrees of permutation symmetry. Specifically, we consider
two levels of permutation symmetry.

Level Sn−1. This is the symmetry of the λ 	= 1 model, which
includes the set of all permutations among ancillas {2, . . . , n}.
The symmetry group of the model then contains a subgroup
of the symmetric group Sn (permutations on n qubits) that we
simply call Sn−1.

Level Sn. The higher-symmetry case has full permutation
symmetry, including the central qubit. This is the symmetry
of the λ = 1 model. Now the symmetry group contains Sn.

We note that the initial condition ρ(0) will respect both
symmetries.

B. Linear picture: Bogoliubov-Born-Green-Kirkwood-Yvon
hierarchy

At time t = 0 the central qubit and ancilla are prepared in
a product state

ρ(0) = |ϕ〉〈ϕ|⊗n, |ϕ〉 = ϕ0|0〉 + ϕ1|1〉,
ϕ0,1 ∈ C, |ϕ0|2 + |ϕ1|2 = 1. (7)

This initial condition has complete permutation symmetry Sn.
At later times t > 0 the state is ρ(t ) = Ut (|ϕ〉〈ϕ|⊗n)U †

t and
the evolution equation is

dρ

dt
= −i

[
n∑

i=1

H0
i , ρ

]
− i

[
n∑

j>1

V1 j

n − 1
+ λ

n−1∑
i>1

n∑
j>i

Vi j

n − 1
, ρ

]
,

−1 � λ � 1. (8)

Let tri(·) = ∑
x=0,1〈x| · |x〉i denote the partial trace over

the Hilbert space of qubit i. The density matrix for
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the central qubit is ρ1(t ) = tr>1[ρ(t )], where tr>i(·) :=
tri+1tri+2 · · · trn(·). Similarly, ρ2(t ) = tr1[ρ12(t )], where
ρ12 = tr>2[ρ(t )]. Then we have

dρ1

dt
= −i[H0, ρ1]− i tr>1

[
n∑

j>1

V1 j

n − 1
+ λ

n−1∑
i>1

n∑
j>i

Vi j

n − 1
, ρ

]

(9)

= −i[H0, ρ1] − i tr>1

[
n∑

j>1

V1 j

n − 1
, ρ

]
, (10)

dρ2

dt
= −i[H0, ρ2] − i tr1tr3 · · · trn

×
[

n∑
j>1

V1 j

n − 1
+ λ

n−1∑
i>1

n∑
j>i

Vi j

n − 1
, ρ

]
(11)

= −i[H0, ρ2] − i tr1tr3 · · · trn

×
[

V12

n − 1
+ λ

n∑
j>2

V2 j

n − 1
, ρ

]
, (12)

using (A1) and (A5). Next we assume Sn−1 ancilla permuta-
tion symmetry to obtain

dρ1

dt
= −i[H0, ρ1] − i tr2([V12, ρ12]).

= −i
3∑

μ=1

Bμ

[
σ

μ
1 , ρ1

] − i
3∑

μ=1

Jμ

[
σ

μ
1 , tr2

(
ρ12σ

μ
2

)]
,

(13)

dρ2

dt
= −i[H0, ρ2] − i

tr1[V12, ρ12] + λ(n − 2)tr3[V23, ρ23]

n − 1

= −i
3∑

μ=1

Bμ

[
σ

μ
2 , ρ2

] − i
3∑

μ=1

Jμ

n − 1

[
σ

μ
2 , tr1

(
ρ12σ

μ
1

)
+ λ(n − 2)tr3

(
ρ23σ

μ
3

)]
, (14)

where �B and �J are possibly time dependent. From these we
obtain

ρ1(t ) = ut

(
|ϕ〉〈ϕ| − i

∑
μ

∫ t

0
dτ Jμu†

τ

[
σ

μ
1 , tr2

(
ρ12σ

μ
2

)]
uτ

)
u†

t ,

ρ2(t ) = ut

(
|ϕ〉〈ϕ| − i

∑
μ

∫ t

0
dτ

Jμ

n − 1
u†

τ

[
σ

μ
2 , tr1

(
ρ12σ

μ
1

)

+ λ(n − 2)tr3
(
ρ23σ

μ
3

)]
uτ

)
u†

t , (15)

where ρ23 = tr1(ρ123) = tr1(tr>3ρ). Here ut is the time-
evolution operator (6) for a single uncoupled qubit. The
equations for ρ1,2 are quantum Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) hierarchy equations [63] for the
generalized CSM.

C. Nonlinear picture: Mean-field theory

Theorem 1 in Sec. III relates the solutions of (13) and (14)
to that of a mean-field-theory model. To construct that model,

assume that the order parameter

�mi := 〈�σi〉 = tr(ω�σi ), i ∈ {1, 2, . . . , n} (16)

is nonvanishing, where the expectation is with respect to some
(possibly time-dependent) state ω. To find equilibrium prop-
erties, ω is assumed to be a thermal state e−βH/tre−βH at
temperature 1/β. Here we assume that ω is arbitrary (to be
specified) and time dependent. Expanding the Hamiltonian (1)
in powers of fluctuations δσ

μ
i = σ

μ
i − mμ

i to first order leads
to

H =
n∑

i=1

H0
i +

∑
μ

Jμ

n − 1

n∑
j>1

(
mμ

1 σ
μ
j + σ

μ
1 mμ

j

)

+ λ
∑

μ

Jμ

n − 1

n−1∑
i>1

n∑
j>i

(
mμ

i σ
μ
j + σ

μ
i mμ

j

) + E , (17)

where

E = −
∑

μ

n∑
i>1

Jμmμ
1 mμ

i

n − 1
− λ

∑
μ

n−1∑
i>1

n∑
j>i

Jμmμ
i mμ

j

n − 1
. (18)

The background energy E has no affect on the dynamics
but contributes to thermodynamic properties such as the free
energy.

In the following section we construct a mean-field theory
for CSM solutions with Sn−1 symmetry. The result is a pair of
coupled equations of motion for the mean-field state X of the
central qubit and the mean-field state Y of an ancilla (qubit 2).
Because the equations of motion are coupled, they must be
solved together. Hence, the dual mean-field model is a two-
qubit model in a separable state X ⊗ Y . This is the primary
mean-field theory for the CSM. An exception occurs if λ =
1: In this case, assuming X (0) = Y (0) = |ϕ〉〈ϕ|, the coupled
equations of motion yield X (t ) = Y (t ) for all time, leading to
a solution with Sn symmetry. The mean-field theory for this
case is also discussed below. The CSM with λ = 1 preserves
the Sn symmetry of the initial condition, leading to a single-
qubit dual model with self-interaction.

