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Dynamical transition between synchronization and antisynchronization with exceptional points
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In this paper we consider a spin chain locally coupled to dissipative environments with unbalanced gain
and loss and explore the relation between the emergence of synchronization and exceptional points. For our
model in the Liouvillian formalism the matrix of the Liouvillian superoperator is block diagonal and the
different blocks correspond to the dynamics of different observables. We find that for σ̂ z corresponding to
the block having a single Liouvillian exceptional point (LEP), when the coupling strength between the nearest
spins is beyond the LEP, the synchronization or antisynchronization will occur. For σ̂ x and σ̂ y corresponding
to the block having two LEPs, when the coupling strength between the nearest spins is beyond both LEPs,
the synchronization or antisynchronization will appear, and as time evolves the dynamical transition between
synchronization and antisynchronization can occur. Moreover, we also find that the initial state of the system
does not affect the emergence of synchronization or antisynchronization, but it determines whether the system is
synchronized or antisynchronized and affects the time at which the dynamical transition between synchronization
and antisynchronization occurs. Furthermore, by postselecting the quantum trajectories without quantum jump,
the system can exhibit Hamiltonian exceptional points, and we find that quantum jumps play an important role
in the synchronization of the system.
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I. INTRODUCTION

Synchronization is a fundamental phenomenon that de-
scribes the coupled objects spontaneously phase locking to
a common frequency [1]. Since the first observation by
Huygens in the 17th century [2], the phenomenon of synchro-
nization has been widely observed in different systems [3–5].
The phenomenon of synchronization has been thoroughly
investigated in classical systems and developed into the quan-
tum regime recently [6,7]. In the past few years, quantum
synchronization has attracted much attention and has been
investigated in different systems, including two-level systems
[8–15], van der Pol oscillators [16–19], ensembles of atoms
[20,21], optomechanical system [22], cold ions in microtraps
[23], etc. Recently, synchronization in the quantum regime
has been observed experimentally [24,25]. Meanwhile, quan-
tum synchronization has been applied to different areas, such
as quantum computation [25], quantum communication [26],
and quantum heat engine [27].

In open quantum systems, dissipation characterizes the
progressive loss of energy, coherence, and information into
the environment, and it is an important factor attributed to the
emergence of synchronization [28,29]. Generally, under the
weak coupling assumption between system and environment,
the dynamics of the open quantum system can be described
by a Lindblad master equation captured by a Liouvillian
superoperator [30]. The eigenvalues of the Liouvillian su-
peroperator characterize the modes governing the dissipative
dynamics. The synchronization of the system is induced by
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the timescale separation among the decay rates described by
the real parts of the eigenvalues of the Liouvillian superop-
erator. Specifically, when the decay mode with the slowest
decay rate survives while the others quickly approach zero, the
phenomenon of synchronization emerges [12,13]. Different
forms of dissipation and decoherence have been considered
in the investigation of synchronization, including Markovian
[14,15] and non-Markovian dissipative environments [31,32].

The evolution of the open quantum system is a non-
Hermitian process due to the dissipation to the environment
[33–35]. The presence of exceptional points (EPs) is a typ-
ical feature of non-Hermitian physics which has attracted
much attention in the last two decades [36]. Such points are
defined as the special points in the parameter space of a
non-Hermitian system at which the eigenvalues and the cor-
responding eigenvectors of the non-Hermitian Hamiltonian
(NHH) simultaneously coalesce [37], called Hamiltonian EPs
(HEPs). The presence of EPs leads to a lot of nontrivial phe-
nomena such as enhanced response to perturbations [38–42],
asymmetric backscattering [43,44], and loss-induced lasing
[45].

The Lindblad master equation which describes the evolu-
tion of the open system consists of a Hermitian free evolution
part and a non-Hermitian dissipative evolution part [46]. Ac-
cording to quantum trajectory theory, supposing the effect of
the environment on the system is continuously and perfectly
probed, the Lindblad master equation is regarded as average
over infinite quantum trajectories [47]. Thus, the dissipation
of the system can be divided into two parts, specifically, the
nonunitary evolution of the system and the quantum jumps
caused by the continuous measurement performed by the
environment on the system [48–50]. Quantum jumps induce
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a random and instantaneous change of the stochastic wave
function describing the system [49]. In the quantum regime,
the effect of quantum jumps can be ignored by postselect-
ing the quantum trajectories where no quantum jump occurs
[47,51,52]. The majority of studies focus on the HEPs of the
effective non-Hermitian Hamiltonian describing the evolution
of the open system without quantum jumps [53,54]. However,
the inclusion of quantum jumps can have a profound effect on
the system dynamics [50]. Recently, the EPs of the systems
taking into account the effect of quantum jumps have been
considered in different systems [55–57], which are defined
via the degeneracies of the non-Hermitian Liouvillian super-
operator, called Liouvillian EPs (LEPs). The system exhibits
LEPs when two or more eigenvalues and the correspond-
ing eigenmatrices of the Liouvillian superoperator coalesce
simultaneously. The point in the parameter space where n
eigenvalues and the corresponding eigenmatrices coalesce
corresponds to the nth-order LEP [50].

Due to the emergence of synchronization and the emer-
gence of LEPs, which are both relative to the eigenspectrum of
Liouvillian superoperators, it is intuitively expected that there
might be some connection between them. However, to the best
of our knowledge, little is known about the relation between
the emergence of synchronization and the LEPs. There was
so far only one study in this direction; specifically, Cabot
et al. showed two distinct scenarios in which synchroniza-
tion can emerge, related respectively to the presence of a
nondegenerate long-lived eigenmode and to the presence of
a single-frequency regime in their recent work [13].

In this paper, we investigate the synchronization of a spin
chain coupled to dissipative environments locally with un-
balanced gain and loss. We demonstrate the eigenspectrum
of the Liouvillian superoperator governing the dynamics of
the system and find that the system exhibits LEPs. Due to
the block structure of the Liouvillian superoperator, the dy-
namics of different observables are related to different blocks
of the Liouvillian superoperator. For σ̂ z corresponding to
the block with a single LEP, when the coupling strength
between the nearest spins is greater than the LEP it could
get synchronized or antisynchronized. For σ̂ x and σ̂ y corre-
sponding to the blocks with two LEPs, when the coupling
strength between the nearest spins is greater than both LEPs
it could get synchronized or antisynchronized, and as time
evolves the dynamical transition between synchronization and
antisynchronization could occur. Moreover, we find that the
initial state of the system does not affect the emergence of
(anti)synchronization between the spins, but it would deter-
mine whether the system is synchronized or antisynchronized
and when the dynamical transition between synchronization
and antisynchronization occurs. Furthermore, by postselect-
ing the quantum trajectories where no quantum jump occurs,
we find that the system can exhibit HEPs. When the coupling
strength is greater than the HEP, the system remains synchro-
nized or antisynchronized in the whole evolution. Comparing
the synchronization with these two kinds of EPs, we find that
quantum jumps play an important role in the synchronization
of the system.

The rest of this paper is organized as follows. In Sec. II
we introduce the model considered in this paper. In Sec. III A
we discuss the connection between the emergence of

synchronization and LEPs, and explore the effect of the initial
state of the system on synchronization. In Sec. III B we study
the synchronization in the absence of quantum jumps, and
discuss the connection between the emergence of synchro-
nization and HEPs. And Sec. IV is the conclusion.

