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Photon-assisted tunneling resonantly extending the domain of the PT -symmetric phase
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We theoretically study the photon-assisted tunneling (PAT) in a PT - symmetric triple-well potential (TWP)
with balanced gain-loss between the noncentral wells and neutral central well. We show that the application
of an ac drive in the central well permits to control the Rabi frequency of the population oscillation between
the noncentral wells of the TWP. In particular, when a multiple of the driving frequency matches the chemical
potential in the central well, an enhancement of the Rabi frequency is observed. Very importantly, we show
that PAT resonantly extends the domain of the parameter space with a real spectrum. This is achieved for a
gain-loss parameter well above its critical value in the nondriven case, which allows for stable Rabi oscillations
in a strong gain-loss scenario. Moreover, within a Floquet framework, we find an analytical estimation of the
critical gain-loss parameter for the different resonance values of the driving frequency. We also discuss possible
physical realizations of our model.
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I. INTRODUCTION

Among the most relevant transport quantum phenomena
generated by the exchange of photons with the ac field is
the photon-assisted tunneling (PAT) [1]. This is a resonant
process that is known to be a powerful tool in the control of
quantum tunneling [2]. Its study has been of significant impor-
tance for transport processes and hence for the development
of nanodevices [3]. Its range of applications is very ample,
encompassing areas such as semiconductor superlattices [4,5],
coupled quantum dots [6,7], Josephson junctions [8], Bose-
Einstein condensates in optical lattices [9–14], and photonic
lattices [15,16].

Other areas with potential applications of PAT that re-
main largely unexplored are open systems. In this regard,
non-Hermitian Hamiltonians with parity-time PT reflection
symmetry [17,18] may open new possibilities. These systems
have been extensively investigated in the last two decades
with applications in different research fields [19–44]. A main
characteristic within systems with balanced gain-loss is the
presence of a real spectrum when some real parameter γ

that controls the degree of non-Hermicity is below a critical
value γPT . It is, in fact, for the parameter domain γ � γPT ,
that the system is at the exact PT phase, otherwise the PT
phase is broken. Thus, motivated by the study of the PT
phases and their transitions, in recent years the research has
been extended to setups subjected to ac fields [45–60]. An
interesting example is the experimental observation of the
parity-time-symmetric phase transition in dissipative floquet
systems which is achieved by tuning the amplitude and fre-
quency of the ac drive [58,60].

The question that arises then is what happens when a reso-
nant process such as the PAT phenomenon occurs in a system
with balanced gain-loss? Can the PAT process be used to ex-
tend the domain of the PT -symmetric phase in a system with
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balanced gain-loss? If so, new applications could be conceived
as, for example, in sensors [61], in which the resonances
associated to the PAT would play a fundamental role.

To answer these questions, in the present work we consider
a triple well potential (TWP) with balanced gain-loss between
the noncentral wells and whose central well is neutral. We
show that the application of an ac drive to the central well
allows to control Rabi oscillations between the noncentral
wells of TWP. In particular, we demonstrate that PAT largely
enhances the frequency of Rabi oscillations when the system
is at resonance with the ac drive. Very importantly, we find
that PAT can resonantly extend regions with the real spectrum
for relatively large values of the gain-loss parameter. These
values can potentially be used for sensing purposes given the
close relation between the resonant tunneling process and the
stability of the Rabi oscillations.

The paper is organized as follows. In Sec. II, we de-
scribe the physical system and introduce the model with
PT -symmetric characteristics. In Sec. III, we first discuss the
nondriven system where we analyze the conditions for the
Rabi oscillations as well as its energy spectrum in the presence
of balanced gain-loss. Then, we discuss the driven case. In
particular, we analyze the enhancement in frequency of Rabi-
like oscillations due to the PAT process. We demonstrate that
PAT can resonantly extend stable regions with real spectrum
for a value of the gain-loss parameter well above of its critical
value in the nondriven case. To this end, we investigate regions
with real Floquet quasienergies in phase diagrams created
by the application of the ac drive. Finally, in Sec. IV, we
summarize our results and discuss possible implementations
for the findings described in the paper.