1. Symmetry Sn−1

If the CSM exhibits Sn−1 symmetry, the order parameter
satisfies �m2 = �m3 = · · · = �mn. Then from (17) we obtain

H =
n∑

i=1

H0
i +

∑
μ

Jμmμ
2 σ

μ
1 +

∑
μ

Jμmμ
1

n − 1

n∑
i>1

σ
μ
i

+ λ
∑

μ

Jμmμ
2

n − 1

n−1∑
i>1

n∑
j>i

(
σ

μ
i + σ

μ
j

) + E

=
n∑

i=1

H0
i +

∑
μ

Jμmμ
2 σ

μ
1

+
∑

μ

Jμmμ
1 + λ(n − 2)Jμmμ

2

n − 1

n∑
i>1

σ
μ
i + E , (19)

where

E = −
∑

μ

Jμmμ
1 mμ

2 − λ

2

∑
μ

(n − 2)Jμmμ
2 mμ

2 . (20)
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In the mean-field approximation (neglecting quadratic fluctu-
ations) the qubits are decoupled and the mean-field Hamilto-
nians for qubits 1 and 2 are

H eff
1 = H0 +

∑
μ

Jμtr(Y σμ)σμ
1 , (21)

H eff
2 = H0 +

∑
μ

Jμ

tr(Xσμ) + λ(n − 2)tr(Y σμ)

n − 1
σ

μ
2 , (22)

where X and Y are the mean-field density matrices for qubits 1
and 2, respectively. Here we have set ω = X ⊗ Y , the current
mean-field state of qubits 1 and 2. The evolution equations for
X and Y are

dX

dt
= −i[H0, X ] − i

3∑
μ=1

Jμtr(Y σμ)[σμ, X ], (23)

dY

dt
= −i[H0,Y ] − i

×
3∑

μ=1

Jμ

tr(Xσμ) + λ(n − 2)tr(Y σμ)

n − 1
[σμ,Y ] (24)

≈ −i[H0,Y ] − iλ
∑

μ

Jμtr(Y σμ)[σμ,Y ], (25)

where (25) applies in the large-n limit. The initial conditions
are

X (0) = Y (0) = |ϕ〉〈ϕ|. (26)

Next, using (6), we obtain

X (t ) = ut

(
|ϕ〉〈ϕ| − i

∑
μ

∫ t

0
dτ Jμtr(Y σμ)u†

τ ([σμ, X ])uτ

)
u†

t ,

Y (t ) = ut

(
|ϕ〉〈ϕ| − i

∑
μ

∫ t

0
dτ Jμ

tr(Xσμ) + λ(n − 2)tr(Y σμ)

n − 1
u†

τ ([σμ,Y ])uτ

)
u†

t . (27)

The nonlinear evolution equations (23) and (24) are dual to
the linear BBGKY equations (13) and (14) in the large-n limit
in the sense that X = ρ1 and Y = ρ2 in this limit. This is be-
cause Theorem 1 implies limn→∞ ‖X − ρ1‖ → 0 and limn→∞
‖Y − ρ2‖ → 0.

2. Symmetry Sn

If the CSM exhibits Sn symmetry, the order parameter
satisfies �m1 = �m2 = · · · = �mn. For �m1 and �m2 to be equal, we
must have X = Y ,1 indicating symmetry between the central
and ancilla qubits. Here we use the mean-field equations (23)
and (24) to investigate Sn symmetry as a special case of Sn−1

symmetry. First transform to

ρave := X + Y

2
, ρ := X − Y

2
. (28)

While ρave is a state (positive-semidefinite matrix with unit
trace), ρ is not. For large n,

dρave

dt
= −i[H0, ρave] − i

∑
μ

Jμtr(ρaveσ
μ − ρσμ)

×
[
σμ, ρave + (λ − 1)

ρave − ρ

2

]
, (29)

dρ

dt
= −i[H0, ρ] − i

∑
μ

Jμtr(ρaveσ
μ − ρσμ)

×
[
σμ, ρ + (1 − λ)

ρave − ρ

2

]
, (30)

with initial conditions ρave(0) = |ϕ〉〈ϕ| and ρ(0) = 0. At
time zero, ρ = 0, so the system initially possesses Sn sym-

1This is because, for a qubit, the order parameter �m = tr(ρ �σ )
uniquely specifies the state ρ = (I + �m · �σ )/2.

metry. If λ 	= 1, the initial rate of change (dρ/dt )0 =
−i( 1−λ

2 )
∑

μ Jμtr(ρaveσ
μ)[σμ, ρave] is nonzero, breaking the

symmetry between X and Y . However ρ remains zero if
λ = 1, preserving the Sn symmetry and leading to a single-
qubit mean-field theory for X with self-interaction:

dX

dt
= −i[H0, X ] − i

3∑
μ=1

Jμtr(Xσμ)[σμ, X ]. (31)

III. LARGE-n LIMIT

In this section we establish the duality between the linear
BBGKY equations and the nonlinear mean-field theory in the
large-n limit of the generalized CSM, following the proof
techniques of [40,60]. Our work also builds on recent papers
by Fernengel and Drossel [64] and Kłobus et al. [65], who
studied nonlinear mean-field dynamics of related spin mod-
els. The following are some features of our analysis. (1) In
contrast to particle models, we do not assume indistinguish-
able particles with Bose or Fermi statistics. (2) The λ = 0
model has reduced permutation symmetry and no interaction
between ancilla. Full permutational symmetry is broken, but
the ancilla qubits {2, . . . , n} remain identical. (3) Qubits in-
teract via an arbitrary V ∈ su(4). (4) The interaction is long
ranged and does not decay with distance. (5) All terms in the
Hamiltonian are assumed to be time dependent.

