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Quantum nonlocality in the presence of strong measurement dependence
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It is well known that the effect of quantum nonlocality, as witnessed by violation of a Bell inequality, can
be observed even when relaxing the assumption of measurement independence, i.e., allowing for the source
to be partially correlated with the choices of measurement settings; however, what is the minimal amount of
measurement independence needed to observe quantum nonlocality? Here we explore this question and consider
models with strong measurement-dependent locality, where measurement choices can be perfectly determined
in almost all rounds of the Bell test. Nevertheless, we show that quantum nonlocality can still be observed in this
scenario, which we conjecture is minimal within the framework we use. We also discuss potential applications
in randomness amplification.
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I. INTRODUCTION

Quantum theory allows for strong nonlocal correlations
as witnessed by the violation of Bell inequalities [1]. This
phenomenon, known as quantum nonlocality, has been ver-
ified experimentally in a variety of physical platforms (see,
e.g., [2–8]) and represents the basic resource for quantum
information processing in the so-called device-independent
setting.

A Bell test typically involves a number of distant observers
(say, Alice and Bob) performing randomly chosen local mea-
surements on a shared physical system. Bell inequalities are
then usually derived under two assumptions (see, e.g., [9]):
(i) The choices of local measurements made by each party
are independent of the source distributing the shared physical
resource and (ii) the measurement output of each party is
determined solely by their input and a shared local (hidden)
variable. Clearly, the first assumption is important, since if
the source could know a priori the choice of measurement
setting for each round, then all possible correlations can be
reproduced by a classical model. Therefore, the observation of
(quantum) nonlocality relies on the assumption that the choice
of measurement settings cannot be perfectly determined at
the source. In other words, there must be some level of
measurement independence, but then how much measurement
independence is required to observe quantum nonlocality?

This question has attracted broad attention in recent years
and has been discussed following various approaches (see,
e.g., [10–18]). A notable approach is that of Pütz et al. [19,20],
who presented a general framework for addressing these ques-
tions. In particular, they derived Bell inequalities for testing
local models with measurement-dependent locality (MDL),
i.e., where the above assumption (i) is relaxed. Remarkably,
violation of such inequalities is possible for any level of
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measurement dependence, demonstrating that quantum non-
locality can be observed even if measurement settings can be
almost perfectly determined by the source. Hence quantum
theory allows for measurement-dependent nonlocality. These
ideas have been tested experimentally [21] and shown to be
relevant for the task of randomness amplification [22] and
network quantum nonlocality [23].

A natural question at this point is whether the above works
have identified the minimal requirements in terms of measure-
ment independence, or if quantum nonlocality could in fact
be demonstrated considering an even stronger form of mea-
surement dependence. This is the main motivation behind the
present work. Our main result is that quantum theory in fact
allows for a much stronger form of measurement-dependent
nonlocality. Specifically, we consider the approach of Pütz
et al. [19,20], who showed that the measurement inputs can
be almost perfectly determined in each round of the Bell
test. This means that in every round, the inputs feature some
(possibly arbitrarily small) level of randomness with respect to
the source. In contrast, we consider models where, in almost
all rounds, the source can fully determine the measurement in-
puts. Hence we only require the presence of rounds where the
inputs cannot be perfectly determined and that these rounds
have a nonvanishing probability to occur. We then show that
quantum correlations are still incompatible with respect to
these models. Our work thus shows that the requirement for
demonstrating quantum nonlocality can still be considerably
relaxed compared to previously known results. We conclude
with a discussion of further questions and applications for
randomness amplification.

II. GENERAL SETTING

We consider first bipartite Bell tests involving two noncom-
municating agents, Alice and Bob. Alice can choose between
several measurements, labeled with x ∈ {0, 1, . . . , mA − 1}.
Her outcomes are labeled with a ∈ {0, 1, . . . , nA − 1}. For
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Bob the measurement choice label is y ∈ {0, 1, . . . , mB − 1}
and the corresponding outcome b ∈ {0, 1, . . . , nB − 1}. The
experiment is characterized by the set of conditional probabil-
ities of obtaining the pair of outcomes a, b when the chosen
inputs are x and y,

P = {p(a, b|x, y)}a,b,x,y, (1)

usually called a behavior. Without loss of generality, the joint
correlation probabilities can be written as

p(a, b, x, y) =
∫

λ

dλ p(λ)p(x, y|λ)p(a, b|x, y, λ), (2)

where p(λ), p(x, y|λ), and p(a, b|x, y, λ) are valid probability
distributions. The classical variable λ thus encodes the corre-
lations between various measurement outputs.

