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Influence of the rotational sense of two colliding laser beams on
the radiation of an ultrarelativistic electron
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With analytical treatment, the classical dynamics of an ultrarelativistic electron in two counterpropagating
circularly polarized strong laser beams with either a corotating or counterrotating direction are considered.
Assuming that the particle energy is the dominant scale in the setup, an approximate solution is derived, and
the influence of the rotational sense on the dynamics is analyzed. Qualitative differences in both electron energy
and momentum are found between the corotating and counterrotating laser beams and are confirmed by the
exact numerical solution of the classical equation of motion. Despite these differences in the electron trajectory,
the radiation spectra of the electron do not deviate qualitatively from each other for configurations with a
varying rotational sense of the laser beams. Here, the radiation of an ultrarelativistic electron interacting with
counterpropagating laser beams is given in the framework of the Baier-Katkov semiclassical approximation.
Several parameter regimes are considered, and the spectra resulting from the two scenarios all have the same
shape and only differ quantitatively by a few percent.
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I. INTRODUCTION

Ultrastrong-laser techniques, both those presently available
[1,2] and near-future facilities [3,4], will allow investigation
into extreme regimes of nonlinear quantum electrodynamics
(QED) processes. γ photons can be produced by elec-
tron radiation, which may further generate avalanches of
electron-positron pairs through cascade processes [5–11].
Multiple-photon emissions and large quantum recoils of emit-
ted photons result in the emergence of conspicuous classical
and quantum radiation reaction effects [12,13]. In the realm
of standard QED, these nonlinear processes correspond to
the inclusion of higher orders of perturbation expansions,
which yield numerous Feynman diagrams and render the
calculation intractable. In order to overcome this obstacle,
strong-field QED has been introduced [14], which replaces the
free-particle wave function in the calculations with the wave
function in the presence of the strong field under considera-
tion. Since the strong field is regarded as a classical field here,
the transition from standard to strong-field QED is determined
by the dimensionless field strength ξ ≡ −eE0/mω0, where e
and m are the electron charge and mass, respectively, E0 is the
electric-field amplitude, and ω0 is the angular frequency of the
strong field. (Relativistic units h̄ = c = 1 are used throughout
the paper, unless specified otherwise.)
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Unfortunately, the exact analytical wave functions for an
electron in strong classical fields exist for only a few special
field configurations [15]. For a general configuration, several
approximate approaches are developed to investigate the non-
linear QED processes. For very high field intensities (ξ �
1), the most common method is to approximate the strong
electromagnetic field as a locally constant crossed electric
and magnetic field. However, deficiencies and breakdowns
of the local constant-field approximation (LCFA) were ob-
served in various regimes recently [16–23]. An alternative
approach is the so-called Wentzel-Kramers-Brillouin (WKB)
approximation [24–30]. It is closely connected to the classical
description and can be obtained only in cases in which the
electron’s classical equation of motion is solvable. Inspired
by the spirit of the WKB approximation, Baier and Katkov
developed the semiclassical operator approach, which can
express the amplitudes of strong-field QED processes (e.g.,
nonlinear Compton and nonlinear Breit-Wheeler) in complex
general background fields as a function of the electron’s clas-
sical trajectory [31–33] when there is no exact solution for the
corresponding Dirac equation.

The experimental limit of investigating the strong-field
QED processes is the field strength obtained in the labora-
tory. The desire to increase the effective field strength even
more with a fixed laser-beam energy gave rise to the con-
cept of multibeam configurations [34,35] and the notion of a
dipole wave [36–39]. One of the simplest cases of a multi-
beam configuration is the counterpropagating-wave (CPW)
setup, which is an attractive setup to study strong-field QED
effects [40–44] and a favorable configuration for QED cas-
cades [45,46] and new x-ray sources [47]. Especially, the
field configuration of a rotating electric field, which mimics
the antinode of a standing wave, is widely used to study the
pair-creation mechanism [48–51]. It is also noteworthy that
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in this setup electron-trapping dynamics are also observable,
which strongly depend on the particle dynamics due to the
radiation reaction [42,52]. The dynamics of a particle in the
presence of the CPW configuration are determined by the ratio
of the laser frequencies as seen in the electron’s average rest
frame. If this ratio is close to unity, the system is resonant,
giving rise to phenomena such as the Kapitza-Dirac effect
[53–56] and stimulated Compton emission [57–60]. The latter
is the operating principle for free-electron lasers [61]. On the
other hand, the classical and quantum equations of motion for
an electron have also been investigated in the nonresonant
regime, where the above-mentioned ratio is far from 1, by
using various approaches [62–64].