Theorem 1 (extended Erdős-Schlein theorem [40]). Let
X (t ) and Y (t ) be solutions of the coupled nonlinear evolution
equations (23) and (24) [or (25)] for the n-qubit general-
ized CSM (1), with initial conditions X (0) = Y (0) = |ϕ〉〈ϕ|,
where |ϕ〉 = ϕ0|0〉 + ϕ1|1〉, ϕ0,1 ∈ C, and |ϕ0|2 + |ϕ1|2 = 1.
Also let ρ1 = tr>1(ρ) and ρ2 = tr1(ρ12) be the exact reduced
density matrices on qubits 1 and 2, respectively (partial trace
notation is defined in Sec. II B). Then the distance in trace
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norm between the mean field and exact state satisfies

‖X (t ) − ρ1(t )‖1 � 4
e12(1+|λ|)J0t − 1

n(1 + |λ|) , t � 0 (32)

and

‖Y (t ) − ρ2(t )‖1 � 4
e12(1+|λ|)J0t − 1

n(1 + |λ|) , t � 0, (33)

where J0 is an interaction strength bound defined in (4). The
same upper bound applies to both X and Y . The inequalities
imply that, for any fixed t � 0,

lim
n→∞ ‖X (t ) − ρ1(t )‖1 = 0, (34)

lim
n→∞ ‖Y (t ) − ρ2(t )‖1 = 0, (35)

establishing the duality.
The proof of Theorem 1 uses the following lemmas.
Lemma 1 (Lieb-Robinson bound [40,66]). For any k ∈

{1, . . . , n − 1}, let A1,...,k ∈ C2n×2n
and Bk+1 ∈ C2n×2n

be Her-
mitian bounded linear operators (observables) with support
exclusively in subsets {1, 2, . . . , k} and {k + 1}, respectively,
of the n-qubit generalized CSM (1). Here A1,...,k acts nontriv-
ially on the first k qubits {1, 2, . . . , k} (including the central
qubit) and as the identity elsewhere. Similarly, Bk+1 acts non-
trivially on qubit k + 1 only. Let

�kt := sup
A	=0,B 	=0

‖[U †
t A1,...,kUt , Bk+1]‖∞

‖A1,...,k‖∞‖Bk+1‖∞
, (36)

where the supremum is over the set of all bounded linear
operators A1,...,k with support on qubits {1, . . . , k} such that

‖A1,...,k‖∞ 	= 0 and over all bounded linear operators Bk+1

with support on qubit k + 1 such that ‖Bk+1‖∞ 	= 0. Then

�kt � 2 (37)

holds for any k = 1, 2, . . . , n − 1. Furthermore, for k = 1, 2,

�kt � 2
e6(1+|λ|)J0t − 1

n − 1
, (38)

where J0 is defined in (4).
The quantity �kt is a measure of the largest possible corre-

lation between a cluster containing the first k qubits (including
the central) and qubit k + 1, due to their interaction. Only
cases k = 1, 2 are required below. The bound (37) shows that
correlation measured this way does not blow up at long times,
in contrast with (38). Therefore, the interesting regime occurs
when the bound in (38) is small, namely, n � e6(1+|λ|)J0t .

Proof. The bound (37) follows from unitary invariance and
submultiplicativity of the Schatten p-norm (see Appendix B).
To obtain (38), transform to a representation where time evo-
lution is generated exclusively by the cross interactions

W (k) := 1

n − 1

(
n∑

j=k+1

V1 j + λ

k∑
i=2

n∑
j=k+1

Vi j

)
(39)

between the k-qubit cluster on which A1,...,k acts and its envi-
ronment. In particular,

W (k=1) = V12

n − 1
+ V13 + · · · + V1n

n − 1
, (40)

independent of λ, and

W (k=2) = V13 + λV23

n − 1
+ V14 + · · · + V1n + λ(V24 + · · · + V2n)

n − 1
. (41)

In these expressions, terms that do not commute with Bk+1 have been isolated. The first step of the proof is to note that

d

dt
(U †

t Skt A1,...,kS†
ktUt ) = i[U †

t W (k)Ut ,U †
t Skt A1,...,kS†

ktUt ] = i[W (k),U †
t Skt A1,...,kS†

ktUt ], (42)

where, for any k ∈ {1, 2, . . . , n − 1},

H (k) = H − W (k), Skt = T exp

(
− i

∫ t

0
H (k)(τ )dτ

)
,

dSkt

dt
= −iH (k)(t )Skt , Sk0 = I, (43)

W (k) = U †
t W (k)Ut , Skt = T exp

(
i
∫ t

0
W (k)(τ )dτ

)
,

dSkt

dt
= iW (k)(t )Skt , Sk0 = I. (44)

The time-evolution operators Skt and Skt are generated by −iH (k) and iW (k), respectively. The Hamiltonian H (k) has the cross
interactions W (k) between the k-qubit cluster and its surroundings removed. Next let fkt := [U †

t Skt A1,...,kS†
ktUt , Bk+1]. Then

dfkt

dt
= i[[W (k),U †

t Skt A1,...,kS†
ktUt ], Bk+1] = i[W (k), fkt ] + ckt , (45)

where ckt = i[[W (k), Bk+1],U †
t Skt A1,...,kS†

ktUt ]. We then have d
dt (S†

kt fktSkt ) = S†
kt cktSkt and S†

kt fktSkt = ∫ t
0 S

†
kτ

ckτSkτ dτ , be-
cause fk0 = [A1,...,k, Bk+1] = 0. Therefore,

‖[U †
t Skt A1,...,kS†

ktUt , Bk+1]‖∞ �
∫ t

0
‖ckτ‖∞dτ � 2‖A1,...,k‖∞

∫ t

0
‖[W (k)(τ ), Bk+1]‖∞dτ. (46)

042210-5



MICHAEL R. GELLER PHYSICAL REVIEW A 108, 042210 (2023)

Separating out terms in W (k) that might become large at short times due to noncommutativity with Bk+1 and using ‖�σi · �σ j‖∞ = 3
leads to

�1t �
12J0t

n − 1
+ 6J0

∫ t

0
dt1�2t1 , (47)

�2t �
12(1 + |λ|)J0t

n − 1
+ 6(1 + |λ|)J0

∫ t

0
dt1�2t1 . (48)

First we solve (48) iteratively, obtaining a bound for �2t . Then we use (47) to bound �1t . After q iterations we have

�2t �
2

n − 1

q∑
�=1

[6(1 + |λ|)J0t]�

�!
+ [6(1 + |λ|)J0]q

∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tq−1

0
dtq�2tq (49)

or

�2t �
2

n − 1

q∑
�=1

[6(1 + |λ|)J0t]�

�!
+ 2

[6(1 + |λ|)J0t]q

q!
, (50)

using (37). In the large-q limit,

�2t � 2
e6(1+|λ|)J0t − 1

n − 1
. (51)

Inserting this into (47) and integrating leads to

�1t �
2

1 + |λ|
e6(1+|λ|)J0t − 1

n − 1
� 2

e6(1+|λ|)J0t − 1

n − 1
, (52)

as required. �
Lemma 2. Let A1 and B2 be Hermitian observables with support exclusively on qubits 1 and 2, respectively, of the n-qubit

generalized CSM (1), and let

〈A1〉 := 〈ϕ|⊗nU †
t A1Ut |ϕ〉⊗n, 〈B2〉 := 〈ϕ|⊗nU †

t B2Ut |ϕ〉⊗n, 〈A1B2〉 := 〈ϕ|⊗nU †
t A1B2Ut |ϕ〉⊗n

be their expectations in the exact many-body state Ut |ϕ〉⊗n. Here |ϕ〉 = ϕ0|0〉 + ϕ1|1〉 is a pure single-qubit state with ϕ0,1 ∈ C
and |ϕ0|2 + |ϕ1|2 = 1, and Ut is the exact time-evolution operator (5) of the CSM. Then

Ct := sup
A	=0,B 	=0

|〈A1B2〉 − 〈A1〉〈B2〉|
‖A1‖∞‖B2‖∞

� 4
e12(1+|λ|)J0t − 1

n − 1
, (53)

where the supremum is over the set of all bounded linear operators A1 and B2 with support on qubits 1 and 2, respectively, such
that ‖A1‖∞ and ‖B2‖∞ are nonzero, and J0 is defined in (4).