Bell [1] formalized the concept of a local hidden-variable
(LHV) model via the following requirements: (i) measure-
ment independence, wherein the variable λ is completely
independent of the inputs x and y, i.e.,

p(x, y|λ) = p(x, y) ∀ λ, (3)

and (ii) Bell locality, wherein locally, each output is deter-
mined solely by the input and the shared variable λ, i.e.,

p(a, b|x, y, λ) = p(a|x, λ)p(b|y, λ) ∀ x, y, a, b, λ. (4)

A behavior is then termed (Bell) local if it admits a decom-
position of the form

p(a, b|x, y) =
∫

λ

dλ p(λ)p(a|x, λ)p(b|y, λ), (5)

which is obtained by taking into account the conditions (3)
and (4) and dividing Eq. (2) by p(x, y). We denote such a be-
havior by P̄loc with corresponding probabilities ploc(a, b|x, y).
All such behaviors satisfy Bell inequalities, which are based
on the linear functional of the joint probabilities and take the
form

I ≡
∑

a,b,x,y

ωa,b,x,y ploc(a, b|x, y) � βloc, (6)

where ωa,b,x,y are real coefficients and βloc is termed the local
bound of the Bell inequality.

Violation of such a Bell inequality in the presence of mea-
surement independence implies nonlocality. This is possible
in quantum theory, by performing well-chosen sets of local
measurements on a shared entangled state �AB. In general, a
quantum behavior takes the form

p(a, b|x, y) = Tr[Ma|x ⊗ Mb|y�AB], (7)

where the sets of operators {Ma|x} and {Mb|y} represent the
local measurements of Alice and Bob, respectively.

Before continuing, let us introduce two additional bounds
for a Bell inequality, relevant for our work. First, the maximal
value of a Bell expression [the functional defined in (6)] in
quantum theory (optimized over all quantum behaviours) is
called the quantum bound and denoted by βq. Second, the
maximal value of a Bell expression (considering any valid
joint probability distribution) is called the algebraic bound and
denoted by βalg.

Let us now return to the assumptions behind local mod-
els. Our focus here is on the assumption of measurement

FIG. 1. We consider a Bell test with relaxed measurement in-
dependence. Specifically, the source, i.e., the classical variable �,
can be correlated to the choice of measurement inputs (variables
X and Y ) of both parties. We show that quantum nonlocality can
exhibit strong measurement-dependent nonlocality, i.e., the quantum
predictions cannot be explained by a local model even if the source
� completely determines both inputs in almost all rounds of the
experiment.

independence. From a fundamental perspective, it is natural
to ask whether this assumption could be partially relaxed.
Specifically, could one still demonstrate quantum nonlocality
when considering partial correlations between the source, i.e.,
the shared variable λ, and the measurement inputs x and y (see
Fig. 1). References [15,19,20] introduced a general frame-
work to tackle this question. In particular, they proposed to
relax the usual measurement independence condition to

ξ � p(x, y|λ) � η ∀ x, y, λ, (8)

where ξ > 0 and consequently η < 1, as
∑

x,y p(x, y|λ) = 1.
Hence the measurement inputs are no longer independent of
the shared variable λ. Importantly, the inputs can still not
be perfectly determined from λ, as ensured by the condition
ξ > 0. More generally, one can set given values to the param-
eters ξ and η, which then quantify the level of measurement
independence. One can then define classes of local models
with relaxed measurement independence, satisfying the con-
dition of Bell locality [Eq. (4)] and the partial measurement
independence condition in Eq. (8) for given values of ξ and η.
Reference [19] then showed how to construct Bell inequalities
for these models. A key idea consists in considering joint
distributions p(a, b, x, y) instead of conditional ones. Starting
from a standard Bell inequality, as in (6), one can then con-
struct a novel Bell inequality of the form

Ĩξ,η � ξηβloc ≡ βMD
loc , (9)

where Ĩξ,η is a linear functional of the joint probabilities
p(a, b, x, y) (with coefficients obtained from the original Bell
functional).