In this work, the classical dynamics and the radiation pro-
cesses of an ultrarelativistic electron moving in a circularly
polarized CPW are considered in the nonresonant regime for
both co- and counterrotating arrangements of the two laser
beams. The classical trajectory of the electron is obtained both
analytically and numerically. We generalized the approach
employed in Ref. [64], where the analytical solution is based
on an approximation that imposed a restriction on the laser
parameters and the electron’s initial momentum; namely, the
electron’s average energy must be the dominant energy scale
in the system (ξ1ξ2 � γ 2, with ξ1 and ξ2 being the laser
fields’ strengths and γ being the average Lorentz factor of
the electron in the fields). This solution is verified by a fully
numerical calculation. By substituting this analytical solution
into the Baier-Katkov (BK) operator method, we also studied
the radiation properties of the electron in the background field.
Particularly, the change in the radiation spectrum caused by
modifying the lasers’ rotational sense is investigated. The in-
vestigation shows that although the dynamics are qualitatively
different in the co- or counterrotating cases, the radiation
spectra of the electron have a similar shape and differ only
quantitatively by a few percent.

This paper is organized as follows. Section II gives the
derivations of the electron’s classical trajectory in the CPW
with arbitrary rotational sense and compares it with a fully
numerical solution. The influence of the laser’s direction
of rotation on the electron dynamics is investigated. The
calculation of the photon-emission matrix elements and the
corresponding emission formula are given in Sec. III. By
employing the emission-probability formula, we also analyze
the effects of the sense of rotation on the radiation spectrum.
Finally, we conclude our paper in Sec. IV with a discussion of
our main findings.

II. THE CLASSICAL DYNAMICS

In this section the mathematical formulation of the CPW
problem is introduced. The approximated solution and its
validity condition are derived for arbitrary rotational sense of
the lasers. The classical equation of motion for an electron in
the presence of an electromagnetic field reads

dPμ

dτ
= e

m
FμνPν, (1)

where τ is the proper time, Pμ is the particle’s four-
momentum, and Fμν ≡ ∂μAν − ∂νAμ is the electromagnetic
field tensor. The vector potential corresponding to the CPW

configuration is A = A1 + A2, where

A1 ≡ a1g1(φ1)[cos φ1ex + ε1 sin φ1ey],

A2 ≡ a2g2(φ2)[cos φ2ex + ε2 sin φ2ey],
(2)

with the scalars a1 and a2 being the field amplitudes, the
function g1,2(φ) denoting the slow wave envelopes, and ε1,2

being +1 or −1, corresponding to a leftwards or rightwards
rotation of the wave, respectively. In the following we use
the normalized value ξ1,2 = −ea1,2/m for the field strength,
while ex = (0, 1, 0, 0) and ey = (0, 0, 1, 0) are unit vectors.
We choose the optical frequency ω = 1.55 eV for the lasers
in this work. Furthermore, the classical trajectory is related to
the momentum according to

x(τ ) =
∫

dτ
P(τ )

m
. (3)

An exact solution for Eq. (1) in the background field of
the CPW is not feasible, and some approximations need to
be applied to obtain the classical trajectory. The main task
of solving Eq. (1) is to integrate over the proper time τ .
Therefore, to help us perform the integral in Eq. (3), we claim
that we can rewrite phases φ1 and φ2 in Eq. (2) as