Proof. The proof works by rewriting the correlation function on the left-hand side of (53) in terms of commutators and using
Lemma 1. First note the equality

I⊗n = |ϕ〉〈ϕ|⊗n +
n∑

j=1

|ϕ〉〈ϕ|1 ⊗ |ϕ〉〈ϕ|2 ⊗ · · · ⊗ |ϕ〉〈ϕ| j−1 ⊗ (I − |ϕ〉〈ϕ|) j ⊗ I j+1 ⊗ · · · ⊗ In,

where I is the two-dimensional identity. Then insert I⊗n in

〈ϕ|⊗nU †
t (A1 ⊗ B2)Ut |ϕ〉⊗n = 〈ϕ|⊗n(U †

t A1Ut )(U
†
t B2Ut )|ϕ〉⊗n (54)

to obtain

〈ϕ|⊗nU †
t A1B2Ut |ϕ〉⊗n − 〈ϕ|⊗nU †

t A1Ut |ϕ〉⊗n〈ϕ|⊗nU †
t B2Ut |ϕ〉⊗n

=
n∑

j=1

〈ϕ|⊗nU †
t A1Ut (|ϕ〉〈ϕ|1 ⊗ · · · ⊗ |ϕ〉〈ϕ| j−1) ⊗ (I − |ϕ〉〈ϕ|) jU

†
t B2Ut |ϕ〉⊗n

=
n∑

j=1

tr[|ϕ〉〈ϕ|⊗nU †
t A1Ut (|ϕ〉〈ϕ|1 ⊗ · · · ⊗ |ϕ〉〈ϕ| j−1) ⊗ (I − |ϕ〉〈ϕ|) jU

†
t B2Ut ] (55)

and

|〈ϕ|⊗nU †
t A1B2Ut |ϕ〉⊗n − 〈ϕ|⊗nU †

t A1Ut |ϕ〉⊗n〈ϕ|⊗nU †
t B2Ut |ϕ〉⊗n|

�
n∑

j=1

|tr[|ϕ〉〈ϕ|⊗nU †
t A1Ut (|ϕ〉〈ϕ|1 ⊗ · · · ⊗ |ϕ〉〈ϕ| j−1) ⊗ (I − |ϕ〉〈ϕ|) jU

†
t B2Ut ]|. (56)
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Next isolate the first two terms in the summation and rewrite in terms of commutators,

|〈ϕ|⊗nU †
t A1B2Ut |ϕ〉⊗n − 〈ϕ|⊗nU †

t A1Ut |ϕ〉⊗n〈ϕ|⊗nU †
t B2Ut |ϕ〉⊗n|

� |tr(|ϕ〉〈ϕ|⊗nU †
t A1Ut [I − |ϕ〉〈ϕ|1,U †

t B2Ut ])|
+ |tr(|ϕ〉〈ϕ|⊗n[U †

t A1Ut , I − |ϕ〉〈ϕ|2]|ϕ〉〈ϕ|1U †
t B2Ut )|

+
n∑

j>2

|tr(|ϕ〉〈ϕ|⊗n[U †
t A1Ut , I − |ϕ〉〈ϕ| j]|ϕ〉〈ϕ|1 ⊗ · · · ⊗ |ϕ〉〈ϕ| j−1[I − |ϕ〉〈ϕ| j,U †

t B2Ut ])|, (57)

using the property that I − |ϕ〉〈ϕ|i = (I − |ϕ〉〈ϕ|i )2 annihilates the initial state |ϕ〉⊗n. This leads to

|〈ϕ|⊗nU †
t A1B2Ut |ϕ〉⊗n − 〈ϕ|⊗nU †

t A1Ut |ϕ〉⊗n〈ϕ|⊗nU †
t B2Ut |ϕ〉⊗n|

� ‖|ϕ〉〈ϕ|⊗nU †
t A1Ut [I − |ϕ〉〈ϕ|1,U †

t B2Ut ]‖1

+ ‖|ϕ〉〈ϕ|⊗n[U †
t A1Ut , I − |ϕ〉〈ϕ|2]|ϕ〉〈ϕ|1U †

t B2Ut‖1

+
n∑

j>2

‖|ϕ〉〈ϕ|⊗n[U †
t A1Ut , I − |ϕ〉〈ϕ| j]|ϕ〉〈ϕ|1 ⊗ · · · ⊗ |ϕ〉〈ϕ| j−1[I − |ϕ〉〈ϕ| j,U †

t B2Ut ]‖1

� ‖|ϕ〉〈ϕ|⊗nU †
t A1Ut‖1‖[I − |ϕ〉〈ϕ|1,U †

t B2Ut ]‖∞

+ ‖|ϕ〉〈ϕ|⊗n[U †
t A1Ut , I − |ϕ〉〈ϕ|2]‖∞‖|ϕ〉〈ϕ|1U †

t B2Ut‖1

+
n∑

j>2

‖|ϕ〉〈ϕ|⊗n[U †
t A1Ut , I − |ϕ〉〈ϕ| j]‖1‖|ϕ〉〈ϕ|1 ⊗ · · · ⊗ |ϕ〉〈ϕ| j−1[I − |ϕ〉〈ϕ| j,U †

t B2Ut ]‖∞

� 2‖A1‖∞‖B2‖∞�1t + (n − 2)‖A1‖∞‖B2‖∞�2
1t . (58)

Here we have used the fact that both the operator and trace norms of a state (positive-semidefinite matrix with unit trace) are
equal to 1. Then

|〈ϕ|⊗nU †
t A1B2Ut |ϕ〉⊗n − 〈ϕ|⊗nU †

t A1Ut |ϕ〉⊗n〈ϕ|⊗nU †
t B2Ut |ϕ〉⊗n|

� ‖A1‖∞‖B2‖∞[2�1t + (n − 1)�2
1t ] � 4‖A1‖∞‖B2‖∞

e12(1+|λ|)J0t − 1

n − 1
. (59)