Violation of such a Bell inequality under the condition
(8) implies so-called measurement-dependent nonlocality. Re-
markably, Pütz et al. [19] showed that quantum theory allows
for measurement-dependent nonlocality even for an arbitrarily
small level of measurement independence, i.e., for any ξ > 0.
Their example is connected to the quantum correlations aris-
ing from the well-known Hardy paradox [24].
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III. STRONG MEASUREMENT-DEPENDENT
NONLOCALITY

We are now in position to present our main result, namely,
that quantum correlations can in fact exhibit an even stronger
form of measurement-dependent nonlocality. To be more pre-
cise, let us first note that in the approach of Pütz et al. [19]
reviewed above, the relaxed measurement-independence con-
dition (8) must hold in every round of the Bell experiment.
In other words, in every round, the inputs cannot be perfectly
determined from the shared variable λ.

Below we consider local models where this constraint
is almost fully relaxed. Specifically, we consider two types
of rounds. First, we have rounds where the shared variable
perfectly determines the inputs, i.e., full measurement depen-
dence. These rounds are denoted by the set of shared variables
�′′. Second, we have rounds with relaxed measurement inde-
pendence, i.e., the condition (8) applies for a fixed value of ξ

and η. This set of rounds is denoted by �′. Let us characterize
the relative probabilities of these sets:∫

�′
dλ p(λ) = q,

∫
�′′

dλ p(λ) = 1 − q. (10)

Note that we must require that q > 0 in order to possibly
observe nonlocality. Below we show how to construct a rele-
vant Bell inequality, starting from any standard Bell inequality
(6), in order to test the above model, for any values of q > 0
and ξ > 0. Moreover, we exhibit an example of such a Bell

inequality, where quantum correlations lead to a Bell violation
for any values of q > 0 and ξ > 0. We say that such correla-
tions feature strong measurement-dependent nonlocality.

Consider now an arbitrary Bell inequality (6). As in
[19], we define ω+

a,b,x,y = ωa,b,x,y if ωa,b,x,y > 0 and ω−
a,b,x,y =

−ωa,b,x,y if ωa,b,x,y<0. Then the Bell inequality has the form

I ≡
∑

a,b,x,y

[ω+
a,b,x,y ploc(a, b|x, y) − ω−

a,b,x,y ploc(a, b|x, y)]

� βloc. (11)

The quantum bound of the inequality, equal to βq, can be
decomposed as βq = β+

q − β−
q , where we introduce notation

β+
q =

∑
a,b,x,y

ω+
a,b,x,y pq(a, b|x, y), (12)

β−
q =

∑
a,b,x,y

ω−
a,b,x,y pq(a, b|x, y), (13)

with {pq(a, b|x, y)} a behavior reaching the quantum bound.
The measurement-dependent Bell inequality from [19] reads

Ĩξ,η =
∑

a,b,x,y

[ξω+
a,b,x,y p(a, b, x, y) − ηω−

a,b,x,y p(a, b, x, y)].

(14)

By separating the sets �′ and �′′ and taking into account the
decomposition of local joint probabilities we get

Ĩξ,η =
∑

a,b,x,y

(
ξω+

a,b,x,yq
∫

�′
dλ

p(λ)

q
p(x, y|λ)p(a|x, λ)p(b|y, λ) − ηω−

a,b,x,yq
∫

�′
dλ

p(λ)

q
p(x, y|λ)p(a|x, λ)p(b|y, λ)

)

+
∑

a,b,x,y

[ξω+
a,b,x,y(1 − q)p(a, b, x, y|�′′) − ηω−

a,b,x,y(1 − q)p(a, b, x, y|�′′)], (15)

where p(a, b, x, y|�′′) = ∫
�′′ dλ

p(λ)
1−q p(a, b, x, y|λ′) defines the

average statistics in the case where λ belongs to the set
�′′. The first line is simply the renormalized measurement-
dependent inequality for the local variables satisfying the
condition (8). Hence its local bound is qξηβloc, where q comes
from the normalization of the hidden-variable probability dis-
tribution. In the second line, the condition (8) is not satisfied;
nevertheless, p(a, b, x, y) � 0 and therefore the second term
is upper bounded by 0. The first term can also be bounded by
noting that∑

a,b,x,y

ξω+
a,b,x,y(1 − q)p(a, b, x, y|�′′) � ξ (1 − q)ω+

max, (16)

where

ω+
max = max

a,b,x,y
ω+

a,b,x,y. (17)

This implies that the local bound for the strong measurement-
dependent LHV models is