II. MODEL

We consider a triple-well with a balanced gain-loss be-
tween the noncentral wells and a neutral central well, which
is sketched in Fig. 1. In this system the depth of the central
well is different from the other adjacent wells, which creates
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FIG. 1. Sketch of a triple well potential where the side wells
experience balanced gain and loss whereas the central well is neutral.
The central well is subjected to an ac drive given by the gate function
G(t ), which is a periodic function shifted by a constant chemical
potential μ. The numbers 1, 2, and 3 label the wells.

a chemical potential. We note that similar gain-neutral-loss
setup can be seen in ferromagnetic trilayers [44] and in cou-
pled ring cavities [39].

In addition to the static gain-neutral-loss setup, an ac
drive is applied in the central well of the TWP that, together
with the chemical potential, conform to the gate function
G(t ) shown in Fig. 1. This is introduced to control the Rabi
oscillations between the noncentral wells. In this regard,
an analogous implementation of an ac field in a system of
two ultrahigh-frequency oscillators with balanced gain-loss
controlled by a time-dependent capacitance has been recently
considered [58].

For the description of the tunneling dynamics inside of the
TWP, we consider the tight- binding scenario, which reduces
the analysis to the three-level model

iψ̇1 = −�ψ2 + iγψ1, (1)

iψ̇2 = −�(ψ1 + ψ3) + G(t )ψ2, (2)

iψ̇3 = −�ψ2 − iγψ3, (3)

where � is the tunneling rate between neighboring wells
and γ is the gain-loss parameter. Here G(t ) = μ + A cos(ωt )
where μ is the chemical potential.

The equations above can be cast as the ac-driven
Schrödinger equation

i
∂�

∂t
= H�, (4)

where � = [ψ1, ψ2, ψ3]T and

H =
⎛
⎝

iγ −� 0
−� G(t ) −�

0 −� −iγ

⎞
⎠. (5)

By defining the parity operator P̂ , which interchanges 1
and 3 and the time reversal operator as T̂ : i → −i, t → −t ,
which reverses the time, it is easy to check that the Hamilto-
nian Ĥ (t ) above fulfills the property [P̂T̂ , Ĥ ] = 0. Thus, we
can assert that this is a PT -symmetric system. Interestingly,
we note that PT symmetry is preserved regardless of the
chemical potential value. Furthermore, as we show below,

the fulfillment of the PT symmetry in the presence of G(t )
allows the observation of stable Rabi oscillations due to a PAT
process.

III. RESULTS AND DISCUSSION

The system of Eqs.(1) to (3) was investigated in the ab-
sence of both an ac drive and balanced gain-loss [62,63]. It
was shown in Refs. [62,63] that the presence of a chemical
potential can induce Rabi-like oscillations between the non-
central wells of the TWP. Other studies in a similar static
setup, in the presence of balanced gain-loss, focused their
analysis on higher-order exceptional points [39,44]. As for
the investigation of the PAT phenomenon, studies in a sim-
ilar three-mode model have been carried out in the absence
of balanced gain-loss and with the focus on the tunneling
between adjacent modes [15,16]. Here, unlike these previous
works, we investigate the role of PAT on the Rabi oscillations
between the noncentral wells in the presence of balanced
gain-loss with a neutral central well.

In the following we analyze the Rabi oscillations for the
system of Eqs.(1) to (3) in the nondriven case.