φ1 = k1 · x(τ ) = k1 · P̄

m
τ + δφ1(τ ),

φ2 = k2 · x(τ ) = k2 · P̄

m
τ + δφ2(τ ),

(4)

with

δφ1 =
∫

k1 · δP(τ )

m
dτ, δφ2 =

∫
k2 · δP(τ )

m
dτ (5)

being the higher-order corrections. Here, the wave vec-
tors read k1 = (ω, 0, 0, ω), k2 = (ω, 0, 0,−ω), and δP(τ ) =
P(τ ) − P̄, with the bar symbol indicating the averaged quan-
tity, which can be obtained by averaging the time-dependent
quantities over the proper time τ inside the laser fields. If
the envelope functions g1(φ1) and g2(φ2) are smooth enough,
which implies the two lasers are turned on adiabatically, we
can write down the analytical expression relating the asymp-
totic momentum to the average momentum in the laser fields
[64]. In the case of the ξ1 laser being turned on first, this
relation is

P̄μ = pμ + m2ξ 2
1

2(k1 · p)
kμ

1 + m2ξ 2
2

2[k2 · P̄(1)]
kμ

2 , (6)

where

P̄(1)
μ = pμ + m2ξ 2

1

2(k1 · p)
k1,μ. (7)

If the ξ2 laser is turned on first, it analogously reads

P̄μ = pμ + m2ξ 2
1

2[k1 · P̄(2)]
kμ

1 + m2ξ 2
2

2(k2 · p)
kμ

2 , (8)

with

P̄(2)
μ = pμ + m2ξ 2

2

2(k2 · p)
k2,μ. (9)

When both lasers are turned on simultaneously, the electron
behaves as if the counterpropagating laser beams had been
turned on first since the copropagating beam oscillates much
more slowly in the electron’s rest frame.
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A. Analytical solutions

Now, let us try to integrate over Eq. (1). To do this, we
assume that the higher-order corrections in Eq. (4) can be
ignored and the following integrals can be performed:∫

dτ sin(φ1) ≈ − m

k1 · P̄
cos(φ1),

∫
dτ sin(φ2) ≈ − m

k2 · P̄
cos(φ2),

∫
dτ sin(φ1 − φ2) ≈ − m

(k1 − k2) · P̄
cos(φ1 − φ2),

∫
dτ sin(φ1 + φ2) ≈ − m

(k1 + k2) · P̄
cos(φ1 + φ2),

(10)

as well as the similar integral of cos → sin. The condition un-
der which this assumption is valid will be analyzed later. In the
derivation below we set the envelopes g1,2(φ) = 1 for reasons
of simplicity because the lasers are assumed to be turned on
adiabatically. However, these envelopes are important when
we compare the analytical results with the numerical ones.
We will discuss this in the next section.

Since the vector potential in Eq. (2) is independent of the
transverse coordinates x and y, the canonical momenta in these
directions are conserved, leading to

P⊥(τ ) = p⊥ − eA(τ ). (11)

Without loss of generality, we choose the initial transverse
momentum p⊥ to be only along the x axis. Substituting the
explicit vector potential, one arrives at

Px(τ ) = px + mξ1 cos φ1 + mξ2 cos φ2, (12)

Py(τ ) = mξ1ε1 sin φ1 + mξ2ε2 sin φ2. (13)

With the substitution of these transverse momenta and the
magnetic-field components of the laser field

B1 = −ωa1(−ε1 cos φ1x̂ − sin φ1ŷ), (14)

B2 = ωa2(−ε2 cos φ2x̂ − sin φ2ŷ), (15)

the equation obeyed by the momentum along the z direction is

dPz

dτ
= −pxω[ξ1 sin φ1 − ξ2 sin φ2]

− mξ1ξ2ω(1 + ε1ε2) sin(φ1 − φ2). (16)

After integrating over τ , we arrive at

Pz = P̄z + pxω

[
mξ1

k1 · P̄
cos φ1 − mξ2

k2 · P̄
cos φ2

]

+ m2ωξ1ξ2ε−
(k1 − k2) · P̄

cos(φ1 − φ2), (17)

with ε− = 1 + ε1ε2. After the expressions for all momenta
have been derived, the energy of the electron in the laser fields
can be obtained based on the energy-momentum relation

ε = (
m2 + P2

x + P2
y + P2

z

)1/2
. (18)