Hence, for any pair of observables A1 and B2 with nonvanishing operator norms, it follows that |〈A1B2〉−〈A1〉〈B2〉|
‖A1‖∞‖B2‖∞

� 4 e12(1+|λ|)J0t −1
n−1 ,

leading to (53), as required. �
Next we turn to the proof of Theorem 1.
Proof. Let A1 and B2 be observables for qubits 1 and 2, respectively. Use (15) and (27) to obtain

|tr1[A1X1(t ) − A1ρ1(t )]| =
∣∣∣∣∣

3∑
μ=1

∫ t

0
dτ Jμtr1

{
(uτ u†

t A1ut u
†
τ )

[
σ

μ
1 , tr2

[
(X1 ⊗ Y2 − ρ12)σμ

2

]]}∣∣∣∣∣
=

∣∣∣∣∣
∑

μ

∫ t

0
dτ Jμtr1tr2

{
(uτ u†

t A1ut u
†
τ )

[
σ

μ
1 , (X1 ⊗ Y2 − ρ12)σμ

2

]}∣∣∣∣∣ (60)

=
∣∣∣∣∣
∑

μ

∫ t

0
dτ Jμtr1tr2

{
(X1 ⊗ Y2 − ρ12)σμ

2

[
uτ u†

t A1ut u
†
τ , σ

μ
1

]}∣∣∣∣∣ (61)

� J0

∑
μ

∫ t

0
dτ

∣∣tr1tr2
{
(X1 ⊗ Y2 − ρ12)σμ

2

[
uτ u†

t A1ut u
†
τ , σ

μ
1

]}∣∣ (62)

and

|tr2[B2Y2(t ) − B2ρ2(t )]| =
∣∣∣∣∣

3∑
μ=1

∫ t

0
dτ

Jμ

n − 1
tr1tr2

{
(uτ u†

t B2ut u
†
τ )

[
σ

μ
2 , (X1 ⊗ Y2 − ρ12)σμ

1

]}

+ λ(n − 2)
∑

μ

∫ t

0
dτ

Jμ

n − 1
tr2tr3

{
(uτ u†

t B2ut u
†
τ )

[
σ

μ
2 , (Y2 ⊗ Y3 − ρ23)σμ

3

]}∣∣∣∣∣ (63)
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=
∣∣∣∣∣
∑

μ

∫ t

0
dτ

Jμ

n − 1
tr1tr2

{
(X1 ⊗ Y2 − ρ12)σμ

1

[
uτ u†

t B2ut u
†
τ , σ

μ
2

]}

+ λ(n − 2)
∑

μ

∫ t

0
dτ

Jμ

n − 1
tr2tr3

{
(Y2 ⊗ Y3 − ρ23)σμ

3

[
uτ u†

t B2ut u
†
τ , σ

μ
2

]}∣∣∣∣∣ (64)

� J0
1

n − 1

∑
μ

∫ t

0
dτ

∣∣tr1tr2
{
(X1 ⊗ Y2 − ρ12)σμ

1

[
uτ u†

t B2ut u
†
τ , σ

μ
2

]}∣∣
+ |λ|J0

n − 2

n − 1

∑
μ

∫ t

0
dτ

∣∣tr2tr3
{
(Y2 ⊗ Y3 − ρ23)σμ

3

[
uτ u†

t B2ut u
†
τ , σ

μ
2

]}∣∣. (65)

Using the identities

X1 ⊗ Y2 = (X1 − ρ1) ⊗ Y2 + ρ1 ⊗ (Y2 − ρ2) + ρ1 ⊗ ρ2, (66)

Y2 ⊗ Y3 = (Y2 − ρ2) ⊗ Y3 + ρ2 ⊗ (Y3 − ρ3) + ρ2 ⊗ ρ3 (67)

leads to

|tr[A1(X − ρ1)]| � J0

∑
μ

∫ t

0
dτ‖[uτ u†

t A1ut u
†
τ , σ

μ
1 ]‖∞‖σμ

2 ‖∞

(
‖X − ρ1‖1‖Y ‖1 + ‖Y − ρ2‖1‖ρ1‖1

+ |〈[uτ u†
t A1ut u†

τ , σ
μ
1 ]σμ

2 〉 − 〈[uτ u†
t A1ut u†

τ , σ
μ
1 ]〉〈σμ

2 〉|
‖[uτ u†

t A1ut u
†
τ , σ

μ
1 ]‖∞‖σμ

2 ‖∞

)
(68)

� 6J0‖A1‖∞
∫ t

0
dτ

(
‖X − ρ1‖1 + ‖Y − ρ2‖1 + 4

e12(1+|λ|)J0τ − 1

n − 1

)
, (69)

where 〈·〉 = tr(ρ ·) denotes expectation in the state ρ = Ut (|ϕ〉〈ϕ|⊗n)U †
t . Similarly,

|tr(B2(Y − ρ2))| � 6J0‖B2‖∞
n − 1

∫ t

0
dτ

[
‖X − ρ1‖1 + ‖Y − ρ2‖1 + 4

e12(1+|λ|)J0τ − 1

n − 1

+ |λ|(n − 2)

(
2‖Y − ρ2‖1 + 4

e12(1+|λ|)J0τ − 1

n − 1

)]
. (70)

Assuming ‖A1‖∞ 	= 0 and ‖B2‖∞ 	= 0,

|tr[A1(X − ρ1)]|
‖A1‖∞

� 6J0

∫ t

0
dτ

(
‖X − ρ1‖1 + ‖Y − ρ2‖1 + 4

e12(1+|λ|)J0τ − 1

n − 1

)
, (71)

|tr[B2(Y − ρ2)]|
‖B2‖∞

� 6J0

n − 1

∫ t

0
dτ

[
‖X − ρ1‖1 + ‖Y − ρ2‖1 + 4

e12(1+|λ|)J0τ − 1

n − 1

+ |λ|(n − 2)

(
2‖Y − ρ2‖1 + 4

e12(1+|λ|)J0τ − 1

n − 1

)]
. (72)