II. MODEL

In this paper, we consider a one-dimensional Heisenberg
XX spin chain consisting of two spins, and each spin is cou-
pled to a local dissipative bath. The Hamiltonian of our model
is

Ĥ = κ
(
σ̂ x

1 σ̂ x
2 + σ̂

y
1 σ̂

y
2

)
, (1)

where κ is the coupling strength between the spins, and σ̂ x
j ,

σ̂
y
j ( j = 1, 2) are the Pauli operators. For convenience we set

h̄ = 1. With the Markovian approximation, when the open
quantum system is weakly interacting with the baths, the time
evolution of the system density matrix is described by the
following Lindblad master equation [30,58]:

ρ̇ = −i[Ĥ , ρ] +
4∑

m=1

(2L̂mρL̂†
m − L̂†

mL̂mρ − ρL̂†
mL̂m), (2)

where

L̂1,2 = 1
2

√
γ1(1 ± μ)σ̂±

1 , L̂3,4 = 1
2

√
γ2(1 ∓ μ)σ̂±

2 (3)

are four symmetric Lindblad operators acting on the spins, and
σ̂±

j = (σ̂ x
j ± iσ̂ y

j )/2 ( j = 1, 2) are the raising and lowering
operators. The parameters γ1 and γ2 determine the dissipative
strength of different spins, and μ ∈ [−1, 1] is the driving pa-
rameter which characterizes the magnetization bias between
the left and the right baths. This model is simple in concept
and has been studied deeply in recent years, especially in the
limiting case μ = 1 where the left (right) bath only induces
down-up (up-down) spin flips [58–60]. In the case of μ = 1,
the left and the right baths can be regarded as in two oppo-
sitely polarized ferromagnets. For μ = 1, the dynamics of the
system is simplified as

ρ̇ = −i[Ĥ , ρ] + γ1D[σ̂+
1 ]ρ + γ2D[σ̂−

2 ]ρ. (4)

The dissipative nature of the system includes the gain of the
left bath and the loss of the right bath, which is described by
the dissipative superoperators in the Lindblad form D[ô]ρ =
ôρô† − {ô†ô, ρ}/2, and the corresponding gain rate and loss
rate are γ1 and γ2, respectively. The model of a spin chain
interacting with two baths independently at two ends is widely
used in the investigation of spin chains with open boundary
condition [61–65].

It is convenient to describe the dynamical evolution in the
Liouvillian representation. The above master equation can be
expressed as ρ̇ = Lρ, where L is the Liouvillian superoper-
ator. In the Liouvillian representation, the density matrix is
represented by a vector in the Hilbert-Schmidt space and L is
a non-Hermitian matrix. And a D-dimensional density matrix
is represented by a D2-dimensional vector

|ρ〉〉 = (ρ1 ρ2 . . . ρD2 )T , (5)

where T denotes the transpose operation. Then we can recast
the above master equation Eq. (4) as a matrix differential
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equation for vectorized state |ρ〉〉 of the density operator ρ:

ρ̇ = Lρ ←→ |ρ̇〉〉 = L|ρ〉〉. (6)

Then L can be written as a (D2 × D2)-dimensional matrix.
Explicitly, the matrix form of L of Eq. (6) is given by

L = − i(H ⊗ 1 − 1 ⊗ HT )

+ γ1{σ̂+
1 ⊗ (σ̂−

1 )T − 1
2 [σ̂−

1 σ̂+
1 ⊗ 1 + 1 ⊗ (σ̂−

1 σ̂+
1 )T ]}

+ γ2{σ̂−
2 ⊗ (σ̂+

2 )T − 1
2 [σ̂+

2 σ̂−
2 ⊗ 1 + 1 ⊗ (σ̂+

2 σ̂−
2 )T ]}.

(7)

Since the Liouvillian superoperator is non-Hermitian, its
eigenvalue spectrum has distinct right and left eigenmatrices,
which are defined by Lρi = λiρi and L†σi = λ∗

i σi, respec-
tively. The right and left eigenmatrices form a biorthogonal
basis with respect to the Hilbert-Schmidt inner product, which
can be normalized by Tr[σiρ j] = δi j . From such definition,
the steady state of the system ρSS corresponds to the eigen-
matrix with eigenvalue λi = 0. If two or more eigenvalues
and eigenmatrices coalesce simultaneously, LEPs emerge. As
a result of the symmetry on the superoperator level, Eq. (7)
can be decomposed into five different blocks, L = ⊕νLν ,
with ν ∈ {a, b, c, d, e} [66]. The explicit forms of the divided
Liouvillian superoperators are provided in Appendix A. In
this way, the complexity of the calculation of the Liouvillian
spectrum can be greatly reduced.

In the Liouvillian formalism, if a Liouvillian superop-
erator is diagonalizable, the general solution of the master
equation can be expressed as a weighted sum of the right
eigenmatrices ρi with exponentially decaying factors:

ρ(t ) =
∑
i=1

cie
λitρi, (8)

where ci = Tr[σiρ(0)], which is connected to the initial state
of the system. Therefore, the real part and the imaginary part
of the eigenvalues λi are responsible for the decay rates and
the oscillations of any expectation value towards the steady
state, respectively.

III. RESULT

A. Liouvillian exceptional points

It is known that the emergence of synchronization is rooted
in the timescale separation among the decay rates of the
oscillations in the local observables, which are described by
the real parts of the eigenvalues of the Liouvillian superop-
erator governing the dynamics [28]. In the general scenario
of synchronization, two detuned qubits interact with each
other under collective dissipation, and the emergence of syn-
chronization can be observed when the decay mode with the
slowest decay rate survives while the others quickly approach
zero [15]. Additionally, synchronization can also be achieved
in the scenario of both identical qubits under local dissipa-
tion at different dissipative strength [12,21]. In this paper, we
consider a two-spin chain locally coupled to dissipative baths
with unbalanced gain and loss. The imbalance of the local
dissipation would break the symmetry of the system and lead
to nontrivial synchronization.

In general, for the system composed of spins, the ex-
pectation values of Pauli operators are used as the local
observables to monitor the dynamics of synchronization. First,
we choose the expectation value of σ̂ x as the local observable
to characterize the synchronization between the spins. In the
Liouvillian representation, from Eq. (8), the local observable
〈σ̂ x

j (t )〉 can be expressed as

〈
σ̂ x

j (t )
〉 = Tr

[
σ̂ x

j ρ
] =

16∑
i=1

ciTr
[
σ̂ x

j ρi
]
eλit , (9)

where j = 1, 2 denotes two different system spins. From cal-
culation, it can be found that only Tr[σ̂ x

j ρ
b
i ] and Tr[σ̂ x

j ρ
c
i ]

are nonzero. Meanwhile, due to Lb = L∗
c , the expression of

〈σ̂ x
j (t )〉 can be simplified and only the spectrum of Lb is

concerned:

〈
σ̂ x

j (t )
〉 = 2

4∑
i=1

cb
i Tr

[
σ̂ x

j ρ
b
i

]
eλb

i t , (10)

where cb
i = Tr[σ b

i ρ(0)], and λb
i and ρb

i are the eigenvalues and
right eigenmatrices of Lb, respectively. The concrete expres-
sion of λb

i is shown as follows:

λb
1,2 = −	 ±

√
2

4

√
α − β, λb

3,4 = −	 ±
√

2

4

√
α + β,

(11)

where

	 = (γ1 + γ2)/2,

α = γ 2
1 + γ 2

2 − 32κ2,

β =
√(

γ 2
1 − γ 2

2

)2 − 64
(
γ 2

1 − 6γ1γ2 + γ 2
2

)
κ2. (12)

And the explicit expression of the right eigenmatrices ρb
i

corresponding to the above eigenvalues λb
i is given in

Appendix B.
It can be seen from the Liouvillian spectrum of Lb that

different eigenvalues and eigenmatrices are coalesced under
certain conditions, which manifests the existence of LEPs.
According to Eq. (11), when α − β = 0, λb

1 = λb
2, and as

shown in Appendix B the corresponding eigenmatrices ρb
1 =

ρb
2 , which indicates a second-order LEP. When α + β = 0,

λb
3 = λb

4, and the corresponding eigenmatrices ρb
3 = ρb

4 (see
Appendix B), which indicates another second-order LEP.