By defining the time-averaged energy as ε̄ =
√

m2∗ + p2
x + P̄2

z ,

with m∗ = m
√

1 + ξ 2
1 + ξ 2

2 being the effective mass of the

electron in the laser fields, the energy can be rewritten as

ε = ε̄ + δε + ε̄O
(

δPz

ε̄

)2

+ ε̄O
(

δε

ε̄

)2

, (19)

where we applied the Taylor expansion. The oscillating term
in the energy looks like

δε = pxω

(
mξ1

k1 · P̄
cos φ1 + mξ2

k2 · P̄
cos φ2

)

+ m2ωξ1ξ2ε+
(k1 + k2) · P̄

cos(φ1 + φ2), (20)

with ε+ = 1 − ε1ε2. In order for the expansion in Eq. (19) to
be valid, we need O( δPz

ε̄
) � 1 and O( δε

ε̄
) � 1, which yields

the following conditions:

mξ1 pxω

k1 · P̄ε̄
� 1,

m2ξ1ξ2ω

(k1 + k2) · P̄ε̄
� 1,

mξ2 pxω

k2 · P̄ε̄
� 1,

m2ξ1ξ2ω

(k1 − k2) · P̄ε̄
� 1. (21)

So far, we have not given the explicit form of phases φ1

and φ2. But substituting energy and momentum into Eq. (5)
allows us to write the higher-order terms of the phases as

δφ1 = �1 + C1 sin(φ2) − C1−2 sin(φ1 − φ2)

+C1+2 sin(φ1 + φ2), (22)

δφ2 = �2 + C2 sin(φ1) + C1−2 sin(φ1 − φ2)

+C1+2 sin(φ1 + φ2), (23)

where the coefficients are

C1 = 2pxmξ2ω
2

(k2 · P̄)2
, C1−2 = ε−m2ξ1ξ2ω

2

[(k1 − k2) · P̄]2
,

C2 = 2pxmξ1ω
2

(k1 · P̄)2
, C1+2 = ε+m2ξ1ξ2ω

2

[(k1 + k2) · P̄]2
. (24)

Now, with Eqs. (4), (22), and (23), we have an implicit system
for the solution of the phases. Without loss of generality,
we now choose the electron to copropagate along ξ1, which
results in only C2 being non-negligible. In order to make sure
that the contributions of C1, C1+2, and C1−2 to the momentum
are second order and the key assumption in Eq. (10) indeed
holds, we follow a procedure similar to the one shown in
Ref. [64] and obtain further restrictions for our solution. These
can be written as

2pxmξ1ω
2

(k1 · P̄)(k2 · P̄)
� 1,

2pxmξ1ω
2

(k1 · P̄)[(k1 − k2) · P̄]
� 1,

2pxmξ1ω
2

(k1 · P̄)[(k1 + k2) · P̄]
� 1. (25)

Thus, combining the conditions in Eqs. (21) and (25) yields
the concluding validity criteria for the solution,

m2ξ2ξ1

2ε̄2
� 1,

2pxmξ1

m2∗
� 1,

pxmξ2

2ε̄2
� 1. (26)
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FIG. 1. The four-momentum of the electron in the CPW laser fields with ξ1 = 50 and ξ2 = 2.5. The average energy is chosen to be
ε̄ = 125m, and the initial transverse momentum px = 0. The electron is, on average, propagating along with ξ1. In (a) and (b), the energy ε

and momentum Pz are shown as a function of the interaction time. In (c), the motion of the electron in the Px-Py plane is portrayed. The blue
curves denote the counterrotating case (ε1ε2 = −1), while the red curves denote the corotating case (ε1ε2 = 1). T = 2π/ω is the laser period
in the laboratory frame.

For the case of the electron copropagating with the ξ2 laser,
the conditions will be the similar with ξ1 ↔ ξ2.