These hold for any A1 and B2 such that ‖A1‖∞ 	= 0 and ‖B2‖∞ 	= 0. Therefore,

sup
A	=0

|tr[A1(X − ρ1)]|
‖A1‖∞

� 6J0

∫ t

0
dτ

(
‖X − ρ1‖1 + ‖Y − ρ2‖1 + 4

e12(1+|λ|)J0τ − 1

n − 1

)
, (73)

sup
B 	=0

|tr[B2(Y − ρ2)]|
‖B2‖∞

� 6J0

n − 1

∫ t

0
dτ

[
‖X − ρ1‖1 + ‖Y − ρ2‖1 + 4

e12(1+|λ|)J0τ − 1

n − 1

+ |λ|(n − 2)

(
2‖Y − ρ2‖1 + 4

e12(1+|λ|)J0τ − 1

n − 1

)]
. (74)

Then, after using (B6),

‖X − ρ1‖1 � 6J0

∫ t

0
dτ

(
‖X − ρ1‖1 + ‖Y − ρ2‖1 + 4

e12(1+|λ|)J0τ − 1

n − 1

)
, (75)
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‖Y − ρ2‖1 � 6J0

n − 1

∫ t

0
dτ

[
‖X − ρ1‖1 + ‖Y − ρ2‖1 + 4

e12(1+|λ|)J0τ − 1

n − 1
+ |λ|(n − 2)

(
2‖Y − ρ2‖1 + 4

e12(1+|λ|)J0τ − 1

n − 1

)]
.

(76)

Up to this point in the proof we have assumed that n � 2. If n � 1,

‖X − ρ1‖1 � 2
e12(1+|λ|)J0t − 1

n(1 + |λ|) + 6J0

∫ t

0
dt1(‖X − ρ1‖1 + ‖Y − ρ2‖1) + O(1/n2), (77)

‖Y − ρ2‖1 � 2|λ|e12(1+|λ|)J0t − 1

n(1 + |λ|) + 6J0

∫ t

0
dt1

[‖X − ρ1‖1

n
+

(
1

n
+ 2|λ|

)
‖Y − ρ2‖1

]
+ O(1/n2). (78)

We solve these iteratively. After q iterations we have

‖X − ρ1‖1 � 2
e12(1+|λ|)J0t − 1

n(1 + |λ|)
[

1 + (a1 + |λ|b1)

(
1

2(1 + |λ|)
)

+ · · · + (aq−1 + |λ|bq−1)

(
1

2(1 + |λ|)
)q−1]

+ (6J0)q
∫ t

0
dt1 · · ·

∫ tq−1

0
dtq(aq‖X − ρ1‖1 + bq‖Y − ρ2‖1) + O(1/n2) (79)

and

‖Y − ρ2‖1 � 2
e12(1+|λ|)J0t − 1

n(1 + |λ|)
[
|λ| + (a′

1 + |λ|b′
1)

(
1

2(1 + |λ|)
)

+ · · · + (a′
q−1 + |λ|b′

q−1)

(
1

2(1 + |λ|)
)q−1]

+ (6J0)q
∫ t

0
dt1 · · ·

∫ tq−1

0
dtq(a′

q‖X − ρ1‖1 + b′
q‖Y − ρ2‖1) + O(1/n2), (80)

where the positive real coefficients ak and bk satisfy

a1 = 1, b1 = 1, (81)

and

ak = ak−1 + bk−1

n
, (82)

bk = ak−1 + mbk−1 (83)

for k > 1, where

m := 1

n
+ 2|λ|. (84)

The coefficients a′
k and b′

k in (80) satisfy the identical recurrence relation but start with

a′
1 = 1

n
, b′

1 = m (85)

instead of (81). Equations (82) and (83) can be solved for arbitrary a1 and b1:

ak =
(

1 + 1 + (1 + m) + (1 + m + m2) + · · · + (1 + m + m2 + m3 + · · · mk−3)

n

)
a1

+
(

1 + m + m2 + m3 + · · · + mk−2

n

)
b1 + O(1/n2) (86)

=
(

1 + 1 − 2m + (k − 3)(1 − m) + mk−1

n(1 − m)2

)
a1 + 1 − mk−1

n(1 − m)
b1 + O(1/n2), (87)

bk =
(

1 − mk−1

1 − m
+ (k − 3)mk+1 + (1 − k)mk + 2m3 − m2 + (k − 1)m + 2 − k

nm2(m − 1)3

)
a1

+
(

mk−1 + 1 − mk−1 + (k − 1)(m − 1)mk−2

n(1 − m)2

)
b1 + O(1/n2). (88)
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Anticipating the large-n limit, we have dropped terms 1/n2 and smaller. The second forms of the above expressions are obtained
by assuming m 	= 1 and summing geometric series and their derivatives. Note that for (a1, b1) = (1, 1) we have

ak + |λ|bk = 1 + |λ|1 − mk

1 − m
+ O(1/n), (89)

whereas for (a′
1, b′

1) = ( 1
n , m) we have

a′
k + |λ|b′

k = |λ|mk + O(1/n). (90)

Using (89) and (90),

lim
n→∞

q−1∑
k=1

ak + |λ|bk

(2 + 2|λ|)k
= 1

1 − 2|λ|
q−1∑
k=1

(1 − |λ|) − |λ|(2|λ|)k

(2 + 2|λ|)k
+ O(1/n), (91)

lim
n→∞

q−1∑
k=1

a′
k + |λ|b′

k

(2 + 2|λ|)k
= |λ|

q−1∑
k=1

|2λ|k
(2 + 2|λ|)k

+ O(1/n). (92)

Then we obtain, for |λ| � 1,

lim
q→∞ lim

n→∞

(
1 +

q−1∑
k=1

ak + |λ|bk

(2 + 2|λ|)k

)
� 1 + 1 − |λ| − |λ|2 − 2|λ|3

(1 + 2|λ|)(1 − 2|λ|) � 2 (93)

and

lim
q→∞ lim

n→∞

(
|λ| +

q−1∑
k=1

a′
k + |λ|b′

k

(2 + 2|λ|)k

)
� |λ| + λ2 � 2. (94)

Finally, note that

(6J0)q
∫ t

0
dt1 · · ·

∫ tq−1

0
dtq(aq‖X − ρ1‖1 + bq‖Y − ρ2‖1) � 2(aq + bq)

(6J0t )q

q!
, (95)

(6J0)q
∫ t

0
dt1 · · ·

∫ tq−1

0
dtq(a′

q‖X − ρ1‖1 + b′
q‖Y − ρ2‖1) � 2(a′

q + b′
q )

(6J0t )q

q!
(96)

both vanish in the large-q limit. Then we obtain (32), as required. �

IV. DISCUSSION

Mean-field errors are bounded by a competition between
an exponential growth in time and a 1/n suppression in sys-
tem size, so the bounds are mainly interesting when n �
exp[O(t )]. Thus, it is tempting to conclude that the CSM
requires exponentially many qubits to simulate nonlinearity,
but this is not the case for a finite-time simulation. This can be
understood by assuming 12(1 + |λ|)J0t � 1, which defines
a particular short-time limit, and linearizing the exponential
in (32). This leads to

‖X (t ) − ρ1(t )‖1 � 48J0t

n
= ε, (97)

where ε is the desired model error. Then duality within ε holds
for a time

tmax = nε

48J0
= nt, t := ε

48J0
. (98)

In the short-time regime, increasing n merely increases the
simulation interval tmax, each ancilla qubit contributing a unit
of propagation time t .