For fixed dissipative strength γ1 and γ2, when the value
of coupling strength between the spins κ satisfies one of the
following conditions,

κb
1 = 1

4 (
√

2 − 1)
√

γ1γ2 (α − β = 0), (13)

κb
2 = 1

4 (
√

2 + 1)
√

γ1γ2 (α + β = 0), (14)

the LEP appears. Both types of LEPs can be reached for a
large range of parameters. Meanwhile, it should be noted that
the two types of LEPs cannot be reached simultaneously for
fixed γ1 and γ2.

In Fig. 1, we show the Liouvillian spectrum for differ-
ent values of coupling strength corresponding to the LEPs.
For γ1 = 0.02 and γ2 = 0.01, it can be directly obtained
that κb

1 ≈ 0.001 464 and κb
2 ≈ 0.008 536, corresponding to
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FIG. 1. The Liouvillian eigenvalue spectrum {λi} with different
κ at LEPs. The horizontal axis denotes the real part of λi, and the
vertical axis denotes the imaginary part of λi. (a) κ ≈ 0.001 464.
(b) κ ≈ 0.008 536. We set γ1 = 0.02, γ2 = 0.01.

α − β = 0 and α + β = 0, respectively. It can be seen
from Fig. 1(a) that, for κ = κb

1 ≈ 0.001 464, eigenvalues
λb

1,2 = λc
1,2 = λa

2,3 = λd
1 = λe

1. However, it can be seen from
Appendix B that only the eigenmatrices ρb

1 = ρb
2 and ρc

1 = ρc
2.

It indicates that there are simultaneously two second-order
LEPs for κ = κb

1 . Furthermore, in Fig. 1(a), λb
3 = λc

3 and
λb

4 = λc
4, but the corresponding eigenmatrices are not coa-

lesced. As is shown in Fig. 1(b), for κ = κb
2 = 0.008 536,√

α − β becomes imaginary, and eigenvalues λb
1 = λc

1 and
λb

2 = λc
2, which have two opposite nonzero imaginary parts,

but the corresponding eigenmatrices ρb
1 = ρc

1 and ρb
2 = ρc

2.
Meanwhile, eigenvalues λb

3,4 = λc
3,4 = λa

2,3 = λd
1 = λe

1. The
corresponding eigenmatrices ρb

3 = ρb
4 and ρc

3 = ρc
4, and there

are simultaneously two second-order LEPs.
It has been mentioned that 〈σ̂ x

j (t )〉 is only determined by
the eigenvalues of Lb [see Eq. (10)]. Specifically, the de-
cay rates of 〈σ̂ x

j (t )〉 are characterized by the real parts of
λb

i , and the oscillation frequencies are characterized by the
imaginary parts of λb

i . From Eqs. (10) and (11), it can be
inferred that, when α − β < 0, the eigenvalues λb

i are all
real, and the dynamics of 〈σ̂ x

j (t )〉 has no oscillation. When
α − β < 0 < α + β, λb

1,2 are complex and the imaginary parts
Im(λb

1) = −Im(λb
2), thus the dynamics of 〈σ̂ x

j (t )〉 has a unique
oscillation frequency. And when α + β > 0, the eigenvalues
λb

i are all complex and the imaginary parts Im(λb
1) = −Im(λb

2)
and Im(λb

3) = −Im(λb
4), thus the dynamics of 〈σ̂ x

j (t )〉 has
two different oscillation frequencies. It indicates that the

oscillation of the dynamics of 〈σ̂ x
j (t )〉 is determined by α − β

and α + β.
In Fig. 2, we show the dynamics of 〈σ̂ x

j (t )〉 with different
interaction strength κ . We suppose that the initial state of the
system is 1√

2
(|g〉 + |e〉) ⊗ 1√

2
(|g〉 + |e〉). It can be seen from

Fig. 2(a) that 〈σ̂ x
1 〉 and 〈σ̂ x

2 〉 decrease as time evolves, and
there is no oscillation during the decay. It has been shown that,
for κ = 0.001 < κb

1 , λb
i is real and the dynamics of 〈σ̂ x

j (t )〉
has no oscillation. It can be seen from Fig. 2(b) that 〈σ̂ x

1 (t )〉
and 〈σ̂ x

2 (t )〉 decrease to zero with a unapparent damped os-
cillation during the time evolution. This is because, for κb

1 <

κ = 0.005 < κb
2 , λb

1,2 is complex and λb
3,4 is real. However,

the imaginary part of λb
1,2 is small compared with the real

part of λb
1,2 and decay plays a major role in the evolution of

〈σ̂ x
j 〉. With the further increasing of κ , the imaginary part of

λb
1,2 increases gradually and eventually is greater than the real

part of λb
1,2. Meanwhile, the imaginary part of λb

3,4 becomes
nonzero when κ > κb

2 . In the rest of this paper, we label
ω1 = Im(λb

1), ω2 = Im(λb
3). As shown in Appendix C, in this

case, 〈σ̂ x
j 〉 would display two different oscillation frequencies,

and in general synchronization is not able to occur. It can be
seen from Fig. 2(c) that 〈σ̂ x

1 〉 and 〈σ̂ x
2 〉 do not synchronize in

the decaying evolution. However, with the further increasing
of κ , synchronization is able to occur. In Fig. 2(d), we plot the
time evolution of 〈σ̂ x

1 〉 and 〈σ̂ x
2 〉 with a larger coupling strength

κ = 0.1, and the insets show the detailed display of the oscil-
lation of 〈σ̂ x

1 〉 and 〈σ̂ x
2 〉 for two different time intervals. It can

be seen from Fig. 2(d) that 〈σ̂ x
1 〉 and 〈σ̂ x

2 〉 decay to zero after a
damped oscillation. And surprisingly, as time evolves the two
spins change from synchronized to antisynchronized and after
a while change from antisynchronized back to synchronized
again, i.e., a dynamical transition between synchronization
and antisynchronization occurs.

Why do the spins get (anti)synchronized even if the local
observable 〈σ̂ x

j 〉 displays two different oscillation frequen-
cies? And what makes the dynamical transition between
synchronization and antisynchronization occur? In order to
clarify these questions, we tend to characterize the signatures
of synchronization between the local observables of the sys-
tems quantitatively, and further analyze the synchronization
phenomenon. The Pearson coefficient C12 is a useful tool to
measure the degree of linear correlation between two time-
dependent variables, which is usually used as a figure of merit
to characterize the signatures of synchronization [11]. Given
variables x and y, the Pearson coefficient is defined as

C12 = δxδy√
δx2 δy2

, (15)

where δx = x − x, and the bar stands for the time average over
the time interval t :

x = 1

t

∫ t+t

t
x(t ′)dt ′. (16)

The Pearson coefficient C12 = 0 indicates that there is no syn-
chronization, C12 = 1 indicates synchronization, and C12 =
−1 indicates antisynchronization.