A. Nondriven TWP

With no ac drive, the system of Eqs.(1) to (3) reduces to

iψ̇1 = −�ψ2 + iγψ1, (6)

iψ̇2 = −�(ψ1 + ψ3) + μψ2, (7)

iψ̇3 = −�ψ2 − iγψ3, (8)

where �/μ � 1 is required for the existence of Rabi oscil-
lations between the noncentral wells of the TWP as shown
in Refs. [62,63] in the absence of gain and loss. Here, the
presence of μ in Eq. (7) corresponding to the neutral well is
key for stable Rabi oscillations. To gain insight, we look into
the nondriven two-level model

iψ̇1 = −�ψ2 + iγψ1 + μ

2
ψ1, (9)

iψ̇2 = −�ψ1 − iγψ2 − μ

2
ψ2, (10)

where μ is a chemical potential that creates a bias between
the two levels with balanced gain-loss. In this system, by
interchanging 1 and 2 and applying the time-reversal operator
T̂ , one finds that the PT symmetry is broken. Furthermore,

from its corresponding eigenvalue equation E2 + γ 2 − μ2

4 −
iγμ − �2 = 0, one obtains two solutions for E (eigenenergy)
that are always complex with μ and γ distinct from zero. A
similar result can be obtained in the system of Eqs. (6) to (8)
by adding a constant energy difference between Eqs. (6) and
(8).

Unlike the two-level system of Eqs. (9) and (10), in the
system of Eqs. (6) to (8), a real spectrum can be found. For
this purpose, we solve the secular equation of the system of
Eqs. (6) to (8), from which we obtain the eigenvalue equation

E3 − μE2 + E (γ 2 − 2�2) − μγ 2 = 0. (11)
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FIG. 2. (a) Imaginary values of the roots of Eq. (11) as a function of the gain-loss parameter γ . The red dashed line corresponds to the
solutions of Eq. (14). The dotted line indicates the critical gain-loss parameter γPT . �/μ = 0.05. (b) Critical gain-loss parameter γPT /� as

a function of the reciprocal value of the chemical potential �/μ. The black-dashed line corresponds to the analytical relation γ̃PT = �2

μ .

First of all, for γ = 0, and taking into account �/μ � 1, one
finds the eigenenergies E1 = −2�2/μ, E2 = μ + 2�2/μ,
and E3 = 0 [62]. Given that μ � �, the oscillatory process
of populations between the noncentral wells only involves the
mode with eigenfrequency 2�2/μ, as we show below.

To analyze the gain-loss effects in the spectrum, we plot
in Fig. 2(a), the imaginary values of the roots of Eq. (11) as
a function of the γ . In this picture, one can observe that the
energy spectrum becomes complex for values of γ larger than
a critical value γPT at the so-called exceptional point. Here, to
find the analytical value of γPT we resort to the adiabatic ap-
proach. Because �/μ � 1, ψ2 rapidly approaches the value
that is obtained from Eq. (7), so the adiabatic approach can be
applied. Thus, by setting ψ̇2 = 0, one obtains

i ˙̃ψ1 = −�̃ψ̃3 + iγ ψ̃1, (12)

i ˙̃ψ3 = −�̃ψ̃1 − iγ ψ̃3, (13)

where (ψ̃1, ψ̃3) = (ψ1, ψ3)exp[−i�̃t] and �̃ = �
2

μ .
These effective equations model a two-level quantum sys-

tem with �̃ as the characteristic Rabi frequency of the system.
This system of coupled equations is known to fulfill the PT
symmetry whose eigenvalues are given by

λ± = ±
√

�̃2 − γ 2. (14)

Hence for values of γ > γ̃PT = �
2

μ , the eigenvalues become
complex. In Fig. 2(a), the imaginary values of Eq. (14) are
superimposed to the exact imaginary spectrum of eigenen-
ergies, showing a full agreement and thus predicting with
great accuracy the critical value γPT . To elucidate the validity

region of the relation γ̃PT = �
2

μ , we show in Fig. 2(b), the
numerical solutions of γPT /� as a function of �/μ, together

with γ̃PT = �
2

μ that is depicted by a dashed straight line.
Here, for values of �/μ � 1, where the adiabatic theory is
applicable, the figure clearly shows a good agreement between
the numerical results and the analytical prediction. On the
other hand, for values of � � 0.2μ, when the adiabatic condi-
tion is not satisfied, a deviation of the straight line is observed.
Another interesting result from Fig. 2(b) is that γPT scales

inversely proportional to μ. This shows that PT symmetry
alone does not guarantee the existence of a real spectrum.