βSMD
loc ≡ qξηβloc + (1 − q)ξω+

max. (18)

Thus, for hidden variables satisfying the condition (8) when
λ ∈ �′ and �′ satisfying condition (10), the bound of the

measurement-dependent Bell inequality becomes

Ĩ � βSMD
loc . (19)

The next part consists in evaluating the quantum bound of
the expression Ĩξ,η. For this, it is useful to know the distribu-
tion of measurement inputs, which can be observed in the Bell
test. From now on, let us assume that all possible input pairs
appear with equal probabilities, i.e., p(x, y) = 1/mAmB. From
the definitions (12) and (13) we get the quantum bound

βSMD
q = 1

mAmB
(ξβ+

q − ηβ−
q ). (20)

Strong measurement-dependent nonlocality is then observed
when βSMD

q > βSMD
loc . Below we discuss when such a Bell

violation is possible.
For most Bell inequalities, we have that βq <

β+
q < mAmBω+

max. It follows that one can detect strong
measurement-dependent nonlocality for some limited range
of parameters of the model. Notably, one will require that
q > q0, where q0 is a strictly positive constant. This means
that the rounds where the local variable cannot perfectly
determine the inputs have a certain minimal probability
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to occur. This is, for example, the case for the quantum
correlations presented in Ref. [19].

It is however possible to construct quantum correlations
that are incompatible with any local model with strong MDL,
i.e., considering any parameter values of q > 0 and ξ > 0. We
now present an example of such quantum correlations. Our
starting point is quantum nonlocal correlation arising from
the Peres-Mermin (PM) magic-square game [25,26], which
was proposed in Ref. [27]. This work also constructs a Bell
inequality to detect these nonlocal correlations. The key prop-
erty of this Bell inequality is that the quantum bound coincides
with the algebraic one, a feature sometimes referred to as
quantum pseudotelepathy.

Following Ref. [27], we consider a bipartite Bell test with
three inputs per party. For each input, each party outputs
two bits, defined a = (a1, a2) and for Bob with b = (b1, b2),
with ai, b j ∈ {−1, 1}. For our purpose, we need to construct a
variant of the Bell inequality of Ref. [27]. Let us first introduce
two types of correlators

Ĉ f (a,b)
x,y =

∑
a,b

2[ f (a,b)+1]/2(−16)−[ f (a,b)−1]/2 p(a, b|x, y), (21)

C̄ f (a,b)
x,y =

∑
a,b

16[ f (a,b)+1]/2(−2)−[ f (a,b)−1]/2 p(a, b|x, y). (22)

While it is common to use correlators taking values in the
interval [−1, 1] for Bell inequalities, note that the above
modified correlators take values in the following intervals:
−16 � Ĉ f (a,b)

x,y � 2 and −2 � C̄ f (a,b)
x,y � 16 (it will become

clear below why we need this). We now construct the Bell
expression

I = Ĉa1b1
1,1 + Ĉa2b1

1,2 + Ĉa1b2
2,1 + Ĉa2b2

2,2 + Ĉa1a2b1
1,3

+ Ĉa1a2b2
2,3 + Ĉa1a2b1b2

3,3 + Ĉa1b1b2
3,1 − C̄a2b1b2

3,2 , (23)

with ω+
max = 2. Using the quantum strategy based on the PM

magic-square game as in [27], we get a nonlocal distribu-
tion that reaches I = 18; hence we have that βq = β+

q =
mAmBω+

max.
Now the important property for our purpose is that the local

bound of I is βloc = 0 (hence the use of modified correlators),
which simply follows from inspection over all deterministic
strategies.

We can now apply the method outlined above to adapt
this Bell inequality to the measurement-dependent scenario,
namely,

Ĩξ,η = Ĉa1b1
1,1,ξ ,η + Ĉa2b1

1,2,ξ ,η + Ĉa1b2
2,1,ξ ,η + Ĉa2b2

2,2,ξ ,η + Ĉa1a2b1
1,3,ξ ,η

+ Ĉa1a2b2
2,3,ξ ,η + Ĉa1a2b1b2

3,3,ξ ,η + Ĉa1b1b2
3,1,ξ ,η − C̄a2b1b2

3,2,ξ ,η, (24)

where Ĉ f (a,b)
x,y,ξ ,η and C̄ f (a,b)

x,y,ξ ,η are now weighted correlators of joint
distributions, defined as

Ĉ f (a,b)
x,y,ξ ,η =

∑
a,b

(2ξ )[ f (a,b)+1]/2(−16η)−[ f (a,b)−1]/2 p(a, b, x, y),

(25)

C̄ f (a,b)
x,y,ξ ,η =

∑
a,b

(16η)[ f (a,b)+1]/2(−2ξ )−[ f (a,b)−1]/2 p(a, b, x, y).