In Fig. 3, we plot the time evolution of the Pearson coeffi-
cient between the local observables 〈σ̂ x

1 〉 and 〈σ̂ x
2 〉. The system
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FIG. 2. The diagram of the local observable 〈σ̂ x
j 〉 as a function

of t for different κ . The blue solid lines and orange dashed lines
characterize 〈σ̂ x

1 (t )〉 and 〈σ̂ x
2 (t )〉, respectively. (a) κ = 0.001. (b) κ =

0.005. (c) κ = 0.02. (d) κ = 0.1. We set γ1 = 0.02, γ2 = 0.01. The
insets of (d) show the detailed displays of the oscillation of 〈σ̂ x

1 〉 and
〈σ̂ x

2 〉 for two different time intervals.

parameters are the same as those in Fig. 2(d). It can be seen
from Fig. 3 that the Pearson coefficient is 1 at the beginning,

FIG. 3. Time evolution of the Pearson coefficient. The system
parameters are the same as those in Fig. 2(d).

after a while it changes from 1 to −1 abruptly, and then it
returns to 1 again. It means that the two spins are synchronized
from the beginning and later get antisynchronized, and then
the two spins get synchronized again. According to Eq. (11),
we can see that with the increasing of κ , α � β, which makes
α − β and α + β approximately equal. It indicates two ap-
proximately equal imaginary parts of the eigenvalues λb

i and
leads to two approximately equal oscillation frequencies of
〈σ̂ x

j 〉 (ω1 ≈ ω2). In this case, ω1 + ω2 � ω1 − ω2, so we can
derive from Eq. (10) that

〈
σ̂ x

j (t )
〉 = ξ je

−	t sin

(
ω1 + ω2

2
t + ϕ1 j + ϕ2 j

2
+ φ j

)
. (17)

The derivation and the concrete analytical expressions of ξ j ,
ϕ1 j , ϕ2 j , and φ j are shown in Appendix C, where ϕ1 j and ϕ2 j

are constants and ξ j and φ j are slowly varying functions of
time, i.e., functions of (ω1−ω2 )t

2 . It can be seen that quantum
beats can be observed and the dominant oscillation frequency
of the dynamics of 〈σ̂ x

j (t )〉 is ω1+ω2
2 . This is why the spins

remain (anti)synchronized during the time evolution. Though
the two spins share a common oscillation frequency ω1+ω2

2 , the
time-dependent coefficient ξ j and phase φ j are different for
the spins. In the following, we eliminate the common decay
factor e−	t and focus on the oscillation of 〈σ̂ x

j (t )〉. In Fig. 4(a),
we plot the time evolution of 〈σ̂ x

j (t )〉WDF, which denotes the
evolution of 〈σ̂ x

j (t )〉 without the decay factor. It can be seen
from Fig. 4(a) that 〈σ̂ x

1 (t )〉WDF and 〈σ̂ x
2 (t )〉WDF change from

synchronization to antisynchronization, remain antisynchro-
nized for a while, and then change from antisynchronization to
synchronization. In Figs. 4(b) and 4(c), we plot the phases φ1

and φ2 as functions of t . It can be seen that phase φ1 abruptly
changes from π

2 to −π
2 at t ≈ 180, and φ2 abruptly changes

from π
2 to −π

2 at t ≈ 290. Actually, when the coefficient ξ j

oscillates to zero, the phase φ j suddenly changes from π
2 to

−π
2 . When the phase difference between φ1 and φ2 changes

from zero to π , the system changes from synchronization
to antisynchronization. The time interval between the sudden
change of φ1 and φ2 makes the phase difference between φ1

and φ2 change from zero to π , which induces the transition
between synchronization and antisynchronization.

Similar to Eq. (10), from calculation, it can be found that
the dynamics of 〈σ̂ y

j (t )〉 can also be simplified and only refers
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FIG. 4. (a) The time evolution of 〈σ̂ x
j (t )〉WDF. The blue solid lines

and orange dashed lines characterize 〈σ̂ x
1 (t )〉WDF and 〈σ̂ x

2 (t )〉WDF,
respectively. (b) Phase φ1 as a function of t . (c) Phase φ2 as a function
of t . The system parameters are the same as those in Fig. 2(d).

to the spectrum of Lb, which can be expressed as

〈
σ̂

y
j (t )

〉 = 2
4∑

i=1

cb
i Tr

[
σ̂

y
j ρ

b
i

]
eλb

i t , (18)

where cb
i = Tr[σ b

i ρ(0)]. It indicates that the dynamics of the
local observables 〈σ̂ x〉 and 〈σ̂ y〉 have no difference quali-
tatively. Therefore, we do not specify the synchronization
between the spins characterized by 〈σ̂ y〉.

Next, we choose 〈σ̂ z〉 as the local observable to investigate
the synchronization between the spins. From calculation, we
find that the dynamics of 〈σ̂ z〉 is fully governed by La. Similar
to Eq. (10), the local observable 〈σ z

j 〉 can be expressed as

〈
σ̂ z

j (t )
〉 =

6∑
i=1

ca
i Tr

[
σ̂ z

j ρ
a
i

]
eλa

i t , (19)

where ca
i = Tr[σ a

i ρ(0)], and λa
i and ρb

i are the eigenvalues
and eigenmatrices of La, respectively. According to the matrix
expression of La, the eigenvalue spectrum can be obtained as

λa
1 = 0, λa

2,3 = −	, λa
4 = −2	, λa

5,6 = −	 ± 1
2η,

(20)

where

η =
√

(γ1 − γ2)2 − 64κ2. (21)

FIG. 5. The Liouvillian spectrum {λi} at LEP κ = 0.001 25. The
horizontal axis denotes the real part of λi, and the vertical axis
denotes the imaginary part of λi. We set γ1 = 0.02, γ2 = 0.01.

The explicit expressions of the right eigenmatrices ρa
i cor-

responding to the above eigenvalues λa
i are shown in

Appendix B. It is worth mentioning that the eigenmatrix
corresponding to λa

1 = 0 characterizes the steady state of the
system.

It can be seen from the Liouvillian spectrum of La that,
for η = 0, eigenvalues λa

2,3 coalesce with λa
5,6. However, only

the eigenmatrices ρa
5 coalesce with ρa

6 , which indicates a
second-order LEP. For fixed dissipative strength γ1 and γ2,
the value of coupling strength between the spins κ satisfies
the following condition under which the LEP appears:

κa = γ1 − γ2

8
(η = 0). (22)

This LEP can be reached for a large range of parameters. In
Fig. 5, we show the Liouvillian spectrum for κ = κa. Given
γ1 = 0.02 and γ2 = 0.01, the corresponding κa = 0.001 25
for η = 0. It can be seen from Fig. 5 that all eigenvalues of the
Liouvillian superoperator L are real. Eigenvalues λa

2,3 = λa
5 =

λa
6 = λd

1 = λe
1. However, it can be seen from Appendix B that

of the corresponding eigenmatrices only ρa
5 coalesces with ρa

6 ,
and there is only one second-order LEP.

As shown in Eq. (19), the dynamics of 〈σ̂ z
j (t )〉 is deter-

mined by the eigenvalues of La. Specifically, the decay rates
of 〈σ̂ z

j (t )〉 are characterized by the real parts of λa
i , and the

oscillation frequencies are characterized by the imaginary
parts of λa

i . From Eqs. (19) and (20) it can be seen that,
when κ < κa, eigenvalues λa

i are real, and the dynamics of
〈σ̂ z

j (t )〉 has no oscillation. When κ > κa, eigenvalues λa
i have

a nonzero imaginary part, which causes the oscillation of
〈σ̂ z

j (t )〉.
In Fig. 6, we demonstrate the dynamics of 〈σ̂ z

j 〉 for two
different interaction strengths κ , and in Figs. 6(a) and 6(b)
κ = 0.001 and 0.05, respectively. It can be seen from Fig. 6(a)
that 〈σ̂ z

1 〉 increases as time evolves and then reaches a steady
value. In contrast, 〈σ̂ z

2 〉 decreases as time evolves and then
reaches a steady value. This can be explained as that, for κ =
0.001 < κa, the imaginary part of λa

i is zero and the dynamics
of 〈σ̂ z

j 〉 has no oscillation. As shown in Fig. 6(b) 〈σ̂ z
1 〉 and 〈σ̂ z

2 〉
increase to steady values with the same frequency in antiphase
oscillation, which indicates the antisynchronization between
the spins. It has been shown that, for κ = 0.05 > κa, the
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FIG. 6. The diagram of the local observable 〈σ̂ z
j 〉 as a function

of t for different κ . The blue solid lines and orange dashed lines
characterize 〈σ̂ z

1 (t )〉 and 〈σ̂ z
2 (t )〉, respectively. (a) κ = 0.001. (b) κ =

0.05. We set γ1 = 0.02, γ2 = 0.01.

imaginary parts of λa
5 and λa

6 are the same, and the dominant
frequency of the oscillation of 〈σ̂ z

j 〉 is Im(λa
5,6).