According to Eqs. (12) and (13), the population in the first
well |ψ1|2 oscillates with two times the frequency of �̃, which
also holds for the population in the third well |ψ3|2 and its
difference. In what follows, to characterize the coherent oscil-
latory process of populations between the noncentral wells,
we define the population imbalance z(t ) as the population
difference between the first and third wells, viz.

z(t ) = |ψ1|2 − |ψ3|2, (15)

which is a quantity that can be experimentally measured
[64,65]. Here, the characteristic oscillation frequency of z(t ),
given by the eigenfrequency 2�2/μ, serves as a benchmark
for the ac-driven setup.

B. Driven TWP

The application of an ac drive can, in principle, modify
the properties of the tunneling dynamics in the TWP. Let us
first consider a vanishing gain-loss parameter, namely, γ = 0.
We are interested in the analysis of Rabi coherent oscillations
between the noncentral wells, when a gate function G(t ) is
applied in the central well. In Fig. 3(a) are depicted coher-
ent oscillations of the population imbalance z(t ) for different
frequencies of the ac drive. In this figure we observe that the
oscillation period can increase or decrease depending on the
frequency ω of the ac drive. Particularly interesting are the
cases whose driving frequencies differ by small values with a
large difference between their oscillation periods. An example
are the curves with ω = 10� (red line) and ω = 12� (blue
line) depicted in the Fig. 3(a), where the oscillation period of
the blue curve is approximately six times that of the red curve.

To gain some understanding, in Fig. 3(b) is featured the
oscillation frequency of the population imbalance as a func-
tion of the ratio ω/μ. In this figure is also depicted with
a red-dashed line the oscillation frequency of the nondriven
case for comparison purposes. This value is reached in the
figure for large values of the driving frequency, namely, for
ω → ∞.

On the other hand, we are able to observe points with
zero Rabi-oscillation frequency values. These correspond to
situations where populations remain localized and tunneling
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FIG. 3. (a) Population imbalance evolution for frequencies of the ac drive, ω/� = 10, 12, 20, 30. (b) Oscillation frequency of z(t ) (in units
of �) as a function of the ratio ω/μ. The vertical black-dashed lines indicate the location of the resonance frequencies ωm = (1/m)μ, with
m = 1, 2, 3, 4, 5. The horizontal red-dashed line depicts the corresponding oscillation frequency 0.1� for A = 0. In both (a) and (b) A = 20�.
(c) Oscillation frequency of z(t ) (in units of �) as a function of the amplitude of the drive A/ω. (black-solid line) ω = ω1; (red-dashed line)
ω = ω2, �/μ = 0.05. The orange dot with oscillation frequency 0.1� indicates the point with A = 0.

is fully suppressed, which is usually referred to as a coherent
destruction of the tunneling (CDT) process. This is a phe-
nomenon that has been largely addressed in the literature [2]
and that we refer to later on.

A noticeable feature in Fig. 3(b) is the presence of peaks
for values of the ac drive frequency ω that fulfill the reso-
nance condition mωm = μ with m = 1, 2, . . .. Note that, at
the main resonance peak ω = ω1, the oscillation frequency
of the population imbalance is of the order of the tunnel-
ing rate � between neighboring wells. This enhancement in
the frequency of the Rabi oscillation is a consequence of a
photon-assisted tunneling process. Thus, when a multiple of
the external frequency matches the chemical potential of the
system, a resonant transfer of populations between the first
and third wells takes place.

The phenomenon of PAT and its effect over the Rabi os-
cillations is also determined by the amplitude of the drive.
To elucidate such a dependence, we show in Fig. 3(c) the
behavior of the Rabi oscillation frequency as a function of
the amplitude A/ω in a resonant scenario. In this figure are
featured two curves corrresponding to ω = ω1 (black solid
line) and ω = ω2 (red-solid line). Both curves start from the
predicted value 2�2/μ = 0.1� for μ = 20�. On the other
hand, both curves show points with zero frequency values for
the Rabi oscillations, which are associated to a CDT process.
These points are the zeros of the J1(A/ω) [J2(A/ω)] for the

black (red) curve, where J1 and J2 are the Bessel functions of
first kind, as we show later on. Here, the large variation of the
oscillation frequency with the amplitude of the ac drive could,
in principle, allow a dynamic control of the frequency of the
Rabi oscillations that take place between the noncentral wells
of the TWP.