(26)

FIG. 2. Graph depicting nonlocality in the presence of a
strong measurement dependence attained by the states |φv〉〈φv| =
v|φ+〉〈φ+| + (1 − v)1/16, where |φ+〉 = ∑3

j=0 | j j〉/2. The mea-
surements correspond to those used to obtain the maximal violation
of the Mermin-Peres magic-square game. For given visibility v,
nonlocality is observed if the values of the parameters ξ and q belong
to the region above the corresponding curve. The parameter η is
taken to be equal to 2/9 − ξ . The red bold curve corresponds to a
visibility comparable to that in the experiment of Ref. [27], based on
a hyperentangled state.

Note that for Ĩξ,η we have ω+
max = 2; hence from Eq. (18) we

obtain the local bound βSMD
loc = 2(1 − q)ξ , while the quantum

bound is βSMD
q = 2ξ . Hence we obtain a quantum violation

for any parameter values q > 0 and ξ > 0. In Fig. 2 we show
for which values of parameters ξ and q nonlocality with strong
measurement dependence can be observed if noisy states are
used to violate the Mermin-Peres magic-square game.

In Appendix B we also present a similar construction based
on the Mermin inequality, considering a tripartite Bell test.

IV. CONNECTION TO RANDOMNESS AMPLIFICATION

While the question of observing quantum nonlocality un-
der conditions of relaxed measurement independence is of
rather fundamental nature, these ideas also have implications
from a more applied perspective. Indeed, one prominent ap-
plication of quantum nonlocality is the task of generating
randomness. This process is known as device-independent
quantum random number generation (DIQRNG), which ex-
plores the possibility to generate certified random numbers
under minimal assumptions on the devices (see, e.g., [28] for
a recent review).

The most relevant aspect of DIQRNG here is the task of
device-independent randomness amplification [29]. The idea
is to perform a Bell test using imperfect sources of random-
ness to generate the inputs and being able to certify more
randomness in the outputs, hence amplifying randomness via
nonlocal correlations. Previous works in this direction have
demonstrated randomness amplification considering so-called
Santha-Vazirani sources for inputs [29–33]. Interestingly,
randomness amplification can be directly connected to the
measurement-dependent nonlocality [22], specifically to the
approach of Ref. [19], which leads to protocols with improved
performance.

Given this strong connection, we believe that our approach
can have direct consequences in the context of randomness
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amplification. In particular, our results should translate into
stronger forms of randomness amplifications, going beyond
Santha-Vazirani sources. Another interesting question is to
understand how our approach connects to the work of
Ref. [15], where min-entropy sources are considered.

V. DISCUSSION

We explored the question of observing quantum nonlo-
cality considering local models with relaxed measurement
independence. Using the approach developed by Pütz et al.
[19], we showed that the requirements in terms of mea-
surement independence can still be considerably relaxed and
presented an example of quantum correlations featuring non-
locality in the presence of strong measurement dependence.
This suggests that nonlocality could be demonstrated with
strings of measurement settings having only a very small
amount of global min-entropy.

The main open question is arguably whether our work
has now reached the absolute minimal requirements in terms
of measurement independence allowing for quantum nonlo-
cality. Of course, this question is only meaningful within a
certain framework. For the approach developed by Pütz et al.
[19], we believe that our work has identified the minimal
requirements. An interesting question is now to see how this
result may impact applications in randomness amplification.

Finally, our work has interesting consequences also from
the point of view of network nonlocality. Following the con-
struction of Ref. [23], one can embed our example of strong
measurement-dependent quantum nonlocality in a triangle
network without inputs. In this way, one obtains a quantum
distribution that cannot be reproduced classically even when
the three sources of the triangle network are perfectly corre-
lated in almost all rounds of the Bell test.
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APPENDIX A: PROOF OF EQ. (9)

In this Appendix we prove the bound given in Eq. (9). The
form of the functional Ĩξ,η is given in Eq. (14). Taking into
account Eq. (2), we get

Ĩξ,η =
∑

a,b,x,y

(
ξω+

a,b,x,y

∫
λ

dλ p(λ)p(x, y|λ)p(a, b|x, y, λ)

− ηω−
a,b,x,y

∫
λ

dλ p(λ)p(x, y|λ)p(a, b|x, y, λ)

)
.