In the general scenario of synchronization, detuned qubits
get synchronized as a result of the time separation among the
decay rates of the oscillation modes in the local observables,
which is induced by the presence of a common bath that filters
out all the decay modes but the slowest one. However, in
this paper, we consider a different scenario of synchronization
of a two-spin chain under local dissipation with unbalanced
gain and loss. The asymmetry of the former is induced by the
detuning between the qubits, while the asymmetry of the latter
is induced by the imbalance between the local dissipation.
For 〈σ̂ z〉, when the coupling strength between the spins κ

is greater than the LEP, it only exhibits a single oscillation
mode and thus the local observables get (anti)synchronized.
And for 〈σ̂ x〉 or 〈σ̂ y〉, when κ is greater than the first LEP,
even though the local observables exhibit a single oscilla-
tion mode, the decay plays a dominant role in the evolution
and the oscillation cannot be observed. When κ is slightly
greater than the second LEP, the local observables exhibit two
different oscillation modes with the same decay rate, which
indicates the local observables do not (anti)synchronize in the
evolution. With the further increasing of κ , the two oscillation
modes gradually approach each other and become approxi-
mately equal. Quantum beats can be observed and the local
observables display the same dominant oscillation frequency,
which indicates the emergence of synchronization. Actually,
in the general synchronization scenario, if the other modes
are decayed out and only the slowest mode survives, the

synchronization at this time is just like the synchronization
with a single oscillation mode considered in this paper. More-
over, if the decay rates and frequencies of the two surviving
slowest modes are approximately equal, and the decay rates of
the other oscillation modes are significantly greater than those
of the two slowest modes, the synchronization in this case is
coincident with the synchronization with two approximately
equal oscillation modes considered in this paper.

We have used 1√
2
(|g〉 + |e〉) ⊗ 1√

2
(|g〉 + |e〉) as the initial

state of the system to investigate the relation between the
emergence of synchronization and LEPs. Now we take a more
general state (cos θ1|g〉 + sin θ1|e〉) ⊗ (cos θ2|g〉 + sin θ2|e〉),
θ1, θ2 ∈ [0, 2π ] as the initial states of the system to investigate
the effect of initial state on synchronization. According to
Eq. (10), it can be inferred that the oscillation frequency of
〈σ̂ x

j 〉 is determined by the imaginary parts of the eigenvalues
of the Liouvillian superoperator Lb, and the effect of the initial
state is included in the coefficient cb

i . Changing the initial state
of the system does not affect the oscillation frequency of 〈σ̂ x

1 〉
and 〈σ̂ x

2 〉. It can be seen from Appendix C that coefficient ξ j

and phase φ j are related to the coefficient Ai j , and indirectly
related to the coefficient cb

i which is determined by the initial
state of the system. Therefore, changing the initial state of the
system would affect the values of the amplitude and the phase
of the oscillation. Meanwhile, phase φ j is time dependent,
and the change of phase induced by the change of initial
state would affect the time at which the dynamical transition
between synchronization and antisynchronization occurs. In
Fig. 7, we display the synchronization between 〈σ̂ x

1 〉WDF and
〈σ̂ x

2 〉WDF and the corresponding Pearson coefficient for dif-
ferent initial states, where the common decay factors of the
local observables are omitted, and the system parameters are
the same as those in Fig. 4. In Figs. 7(a) and 7(b), the ini-
tial state of the system is (cos π

4 |g〉 + sin π
4 |e〉) ⊗ (cos π

3 |g〉 +
sin π

3 |e〉). It can be seen that the time at which the transition
between synchronization and antisynchronization occurs has
a shift compared with Fig. 4. Meanwhile, the time interval
in which 〈σ̂ x

1 〉WDF and 〈σ̂ x
2 〉WDF remain antisynchronized is

longer than that in Fig. 4. In Figs. 7(c) and 7(d), the initial
state of the system is (cos π

4 |g〉 + sin π
4 |e〉) ⊗ (cos 3π

4 |g〉 +
sin 3π

4 |e〉). It can be seen that 〈σ̂ x
1 〉WDF and 〈σ̂ x

2 〉WDF change
from antisynchronization to synchronization and remain syn-
chronized for a while, then change from synchronization back
to antisynchronization. Compared with Fig. 4, it can be found
that the (anti)synchronization in Fig. 7(d) is opposite to that in
Fig. 4. In Figs. 7(e) and 7(f), the initial state of the system is
(cos π

4 |g〉 + sin π
4 |e〉) ⊗ (cos π

6 |g〉 + sin π
6 |e〉). It can be seen

that 〈σ̂ x
1 〉WDF and 〈σ̂ x

2 〉WDF remain synchronized in the whole
evolution. It is because the change of initial state makes the
phases φ1 and φ2 produce an identical phase change π at
the same time and the phase difference between φ1 and φ2

remains zero. It is worth mentioning that the effect of the
initial state of the system on the synchronization between 〈σ̂ y

1 〉
and 〈σ̂ y

2 〉 has no qualitative difference from that of 〈σ̂ x
j 〉.

Similarly, it can be inferred from Eq. (19) that the oscilla-
tion frequency of 〈σ̂ z〉 is determined by the imaginary parts
of the eigenvalues of the Liouvillian superoperator La, and
the effect of the initial state is included in the coefficient
ca

i . Changing the initial state of the system would affect the
amplitude and the phase of 〈σ̂ z

j 〉. However, the phase of 〈σ̂ z
j 〉
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FIG. 7. (a, c, e) The time evolution of 〈σ̂ x
j (t )〉WDF with dif-

ferent initial states. The blue solid lines and orange dashed lines
characterize 〈σ̂ x

1 (t )〉WDF and 〈σ̂ x
2 (t )〉WDF, respectively. (b, d, f) The

corresponding time evolutions of the Pearson coefficient of panels
(a), (c), and (e), respectively. (a, b) θ1 = π

4 , θ2 = π

3 . (c, d) θ1 =
π

4 , θ2 = 3π

4 . (e, f) θ1 = π

4 , θ2 = π

6 . The system parameters are the
same as those in Fig. 4.

is a constant, and 〈σ̂ z
1 〉 and 〈σ̂ z

2 〉 would remain synchronized
or antisynchronized in the whole evolution. The initial state
of the system only determines whether the system is synchro-
nized or antisynchronized.

As mentioned above, in the general scenario, synchroniza-
tion is determined by the nature of the open-system dynamics,
in which the common dissipation filters out all the oscillation
modes with different decay rates but the slowest one. It can
be seen from the general expression of the local observable
Eq. (9) that the coefficient ci is related to the initial state of
the system, which would affect the amplitude and the phase
of oscillation of the local observables quantitatively, but make
no qualitative difference in synchronization. In this paper,
even if we consider a different scenario, synchronization is
actually determined by the property of the dynamics. Specifi-
cally, synchronization emerges when the dynamics of the local
observables exhibits only a single oscillation mode or two ap-
proximately equal oscillation modes as the coupling strength
between the spins is greater than the LEPs. Once the value of
coupling strength between the spins is sufficient to establish
(anti)synchronization, the corresponding local observables re-
main (anti)synchronized from the beginning of the evolution.
As shown above, the emergence of (anti)synchronization is
robust to the change of the initial state of the system. However,
the initial state would also affect the amplitude and the phase
of the oscillation, which would determine whether the system

is synchronized or antisynchronized and affect the time at
which the dynamical transition between synchronization and
antisynchronization occurs. It can be seen that the effect of the
initial state of the system on synchronization in this paper has
no qualitative difference with that in the general scenario.