If λ = 1 and complete permutation symmetry is respected,
the CSM is described by mean-field theory (31), which has
self-interaction. This nonlinearity generates qubit torsion and
other nonrigid distortions of the Bloch ball determined by

the couplings Jμ [64,65]. To see this, write the Hamiltonian
in (31) as

H eff = H0 +
∑

μ

Jμtr(Xσμ)σμ, (99)

where X is the current state of the central (or any other)
qubit. Suppose Jμ = (J1, 0, 0). The nonlinear term in (99)
generates an x rotation with frequency 2J1x, where x is the
projection of the Bloch vector on the x axis. States with
larger x components rotate faster and states with negative
projections rotate in the opposite direction, twisting the Bloch
ball. Couplings (0, J2, 0) and (0, 0, J3) similarly generate pure
torsion about the y and z axes of the Bloch ball, respectively.
Single-axis torsions have been investigated previously [2,5,6].
More general couplings Jμ = (J1, J2, J3) with two or three
nonzero components generate higher-order distortions beyond
pure torsion,2 which have not been studied.

The CSM with λ 	= 1 is described by the coupled nonlinear
equations (23) and (24). The CSM with λ = 0 is particularly
interesting: In this case the Hamiltonian for the central qubit

2Unlike rigid rotations, simultaneous twisting about two perpendic-
ular axes is not equivalent to a twist about an intermediate axis.
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is

H eff = H0 +
∑

μ

Jμtr(Y σμ)σμ, (100)

where, in the large-n limit, Y is governed by H0 only. Thus,
the central qubit interacts with a bath of synchronized ancillas
but produces a vanishing reaction on any individual ancilla
qubit. To use this for information processing, set H0 = 0.
Then dY

dt = 0 and the resulting Hamiltonian

H eff =
∑

μ

Jμ〈ϕ|σμ|ϕ〉σμ (101)

implements initial-condition nonlinearity (〈σμ〉 is static and
fixed by the initial condition). Different initial states |ϕ〉 are
subjected to different Hamiltonians. If Jμ is time independent,
these are static Hamiltonians, whereas (99) is typically time
dependent (because X is).

Finally, we speculate on the relevance of the duality to
the question of whether quantum mechanics is fundamentally
nonlinear. While there is no experimental evidence for such
nonlinearity [67–73], it would be more illuminating to have
a theoretical argument or no-go theorem showing that its
presence would violate a stronger property, such as relativistic
invariance [74–78]. However, no such argument is currently
available. Dualities like that discussed here suggest that there
might not be a sharp distinction between universes evolv-
ing according to linear and nonlinear quantum mechanics.
This observation is consistent both with the absence of a
nonlinear no-go theorem and with other dualities based on
nonlinear gauge transformations [79]. If quantum nonlinearity
is indeed allowed, how can we experimentally test for it?
Beyond laboratory experiments [67–73], one possibility is to
consider the cosmological implications of potential quantum
nonlinearity [80–84]. Lloyd [82] has argued that the universe
itself might be regarded as a giant quantum information pro-
cessor and that this perspective explains how the complexity
observed today could arise from a homogeneous, isotropic
initial state evolving according to simple laws. In the future
it would be interesting to reexamine the question of cosmo-
logical complexity generation with the hypothesis of real or
simulated quantum nonlinearity.
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APPENDIX A: PARTIAL TRACES OF COMMUTATORS

Here we explain some properties of partial traces used in
the proofs.

(1) Let ρ ∈ B(H,C) be any bounded linear operator and
let Bi be an operator acting on qubit i exclusively. Then the
partial trace of their commutator vanishes:

tri([Bi, ρ]) = 0. (A1)

To see this, evaluate tri([Bi, ρ]) in the {|0〉, |1〉} basis of qubit
i,

tri([Bi, ρ]) =
∑

x,x′=0,1

(〈x|Bi|x′〉i〈x′|ρ|x〉i − 〈x|ρ|x′〉i〈x′|Bi|x〉i )

(A2)

=
∑

x,x′=0,1

(〈x|Bi|x′〉i〈x′|ρ|x〉i − 〈x′|ρ|x〉i〈x|Bi|x′〉i )

(A3)

=
∑

x,x′=0,1

〈x|Bi|x′〉i(〈x′|ρ|x〉i − 〈x′|ρ|x〉i ) = 0,

(A4)

because 〈x|Bi|x′〉i ∈ C commutes with the operator 〈x′|ρ|x〉i.
(2) Let ρ ∈ B(H,C) be any bounded linear operator and

let Bi be an operator acting on qubit i exclusively. Then

tr> j ([Bi, ρ]) = tr j+1tr j+2 · · · trn([Bi, ρ])

=
{

[Bi, tr> j (ρ)] for i � j
0 for i > j.

(A5)

If i � j then tr j+1 · · · trn(Biρ − ρBi ) = [Bi, tr> j (ρ)]. If i > j
the required result follows from (A1).

APPENDIX B: SCHATTEN P-NORMS

Here we collect a few properties of the matrix norms used
in this paper. Let X ∈ C2n×2n

be a complex matrix on n qubits.
The norms ‖X‖1 and ‖X‖∞ used in Theorem 1 (Sec. III) are
special cases of Schatten p-norms

‖X‖p := [tr(|X |p)]1/p, p � 1, (B1)

where |X | :=
√

X †X is the absolute value of a matrix. Be-
cause A = X †X = UDU † is Hermitian and positive semidef-
inite, we can define

√
A = U

√
DU † through its spectral

decomposition, leading to |X | = U
√

DU † = U�U †, where
� is a diagonal matrix containing the singular values√

spec(X †X ) of X . Here spec(Y ) denotes the set of eigen-
values of Y ∈ B(H,C) and

√
spec(Y ) are their square roots.

Then ‖X‖p = [tr(�p)]1/p = [
∑2n

i=1(�ii )p]1/p.
We use the following properties.
(1) The Schatten p-norm is unitarily invariant. Let U,V ∈

C2n×2n
be unitary. Then ‖UXV †‖p = ‖X‖p.