(A1)

Given that the local hidden variable satisfies Eqs. (4) and (8),
we obtain

Ĩξ,η �
∑

a,b,x,y

(
ξω+

a,b,x,y

∫
λ

dλ p(λ)ηp(a, b|x, y, λ)

− ηω−
a,b,x,y

∫
λ

dλ p(λ)ξ p(a, b|x, y, λ)

)

= ξη
∑

a,b,x,y

(
ω+

a,b,x,y

∫
λ

dλ p(λ)p(a|x, λ)p(b|y, λ)

− ω−
a,b,x,y

∫
λ

dλ p(λ)p(a|x, λ)p(b|y, λ)

)

= ξη
∑

a,b,x,y

ωa,b,x,y ploc(a, b|x, y)

� ξηβloc. (A2)

In the third and fourth lines we used conditions (8) and (4). In
the fifth line we noticed that both integrals are just expressions
for the local behavior given in (5). Finally, in the last line we
used the local bound for the original Bell inequality, which we
used to build the functional (14).

APPENDIX B: QUANTUM NONLOCALITY IN THE
PRESENCE OF A STRONG MEASUREMENT

DEPENDENCE ACHIEVED BY THE
GREENBERGER-HORNE-ZEILINGER STATE

Here we show another example of quantum correlations
featuring strong MDL for any parameter values q > 0 and
ξ > 0. This is based on a tripartite Bell test, involving a third
party, Charlie, whose input is denoted by z and output by c.
The main idea is to start from the Mermin Bell inequality
[26], which also has the property that the quantum bound
is equal to the algebraic one. The optimal quantum strategy
is that of the famous Greenberger-Horne-Zeilinger (GHZ)
paradox.

Like our construction in the main text, we must however
first modify the Mermin inequality in a form that is suitable
for our purpose. This implies using suitable definitions for
correlators. For a given set of inputs x, y, z we define the
weighted correlators

Ĉx,y,z =
∑
a,b,c

1a⊕b⊕c(−3)a⊕b⊕c⊕1 p(a, b, c|x, y, z), (B1)

C̄x,y,z =
∑
a,b,c

3a⊕b⊕c(−1)a⊕b⊕c⊕1 p(a, b, c|x, y, z), (B2)

with a, b, c ∈ {0, 1}. We observe that −3 � Ĉx,y,z � 1 and
−1 � C̄x,y,z � 3. From this we now construct an alternative
version of the Mermin Bell inequality, namely,

I = Ĉ0,0,0 − C̄1,1,0 − C̄1,0,1 − C̄0,1,1. (B3)

The quantum bound for this inequality is I = 4, which can
be attained by considering a three-qubit GHZ state and each
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party performing local measurements in the Pauli X and Y
basis (similarly as in the well-known GHZ paradox, giving
maximal violation of the Mermin Bell inequality). It turns out
that this quantum bound coincides with the algebraic bound of
the inequality, i.e., βq = βalg, similarly to the standard Mermin
inequality. The notable difference, which is convenient for our
purpose, is that the local bound is now βloc = 0.

We can now apply the method outlined above to adapt
this inequality to the measurement-dependent scenario,
namely,

Ĩ = Ĉη,ξ

0,0,0 − C̄η,ξ

1,1,0 − C̄η,ξ

1,0,1 − C̄η,ξ

0,1,1, (B4)

where Ĉη,ξ
x,y,z and C̄η,ξ

x,y,z are now weighted correlators of joint
distributions, defined as

Ĉη,ξ
x,y,z =

∑
a,b,c

(ξ )a⊕b⊕c(−3η)a⊕b⊕c⊕1 p(a, b, c, x, y, z), (B5)

C̄η,ξ
x,y,z =

∑
a,b,c

(3η)a⊕b⊕c(−ξ )a⊕b⊕c⊕1 p(a, b, c, x, y, z). (B6)

Finally, we find the local and quantum bounds for this new
inequality: βSMD

loc = (1 − q)ξ and βSMD
q = ξ . Hence we ob-

tain a quantum violation for any parameter values q > 0 and
ξ > 0.
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