B. Hamiltonian exceptional points

We have discussed the relation between the emergence of
synchronization and LEPs in Sec. III A. In this subsection,
we tend to study the relation between the emergence of syn-
chronization and HEPs, and investigate the effect of quantum
jumps on synchronization.

As mentioned above, the Lindblad master equation con-
sists of a Hermitian Hamiltonian part describing the unitary
evolution of the system, and non-Hermitian dissipation parts
describing the progressive loss of energy, coherence, and in-
formation induced by the environment. Referring to quantum
trajectory theory, supposing the effect of the environment on
the system is continuously and perfectly probed, the Lind-
blad master equation is regarded as the average over infinite
quantum trajectories [47]. Thus, the dissipation terms of the
master equation can be divided into two parts: the nonunitary
evolution of the system and the quantum jumps caused by the
continuous measurement performed by the environment on
the system [48–50]. By rearranging the terms in the Lindblad
master equation, Eq. (4) can be rewritten as

ρ̇ = −i[Ĥ, ρ] + γ1D[σ̂+
1 ]ρ + γ2D[σ̂−

2 ]ρ

= −i(Ĥeffρ − ρĤ†
eff ) + γ1σ̂

+
1 ρσ̂−

1 + γ2σ̂
−
2 ρσ̂+

2 , (23)

where

Ĥeff = Ĥ − iγ1

2
σ̂−

1 σ̂+
1 + iγ2

2
σ̂+

2 σ̂−
2 (24)

is the effective NHH, and it may display HEPs. The last two
terms in Eq. (23) are the quantum jumps.

In the classical or semiclassical regimes, the effect of the
quantum jumps could be neglected directly. However, in the
quantum regimes, quantum jumps have a profound effect on
the dynamics of the system. According to quantum trajectory
theory, if one postselects only those trajectories where no
quantum jump takes place [67], the effective resulting dynam-
ics of Eq. (23) is

ρ̇ = −i(Ĥeffρ − ρĤ†
eff ). (25)

It should be noted that this equation is not trace preserving
and needs to be renormalized in calculation. Solving the Li-
ouvillian equation Eq. (25), the density matrix operator can be
expressed as [68]

ρ(t ) = e−iĤefftρ(0)eiĤ†
efft . (26)

Supposing the eigenvalues of Ĥeff are hk , and the corre-
sponding eigenvectors are |vk〉, one has

Ĥeff|vk〉 = hk|vk〉, 〈vk|Ĥ†
eff = h∗

k 〈vk|. (27)

According to Eq. (24), the eigenvalue spectrum of Ĥeff is

h1 = − iγ1

2
, h2 = − iγ2

2
, h3,4 = − i

2
	 ± 1

4
δ, (28)
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where

	 = (γ1 + γ2)/2,

δ =
√

−(γ1 + γ2)2 + 64κ2, (29)

and the corresponding eigenvectors are

|v1〉 = (0 0 0 1)T ,

|v2〉 = (1 0 0 0)T ,

|v3〉 =
(

0
iγ1 + iγ2 + δ

8
1 0

)T

,

|v4〉 =
(

0
iγ1 + iγ2 − δ

8
1 0

)T

. (30)

It can be seen from the eigenspectrum of Ĥeff that eigenvalues
h3 and h4 and the corresponding eigenvectors are the same
when δ = 0, which manifests the existence of a second-order
HEP. For fixed dissipative strength γ1 and γ2, when the value
of coupling strength between the spins κ satisfies the condi-
tion

κ ′ = γ1 + γ2

8
(31)

the HEP appears.
In the following, we investigate the relation between the

emergence of synchronization and HEPs. Without loss of gen-
erality, we choose 〈σ̂ x〉 as the local observable to characterize
the synchronization of the system. According to Eq. (26), the
dynamics of 〈σ̂ x〉 which has neglected the effect of quantum
jumps can be expressed as〈

σ̂ x
j (t )

〉 = Tr[σ̂ x
j ρ] = Tr

[
σ̂ x

j e−iĤefftρ(0)eiĤ†
efft

]
. (32)

In Fig. 8, we show the dynamics of 〈σ̂ x
j (t )〉 for two

coupling strengths κ in the absence of quantum jumps. In
Figs. 8(a) and 8(b), the interaction strength κ = 0.001 and
0.05, respectively, and the other system parameters are the
same as those in Fig. 2. For γ1 = 0.02 and γ2 = 0.01, it can
be obtained that HEP κ ′ = 0.003 75 corresponding to δ = 0.
It can be seen from Fig. 8(a) that, for κ = 0.001 < κ ′, 〈σ̂ x

1 (t )〉
and 〈σ̂ x

2 (t )〉 decrease as time evolves without oscillation. It
can be seen from Fig. 8(b) that, for κ = 0.05 > κ ′, 〈σ̂ x

1 (t )〉
and 〈σ̂ x

2 (t )〉 decrease with the same damped oscillation during
the time evolution, and the curves of 〈σ̂ x

1 (t )〉 and 〈σ̂ x
2 (t )〉 are

coincident. It is because the non-Hermitian Hamiltonian Ĥeff

could exhibit only a single HEP, and the system displays a
unique frequency when the coupling strength between the
spins is greater than the HEP, which makes the system keep
synchronized or antisynchronized during the whole evolution.
It should be noted that, for a small value of κ , the oscillation
of 〈σ̂ x

j (t )〉 is not apparent and the decay is dominant. In this
case, even 〈σ̂ x

1 (t )〉 and 〈σ̂ x
2 (t )〉 share a common oscillation

frequency, and we cannot observe the phenomenon of syn-
chronization. Comparing Fig. 8 with Fig. 2, it can be found
that, in the presence of quantum jumps, the dynamical transi-
tion between synchronization and antisynchronization occurs,
which is attributed to the existence of two different LEPs. It
can be seen that the quantum jumps play an important role in
the synchronization of the system. It is worth mentioning that
different local observables make no qualitative difference on

FIG. 8. The diagram of the local observable 〈σ̂ x
j 〉 as a function

of t for different κ . The blue solid lines and orange dashed lines
characterize 〈σ̂ x

1 (t )〉 and 〈σ̂ x
2 (t )〉, respectively. (a) κ = 0.001. (b) κ =

0.05. We set γ1 = 0.02, γ2 = 0.01.

the synchronization with HEP. Meanwhile, the initial state of
the system would affect the amplitude and the phase of the
local observables, but the phase difference between the spins
is a constant, which makes the spins remain synchronized or
antisynchronized in the whole evolution. The initial state of
the system only determines whether the system is synchro-
nized or antisynchronized.

IV. CONCLUSION

In this paper, we have investigated the synchronization of
a spin chain locally coupled to dissipative environments with
unbalanced gain and loss and explored the relation between
the emergence of synchronization and exceptional points. By
analyzing the Liouvillian spectrum governing the dynamics,
we have found that the system exhibits LEPs. For our model
in the Liouvillian formalism, the matrix of the Liouvillian
superoperator is block diagonal and the different blocks cor-
respond to the dynamics of different observables. We have
found that σ̂ z corresponds to the block which has a single
LEP, while σ̂ x and σ̂ y correspond to the block which has
two LEPs. For σ̂ z, when the coupling strength between the
nearest spins is greater than the LEP it could get synchronized
or antisynchronized. And for σ̂ x and σ̂ y, when the coupling
strength between the nearest spins is greater than both LEPs it
could get synchronized or antisynchronized. And surprisingly
as time evolves the spins can change from synchronization
to antisynchronization and later change from antisynchro-
nization back to synchronization again, i.e., a dynamical
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transition between synchronization and antisynchronization
occurs. Moreover, we have found that the initial state of the
system does not affect the emergence of (anti)synchronization
between the spins, but it would determine whether the system
is synchronized or antisynchronized and affect the time at
which the dynamical transition between synchronization and
antisynchronization occurs.