(2) The Schatten p-norm is submultiplicative:

‖XY ‖p � ‖X‖p‖Y ‖p. (B2)

(3) The Schatten 1-norm ‖X‖1 is equal to the trace norm
(sum of singular values).

(4) The Schatten 1-norm satisfies

|tr(X )| � ‖X‖1. (B3)

(5) The Schatten 1-norm is not normalized: ‖I⊗n‖1 = 2n.
Here I is the two-dimensional identity.

(6) The limit ‖X‖∞ := limp→∞ ‖X‖p exists and is equal to
the operator norm (maximum singular value).

(7) The operator norm is normalized: ‖I⊗n‖∞ = ‖I
‖∞ = 1.
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(8) The trace and operator norms satisfy the inequality

‖X‖∞ � ‖X‖1. (B4)

(9) The trace and operator norms also satisfy a Holder
inequality

‖XY ‖1 � ‖X‖1‖Y ‖∞, (B5)

which is tighter than that provided by (B2).
(10) Let A ∈ B(H,C) be a bounded linear operator. Then

sup
B 	=0

|tr(AB)|
‖B‖∞

= ‖A‖1, (B6)

where the supremum is over the set of all B ∈ B(H,C) with
‖B‖∞ 	= 0.

(11) Let Xα and Xβ be arbitrary states (positive-semidefinite
operators with unit trace). Then

‖Xα − Xβ‖1 � 2. (B7)

(12) Let A, B ∈ CN×N and C ∈ CN2×N2
. Then∫ t

0
dτ |tr(CA ⊗ B)| �

∫ t

0
dτ‖C(τ )‖1‖A(τ )‖∞‖B(τ )‖∞,

(B8)∫ t

0
dτ |tr(CA ⊗ B)| �

∫ t

0
dτ‖C(τ )‖∞‖A(τ )‖1‖B(τ )‖1.

(B9)

(13) Let �σi · �σ j = σ 1
i ⊗ σ 1

j + σ 2
i ⊗ σ 2

j + σ 3
i ⊗ σ 3

j . Then

‖�σi · �σ j‖∞ = 3, ‖�σi · �σ j‖1 = 6. (B10)
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[19] C.-W. Lee, P. Kurzyński, and H. Nha, Quantum walk as a
simulator of nonlinear dynamics: Nonlinear Dirac equation and
solitons, Phys. Rev. A 92, 052336 (2015).

[20] I. Joseph, Koopman–von Neumann approach to quantum sim-
ulation of nonlinear classical dynamics, Phys. Rev. Res. 2,
043102 (2020).

[21] F. Gaitan, Finding flows of a Navier–Stokes fluid through quan-
tum computing, npj Quantum Inf. 6, 61 (2020).

[22] J.-P. Liu, H. Kolden, H. K. Krovi, N. F. Loureiro, K. Trivisa,
and A. M. Childs, Efficient quantum algorithm for dissipative
nonlinear differential equations, Proc. Natl. Acad. Sci. USA
118, e2026805118 (2021).

[23] S. Lloyd, G. De Palma, C. Gokler, B. Kiani, Z.-W. Liu, M.
Marvian, F. Tennie, and T. Palmer, Quantum algorithm for
nonlinear differential equations, arXiv:2011.06571.

[24] A. Engel, G. Smith, and S. E. Parker, Linear embedding of non-
linear dynamical systems and prospects for efficient quantum
algorithms, Phys. Plasmas 28, 062305 (2021).

[25] L. Budinski, Quantum algorithm for the Navier-Stokes equa-
tions by using the streamfunction-vorticity formulation and the
lattice Boltzmann method, Int. J. Quantum Inf. 20, 2150039
(2022).

[26] I. Y. Dodin and E. A. Startsev, Quantum computation of non-
linear maps, arXiv:2105.07317.

[27] I. Y. Dodin and E. A. Startsev, On applications of quantum
computing to plasma simulations, Phys. Plasmas 28, 092101
(2021).

[28] N. Guo, K. Mitarai, and K. Fujii, Nonlinear transformation of
complex amplitudes via quantum singular value transformation,
arXiv:2107.10764.

042210-12

https://doi.org/10.1063/1.524331
https://doi.org/10.1103/PhysRevLett.81.3992
https://doi.org/10.1016/S0375-9601(98)00189-3
https://doi.org/10.1145/1052796.1052804
https://doi.org/10.1103/PhysRevA.93.022314
https://doi.org/10.1002/qute.202200156
http://arxiv.org/abs/arXiv:quant-ph/9803019
https://doi.org/10.1103/PhysRevA.70.032309
https://doi.org/10.1103/PhysRevLett.102.210402
https://doi.org/10.1103/PhysRevLett.103.170502
https://doi.org/10.1103/PhysRevA.88.032310
https://doi.org/10.1088/1367-2630/15/6/063014
https://doi.org/10.1103/PhysRevA.89.012312
http://arxiv.org/abs/arXiv:2009.07800
https://doi.org/10.1209/0295-5075/ac9fed
https://doi.org/10.1103/PhysRevResearch.4.023071
https://doi.org/10.1103/PhysRevA.88.053816
https://doi.org/10.1103/PhysRevA.92.052336
https://doi.org/10.1103/PhysRevResearch.2.043102
https://doi.org/10.1038/s41534-020-00291-0
https://doi.org/10.1073/pnas.2026805118
http://arxiv.org/abs/arXiv:2011.06571
https://doi.org/10.1063/5.0040313
https://doi.org/10.1142/S0219749921500398
http://arxiv.org/abs/arXiv:2105.07317
https://doi.org/10.1063/5.0056974
http://arxiv.org/abs/arXiv:2107.10764


UNIVERSE AS A NONLINEAR QUANTUM SIMULATION: … PHYSICAL REVIEW A 108, 042210 (2023)

[29] C. Xue, Y.-C. Wu, and G.-P. Guo, Quantum Newton’s
method for solving system of nonlinear algebraic equations,
arXiv:2109.08470.

[30] C. Xue, Y.-C. Wu, and G.-P. Guo, Quantum homotopy per-
turbation method for nonlinear dissipative ordinary differential
equations New J. Phys. 23, 123035 (2021).

[31] A. Shukla and P. Vedula, A hybrid classical-quantum algo-
rithm for solution of nonlinear ordinary differential equations,
Appl. Math. Comput. 442, 127708 (2022).

[32] Z. Holmes, N. J. Coble, A. T. Sornborger, and Y. Subaşı, Non-
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