So far, we showed the enhancing effect of PAT on the
frequency of Rabi oscillations in the absence of a balanced
gain-loss, that is, for γ = 0. We now investigate the system
when γ �= 0. In particular, we are interested in the possible
effect of PAT on the stability of Rabi oscillations for γ �= 0.
To gain insight, we resort to the Floquet formalism [2]. Within
this framework the Floquet states can be expressed as

ψ̃ j (t ) = ˜̃ψ j (t ) exp(−iε jt ), j = 1, 2, 3, (16)

where ε j are the quasienergies and ˜̃ψ j (T + t0) = ˜̃ψ j (t0).
Here, the quasienergies defined as ε j = Re(ε j ) + iIm(ε j ) [53]
with j = 1, 2, 3, are the eigenvalues of a time-independent
matrix R, which is connected to the monodromix matrix M
of Eqs. (1) to (3) through the equation

M = e−iRT . (17)

So, by diagonalizing M, we get the quasienergies of the
system. In Fig. 4, we show in a phase diagram, the imaginary
values of the complex Floquet spectrum as a function of the
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FIG. 4. Phase diagram for the normalized ac frequency ω/μ

and gain-loss parameter γ (in units of �). The plot shown is the
maximum of the imaginary part of the quasienergy spectrum (q =
max[Im(ε)]). The horizontal green dashed line corresponds to the
critical gain-loss parameter γPT = 0.05� for A = 0. The vertical
red-dashed lines indicate the location of the resonance frequencies
ωm = (1/m)μ with m = 1, 2, 3, 4, 5; for a fixed chemical potential.
The other parameters are A/ω = 1 and �/μ = 0.05.

driving frequency ω and the gain-loss parameter γ . In this
phase diagram, the regions in blue (yellow) correspond to
vanishing (nonzero) imaginary values of all quasienergies (ε j

with j = 1, 2, 3). Also depicted with a green-dashed line is
the analytical value γPT = 0.05� of the critical gain-loss
parameter with A = 0 whose value is reached in the figure for
large values of the driving frequency, namely, for ω → ∞.

The phase diagram also shows narrow stripes of the real
spectrum for relatively large γ at the resonance frequencies
ωm with m = 1, 2, . . .. It is at these frequencies that peaks with
large Rabi frequencies appear as a result of the PAT process,
as shown in Fig. 3(b). This shows a clear connection between
the PAT process and large extensions of the parameter space
with real spectrum. Here, the existence of narrow stripes with
real spectrum at the frequencies ωm may provide a tool of high
sensitivity for the detection of small fluctuations in the chem-
ical potential, which could be exploited for sensing purposes
[61,63].

In view of the significant extension of the parameter space
with real spectrum due to the PAT, we calculate below an-
alytical expressions of the critical gain-loss parameter for the
resonance frequencies ωm, with m = 1, 2, . . .. To this end, and
for the sake of convenience, we resort to the high-frequency
regime. In this regime, the equations are averaged over the pe-
riod of the drive allowing to get some effective equations with
rescaled parameters.