We also consider the system dynamics of the effective
non-Hermitian Hamiltonian by postselecting only those tra-
jectories where no quantum jump takes place, and found that
the effective non-Hermitian Hamiltonian has only a single
HEP. When the coupling strength between the nearest spins is

greater than the HEP, the system observables can get synchro-
nized or antisynchronized and will keep (anti)synchronized
during the whole evolution. Compared to the synchronization
with LEPs which takes into account the effect of quantum
jumps, it can be concluded that quantum jumps play an im-
portant role in the synchronization of the system.
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APPENDIX A: LIOUVILLIAN SUPEROPERATOR

Due to the block structure of the Liouvillian superoperator, it can be decomposed into five different parts L = ⊕νLν , with
ν ∈ {a, b, c, d, e} [66]. Each decomposed Liouvillian superoperator corresponds to a Hilbert-Schmidt subspace, H = ⊕νHν .
Ha is spanned by |eeee〉〉, |egeg〉〉, |egge〉〉, |geeg〉〉, |gege〉〉, and |gggg〉〉; Hb is spanned by |eeeg〉〉, |eege〉〉, |eggg〉〉, and |gegg〉〉;
Hc is spanned by |egee〉〉, |geee〉〉, |ggeg〉〉, and |ggge〉〉; Hd is spanned by |eegg〉〉; He is spanned by |ggee〉〉. In this way, the
decomposed Liouvillian superoperators can be read as

La =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−γ2 0 0 0 γ1 0

γ2 0 2iκ −2iκ 0 γ1

0 2iκ − 1
2 (γ1 + γ2) 0 −2iκ 0

0 −2iκ 0 − 1
2 (γ1 + γ2) 2iκ 0

0 0 −2iκ 2iκ −γ1 − γ2 0

0 0 0 0 γ2 −γ1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Lb =

⎛
⎜⎜⎜⎜⎜⎜⎝

− 1
2γ2 2iκ 0 γ1

2iκ − 1
2γ1 − γ2 0 0

0 γ2 − 1
2γ1 −2iκ

0 0 −2iκ −γ1 − 1
2γ2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Lc =

⎛
⎜⎜⎜⎜⎜⎜⎝

− 1
2γ2 −2iκ 0 γ1

−2iκ − 1
2γ1 − γ2 0 0

0 γ2 − 1
2γ1 2iκ

0 0 2iκ −γ1 − 1
2γ2

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A1)

and Ld = Le = − 1
2 (γ1 + γ2).

APPENDIX B: LIOUVILLIAN SPECTRUM

In this section, we provide the full Liouvillian spectrum of Lν , ν = {a, b, c, d, e}. The explicit expressions of the eigenvalues
λν

i read

λa
1 = 0, λa

2,3 = − 1
2 (γ1 + γ2), λa

4 = −(γ1 + γ2), λa
5,6 = − 1

2 (γ1 + γ2 ± η),

λb
1,2 = − 1

4 (2γ1 + 2γ2 ±
√

2
√

α − β ), λb
3,4 = − 1

4 (2γ1 + 2γ2 ±
√

2
√

α + β ),

λc
1,2 = − 1

4 (2γ1 + 2γ2 ±
√

2
√

α − β ), λc
3,4 = − 1

4 (2γ1 + 2γ2 ±
√

2
√

α + β ),

λd
1 = − 1

2 (γ1 + γ2), λe
1 = − 1

2 (γ1 + γ2). (B1)
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And the corresponding right eigenmatrices ρν
i can be written as

ρa
1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

γ 2
1

γ 2
2

0 0 0

0 γ1((γ1+γ2 )2+16κ2 )
16γ 2

2 κ2
iγ1(γ1+γ2 )

4γ2κ
0

0 − iγ1(γ1+γ2 )
4γ2κ

γ1

γ2
0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, ρa
2 =

⎛
⎜⎜⎜⎜⎜⎝

− γ1

γ2
0 0 0

0 1
2 (−1 + γ1

γ2
) i(γ1−γ2 )(γ1+γ2 )

8γ2κ
0

0 0 1
2 (−1 + γ1

γ2
) 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠,

ρa
3 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, ρa

4 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 −1 0
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64γ2κ2
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8γ2κ
0
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√
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√
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8κ

1 0
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⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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APPENDIX C: ANALYTICAL EXPRESSION OF 〈σ̂x〉
According to Eq. (10), when the coupling strength between the spins κ is greater than the second LEP κb

2 , the local observable
〈σ̂ x

j 〉 can be derived as

〈
σ̂ x

j

〉 =
4∑

i=1

Ai je
λb

i t

= e−	t (A1 je
iω1t + A2 je

−iω1t + A3 je
iω2t + A4 je

−iω2t )

= e−	t [A1 j (cos ω1t + i sin ω1t ) + A2 j (cos ω1t − i sin ω1t ) + A3 j (cos ω2t + i sin ω2t ) + A4 j (cos ω2t − i sin ω2t )]

= e−	t [(A1 j + A2 j ) cos ω1t + i(A1 j − A2 j ) sin ω1t + (A3 j + A4 j ) cos ω2t + i(A3 j − A4 j ) sin ω2t]

= e−	t [A′
j sin(ω1t + ϕ1 j ) + A′′

j sin(ω2t + ϕ2 j )], (C1)

where subscript j = 1, 2 denotes two different system spins, Ai j = 2cb
i Tr[σ̂ x

j ρ
b
i ], and 	 = (γ1 + γ2)/2:

A′
j =

√
(A1 j + A2 j )2 + [i(A1 j − A2 j )]2, A′′

j =
√

(A3 j + A4 j )2 + [i(A3 j − A4 j )]2, (C2)

ϕ1 j = arctan

[
A1 j + A2 j

i(A1 j − A2 j )

]
+ nπ, ϕ2 j = arctan

[
A3 j + A4 j

i(A3 j − A4 j )

]
+ nπ. (C3)

It should be noted that (A1 j + A2 j ), i(A1 j − A2 j ), (A3 j + A4 j ), and i(A3 j − A4 j ) are all real. If i(A1 j − A2 j ) > 0, n = 0, or else
n = 1. Similarly, if i(A3 j − A4 j ) > 0, n = 0, or else n = 1.

With the further increasing of the coupling strength between the spins, α � β, it follows that α − β ≈ α + β, which makes
ω1 + ω2 � ω1 − ω2. It can be induced from Eq. (C1) that

〈
σ̂ x

j

〉 = e−	t

[
(A′

j + A′′
j ) sin

(
ω1 + ω2

2
t + ϕ1 j + ϕ2 j

2

)
cos

(
ω1 − ω2

2
t + ϕ1 j − ϕ2 j

2

)

+ (A′
j − A′′

j ) cos

(
ω1 + ω2

2
t + ϕ1 j + ϕ2 j

2

)
sin

(
ω1 − ω2

2
t + ϕ1 j − ϕ2 j

2

)]

= ξ je
−	t sin

(
ω1 + ω2

2
t + ϕ1 j + ϕ2 j

2
+ φ j

)
, (C4)

where

ξ j =
√[

(A′
j + A′′

j ) cos

(
ω1 − ω2

2
t + ϕ1 j − ϕ2 j

2

)]2

+
[

(A′
j − A′′

j ) sin

(
ω1 − ω2

2
t + ϕ1 j − ϕ2 j

2

)]2

, (C5)

φ j = arctan

[
(A′

j − A′′
j ) sin

(
ω1−ω2

2 t + ϕ1 j−ϕ2 j

2

)
(A′

j + A′′
j ) cos

(
ω1−ω2

2 t + ϕ1 j−ϕ2 j

2

)]
+ nπ. (C6)

If (A′
j + A′′

j ) cos( ω1−ω2
2 t + ϕ1 j−ϕ2 j

2 ) > 0, n = 0, or else n = 1.

[1] A. Pikovsky, J. Kurths, M. Rosenblum, and J. Kurths, Syn-
chronization: A Universal Concept in Nonlinear Sciences
(Cambridge University, New York, 2003), Vol. 12.