The time average is valid provided � � max[ω,
√

Aω]
[52]. So, by making the transformation

ψ1(t ) = φ1(t ), (18)

ψ2(t ) = φ2(t )e−i[ A
ω

sin(ωt )+mωt], (19)

ψ3(t ) = φ3(t ), (20)

and averaging over the period of the drive, we find

iφ̇1 = iγφ1 − �Qφ2, (21)

iφ̇2 = −�Q(φ1 + φ3), (22)

iφ̇3 = −iγφ3 − �Qφ2, (23)

where Q = (−1)mJm. Here, Jm = Jm(A/ω) with m � 1 is the
mth order of the Bessel function of the first kind [66]. By di-
agonalizing the Hamiltonian matrix of the system of Eqs.(21)
to (23), we find the quasienergies

ε1,2 = ±
√

2�2J2
m − γ 2, (24)

and ε3 = 0.
Thus, from Eq. (24) we get for the resonance frequency

ωm, the critical gain-loss parameter

γ
(m)
PT =

√
2�|Jm|. (25)

Hence, when γ > γ
(m)
PT , the spectrum becomes complex. In-

terestingly, γ
(m)
PT vanishes at the zeros of Jm.

It is worth noting that a similar finding can be obtained
by applying an ac driving, as proposed in Ref. [56], to the
two-level system of Eqs. (9) and (10). For this case, follow-
ing similar steps as above, one obtains the critical gain-loss
parameter �|Jm|, which is smaller than γ

(m)
PT . In that regard,

a larger extension of the real spectrum is achieved with the
triple-well setup.

Let us now check the validity of Eq. (24). So, let us first
consider the case γ = 0. In Fig. 5(a), we show the behavior of
the quasienergies as a function of the amplitude of the ac drive
with ω = ω1. In this plot, the analytical values of Eq. (24)
with m = 1 appear superimposed over the numerical results,
showing an excellent agreement for most of the spectrum. In
particular, we note that at the zeros of the Bessel function
J1(A/ω) with A/w = 3.8317; 7.0156; . . . ; the quasienergies
cross, leading to a CDT with null oscillation frequency as
shown in Fig. 3(c). Equation (24), however, does not fulfill
the behavior observed for values of the amplitude close to
zero, as expected from the averaging condition. Instead, in
the limit A/ω → 0, the curves approach some finite energy
values. These values are associated to the energies of the

nondriven system −2�
2

μ and μ + 2�
2

μ . Note that, at the fre-
quency ω = ω1, the width of the Floquet-Brillouin zone is the
chemical potential, meaning that absorbing a photon compen-

sates for the displacement of μ between the quasienergy 2�
2

μ

and eigenenergy μ + 2�
2

μ .
Let us now look into the case when γ �= 0. In Fig. 5(b)

we show in the upper and lower panels the respective real
and imaginary values of the quasienergies as a function of the
amplitude A for γ = 0.1�. In the upper panel, we observe
that real values of quasienergies, in the vicinity of crossing
points, merge at exceptional points (EPs). In these EPs the
quasienergies become complex with no vanishing imaginary
part. As a result, for complex quasienergy values the system
is unstable, meaning that an uncontrollable growth of the
amplitude of the Rabi oscillations takes place.
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FIG. 5. (a) Quasienergy ε versus amplitude A/ω of the ac drive for γ = 0. The black-solid lines correspond to numerical solutions whereas
green dashed lines correspond to solutions given by Eq. (24) with γ = 0. Inset shows an enlargement of the figure in the vicinity of A = 0.
(b) Complex quasienergy spectrum as a function of the amplitude A for γ = 0.1�. The upper and lower panels correspond to the real and
imaginary components of the quasienergy ε. The other parameters are ω = μ = 20�.

By looking into Fig. 5(b), and comparing with Fig. 3(c) for
γ = 0, one can deduce that complex quasienergies emerge for
amplitudes of the drive where the Rabi-oscillation frequency
is low. This implies that at the zeros of the Bessel function J1

the population imbalance with γ > 0 is not longer stable.
In general, and as predicted by Eq. (24), quasienergies

become complex when the gain-loss parameter γ exceeds the
critical value γ

(m)
PT given by Eq. (25). Thus, to corroborate

this prediction, we show in a phase diagram for A and γ the
regions with vanishing (blue) and nonzero imaginary values
(yellow) of the quasienergies (see Fig. 6). The left panel
corresponds to the case ω = ω1, whereas in the right panel
is featured the situation ω = ω2. In these panels, regions with
a real spectrum have a lobe shape. Importantly, the lobes have
critical values of γ larger than γPT , the corresponding critical
value for the nondriven case. This means that the action of
the ac drive extends the real spectrum beyond the nondriven
scenario, thus having a stabilization effect on the Rabi os-
cillations. In the phase diagram are depicted with solid gold
lines the analytical values γ

(m)
PT for m = 1 and m = 2 in the

left and right panels, respectively. In both panels the border

of the regions with real spectra are reasonably well described
by γ

(m)
PT values, reaching perfect agreement at the zeros of the

corresponding Bessel functions Jm, except when A/ω → 0.
In the case of A = 0, the numerical values in both panels
feature the same critical finite value γPT = 0.05� which is in

full agreemment with the estimated γPT = �
2

μ for μ = 20�.
Furthermore, excluding the points near A/ω = 0, we note that
the curves of γ

(m)
PT values in Fig. 6 show an exact behavior to

the Rabi frequency curves depicted in Fig. 3(c). Interestingly,
we observe that γ

(m)
PT becomes larger as the Rabi frequency

increases, which means that the transfer rate of populations
between the noncentral wells plays a fundamental role in the
stability of the system. A physical explanation to this phe-
nomenon could be attributed to the fact that a faster transfer of
populations between the wells can eliminate more rapidly the
excess of population generated in the first well by transferring
it to the third well where losses occur, thus preventing an
uncontrollable growth of the population imbalance z(t ).

The above results shed light on the resonantly extended
regions with PT phase and provide a good foot for their

FIG. 6. Phase diagrams for the amplitude A/ω and gain-loss parameter γ (in units of �). In both panels, the plot shown is the maximum
of the imaginary part of the quasienergy spectrum (q = max[Im(ε)]). Left panel: ω = ω1 = μ. Right panel: ω = ω2 = μ/2. Both panels are
depicted with solid gold lines γ

(m)
PT from Eq. (25) with m = 1 and m = 2 for the left and right panels, respectively. The parameter �/μ = 0.05.
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implementation in systems with a gain-neutral-loss setup
where the central element is under the presence of an ac field.

IV. CONCLUDING REMARKS

We studied the photon-assisted tunneling in a PT -
symmetric triple-well potential with balanced gain-loss be-
tween the noncentral wells and neutral central well. We first
showed that using the ac field allows to control the fre-
quency of Rabi oscillations between the noncentral wells.
In particular, when the frequency of the drive matched the
chemical potential in the central well, an enhancement of the
Rabi-frequency oscillations could be observed, which is an
indication of a photon-assisted tunneling process. Very impor-
tantly, we investigated in detail, analytically and numerically,
the effect of the frequency and the amplitude of the ac drive
on the position of the exceptional point of the system. As a
relevant result, we found that photon-assisted tunneling can
resonantly extend regions of the parameter space with a real
spectrum for a value of the gain-loss parameter well above
its critical value in the nondriven case, thus allowing the
existence of stable Rabi oscillations in the presence of strong
gain-loss situations. This is a consequence of the connection,
found in our simulations, between the border of the parameter

space domain with real spectrum and the Rabi oscillation
frequency between the noncentral wells of the TWP.

A consequence of extending regions with real spectrum
using photon-assisted tunneling is the high sensitivity pro-
vided by the resonance phenomenon, which opens the door
for applications such as sensors. In particular, detecting fluc-
tuations in the chemical potential could be exploited in cold
atom setups for sensing matter waves [63].

Finally, our three-level model could potentially be realized
in experiments where photon-assisted tunneling occurs in the
presence of a gain-loss controlled environment. An exam-
ple of possible physical realization is with ultracold atoms
trapped in optical lattices, which are coupled to a particle
reservoir [30], and are subjected to the action of ac fields
[9,11]. Another possibility is in a periodically modulated
optical waveguide array. In this system, there is an analog
of photon-assisted tunneling [15,16], which implemented in
waveguides with balanced gain-loss [24] would allow to test
our findings.
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