[2] M. Kapitaniak, K. Czolczynski, P. Perlikowski, A. Stefanski,
and T. Kapitaniak, Synchronization of clocks, Phys. Rep. 517,
1 (2012).

[3] A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, and C.
Zhou, Synchronization in complex networks, Phys. Rep. 469,
93 (2008).

[4] G. V. Osipov, J. Kurths, and C. Zhou, Synchronization in Oscil-
latory Networks (Springer, New York, 2007).

[5] L. Glass, Synchronization and rhythmic processes in physiol-
ogy, Nature (London) 410, 277 (2001).

[6] O. V. Zhirov and D. L. Shepelyansky, Quantum synchroniza-
tion, European Physical Journal D 38, 375 (2006).

[7] I. Goychuk, J. Casado-Pascual, M. Morillo, J. Lehmann, and P.
Hänggi, Quantum stochastic synchronization, Phys. Rev. Lett.
97, 210601 (2006).

[8] O. V. Zhirov and D. L. Shepelyansky, Synchronization and
bistability of a qubit coupled to a driven dissipative oscillator,
Phys. Rev. Lett. 100, 014101 (2008).

[9] O. V. Zhirov and D. L. Shepelyansky, Quantum synchronization
and entanglement of two qubits coupled to a driven dissipative
resonator, Phys. Rev. B 80, 014519 (2009).

[10] P. P. Orth, D. Roosen, W. Hofstetter, and K. Le Hur,
Dynamics, synchronization, and quantum phase transitions

042206-12

https://doi.org/10.1016/j.physrep.2012.03.002
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1038/35065745
https://doi.org/10.1140/epjd/e2006-00011-9
https://doi.org/10.1103/PhysRevLett.97.210601
https://doi.org/10.1103/PhysRevLett.100.014101
https://doi.org/10.1103/PhysRevB.80.014519


DYNAMICAL TRANSITION BETWEEN SYNCHRONIZATION … PHYSICAL REVIEW A 108, 042206 (2023)

of two dissipative spins, Phys. Rev. B 82, 144423
(2010).

[11] G. L. Giorgi, F. Galve, and R. Zambrini, Probing the spectral
density of a dissipative qubit via quantum synchronization,
Phys. Rev. A 94, 052121 (2016).

[12] B. Bellomo, G. L. Giorgi, G. M. Palma, and R. Zambrini,
Quantum synchronization as a local signature of super-and sub-
radiance, Phys. Rev. A 95, 043807 (2017).

[13] A. Cabot, G. Luca Giorgi, and R. Zambrini, Synchronization
and coalescence in a dissipative two-qubit system, Proc. R. Soc.
A 477, 20200850 (2021).

[14] G. Karpat, I. Yalçınkaya, and B. Çakmak, Quantum synchro-
nization in a collision model, Phys. Rev. A 100, 012133 (2019).

[15] G. Karpat, I. Yalçınkaya, and B. Çakmak, Quantum synchro-
nization of few-body systems under collective dissipation, Phys.
Rev. A 101, 042121 (2020).

[16] T. E. Lee, C.-K. Chan, and S. Wang, Entanglement tongue and
quantum synchronization of disordered oscillators, Phys. Rev.
E 89, 022913 (2014).

[17] V. Ameri, M. Eghbali-Arani, A. Mari, A. Farace, F.
Kheirandish, V. Giovannetti, and R. Fazio, Mutual information
as an order parameter for quantum synchronization, Phys. Rev.
A 91, 012301 (2015).

[18] S. Walter, A. Nunnenkamp, and C. Bruder, Quantum synchro-
nization of two van der Pol oscillators, Ann. Phys. (Leipzig)
527, 131 (2015).

[19] N. Es’haqi-Sani, G. Manzano, R. Zambrini, and R. Fazio, Syn-
chronization along quantum trajectories, Phys. Rev. Res. 2,
023101 (2020).

[20] M. Xu, D. A. Tieri, E. C. Fine, J. K. Thompson, and M. J.
Holland, Synchronization of two ensembles of atoms, Phys.
Rev. Lett. 113, 154101 (2014).

[21] A. Cabot, G. L. Giorgi, F. Galve, and R. Zambrini, Quantum
synchronization in dimer atomic lattices, Phys. Rev. Lett. 123,
023604 (2019).

[22] M. Ludwig and F. Marquardt, Quantum many-body dynamics
in optomechanical arrays, Phys. Rev. Lett. 111, 073603 (2013).

[23] M. R. Hush, W. Li, S. Genway, I. Lesanovsky, and A. D.
Armour, Spin correlations as a probe of quantum synchroniza-
tion in trapped-ion phonon lasers, Phys. Rev. A 91, 061401(R)
(2015).

[24] A. W. Laskar, P. Adhikary, S. Mondal, P. Katiyar, S.
Vinjanampathy, and S. Ghosh, Observation of quantum phase
synchronization in spin-1 atoms, Phys. Rev. Lett. 125, 013601
(2020).

[25] M. Koppenhöfer, C. Bruder, and A. Roulet, Quantum synchro-
nization on the IBM Q system, Phys. Rev. Res. 2, 023026
(2020).

[26] L. Calderaro, A. Stanco, C. Agnesi, M. Avesani, D. Dequal,
P. Villoresi, and G. Vallone, Fast and simple qubit-based syn-
chronization for quantum key distribution, Phys. Rev. Appl. 13,
054041 (2020).

[27] N. Jaseem, M. Hajdušek, V. Vedral, R. Fazio, L.-C. Kwek, and
S. Vinjanampathy, Quantum synchronization in nanoscale heat
engines, Phys. Rev. E 101, 020201(R) (2020).

[28] G. L. Giorgi, A. Cabot, and R. Zambrini, Transient synchroniza-
tion in open quantum systems, in Advances in Open Systems
and Fundamental Tests of Quantum Mechanics: Proceedings
of the 684. WE-Heraeus-Seminar, Bad Honnef, Germany, 2–5
December 2018 (Springer, New York, 2019), pp. 73–89.

[29] M. Cattaneo, G. L. Giorgi, S. Maniscalco, G. S. Paraoanu,
and R. Zambrini, Bath-induced collective phenomena on
superconducting qubits: Synchronization, subradiance, and en-
tanglement generation, Ann. Phys. (Leipzig) 533, 2100038
(2021).

[30] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University, New York, 2002).

[31] G. Karpat, I. Yalçinkaya, B. Çakmak, G. L. Giorgi, and
R. Zambrini, Synchronization and non-Markovianity in open
quantum systems, Phys. Rev. A 103, 062217 (2021).

[32] K.-J. Zhou, J. Zou, B.-M. Xu, L. Li, and B. Shao, Effect of
non-Markovianity on synchronization, Commun. Theor. Phys.
73, 105101 (2021).

[33] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H.
Musslimani, S. Rotter, and D. N. Christodoulides, Non-
Hermitian physics and PT symmetry, Nat. Phys. 14, 11 (2018).

[34] C. M. Bender, Making sense of non-Hermitian Hamiltonians,
Rep. Prog. Phys. 70, 947 (2007).

[35] I. Rotter, A non-Hermitian Hamilton operator and the physics
of open quantum systems, J. Phys. A 42, 153001 (2009).

[36] W. Heiss, The physics of exceptional points, J. Phys. A 45,
444016 (2012).

[37] T. Kato, Perturbation Theory for Linear Operators (Springer,
New York, 2013), Vol. 132.

[38] H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R.
El-Ganainy, D. N. Christodoulides, and M. Khajavikhan, En-
hanced sensitivity at higher-order exceptional points, Nature
(London) 548, 187 (2017).
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and Ş. Özdemir, Chiral and degenerate perfect absorption on
exceptional surfaces, Nat. Commun. 13, 599 (2022).
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