Finally, the classical four-momentum can be written in a
covariant form as

Pμ = P̄μ − e
[
Aμ

1 (φ1) + Aμ
2 (φ2)

] + kμ
1

[
ep · A1(φ1)

k1 · P̄
+ ε+e2Aμ

1 (φ1) · Aμ
2 (φ2)

2(k1 + k2) · P̄
− ε−e2Aμ

1 (φ1) · Aμ
2 (φ2)

2(k1 − k2) · P̄

]

+ kμ
2

[
ep · A2(φ2)

k2 · P̄
+ ε+e2Aμ

1 (φ1) · Aμ
2 (φ2)

2(k1 + k2) · P̄
+ ε−e2Aμ

1 (φ1) · Aμ
2 (φ2)

2(k1 − k2) · P̄

]
, (27)

with pμ being the asymptotic momentum and ε− = 2, ε+ = 0 for the corotating case and ε− = 0, ε+ = 2 for the counterrotating
case. One can verify that in the corotating case, the formula recovers the results in Ref. [64]. Additionally, in the case that one of
the laser beams vanishes, our result recovers the familiar plane-wave solution [65]. With the momentum being determined now,
we can write down the trajectory of the electron as a function of the proper time based on Eq. (3) as

t = ε̄

m
τ + pxω

(
mξ1

(k1 · P̄)2
sin φ1 + mξ2

(k2 · P̄)2
sin φ2

)
+ m2ωξ1ξ2ε+

[(k1 + k2) · P̄]2
sin(φ1 + φ2),

x = px

m
τ + mξ1

k1 · P̄
sin φ1 + mξ2

k2 · P̄
sin φ2, y = −mξ1ε1

k1 · P̄
cos φ1 − mξ2ε2

k2 · P̄
cos φ2,

z = P̄z

m
τ + pxω

(
mξ1

(k1 · P̄)2
sin φ1 − mξ2

(k2 · P̄)2
sin φ2

)
+ m2ωξ1ξ2ε−

[(k1 − k2) · P̄]2
sin(φ1 − φ2). (28)

B. Numerical results

With the analytical expressions for the electron’s momenta
and coordinates being derived, we study in this section the
main properties of the motion, with emphasis on the dissim-
ilarities between the cases of co- and counterrotating laser
fields. From Eq. (27), we can see that there are two main
differences. The first difference is the sense of rotation in the
x-y plane as Py changes its direction between the co- and
counterrotating cases. The second one is the crossing term
proportional to ξ1ξ2. For the corotating case, the crossing term
emerges in the momentum Pz, while in the counterrotating
case it appears in the energy ε.

We inspect the electron’s four-momentum for both the
co- and counterrotating cases in Fig. 1, where we compare
different behaviors between the two cases. The results shown
in Fig. 1 are based on Eq. (27) but are proved by the fully nu-
merical solutions of Eq. (1). The average energy is ε̄ = 125m,

corresponding to ω2/ω1 = 22.95. Here, ω1,2 ≡ k1,2 · P̄/ε̄ are
the laser frequencies in the electron’s rest frame. The plots
represent a time interval of one cycle of the ξ1 beam and 23
cycles of the ξ2 beam as the electron is propagating along with
ξ1 on average.

By choosing a vanishing transverse momentum, we can
see, from Fig. 1(a), that the energy is a constant for the
corotating case but oscillates around the same constant for
the counterrotating one. The amplitude of the oscillation is
proportional to ξ1ξ2/ε̄, and the frequency of the oscillation
is approximately ω2 as ω2/ω1 � 1. On the other hand, the
behavior of the momentum along the z direction in Fig. 1(b)
is exactly swapped. Pz for the corotating case oscillates around
the constant Pz of the counterrotating case with an amplitude
proportional to ξ1ξ2/P̄z. The frequency is the same as the
one for the oscillations in the energy [Fig. 1(a)] since from
Eq. (27) we can see that the crossing terms are both dependent
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FIG. 2. The momentum Pz for the corotating case and the energy ε for the counterrotating case are displayed as a function of the interaction
time. The top row shows the corotating case (red), while the bottom row shows the counterrotating case (blue). The solid lines are the analytical
results based on Eq. (27), and the dots are the numerical solution of Eq. (1). In all the panels, we choose ξ1 = 20. The strength of the second
laser is chosen to be ξ2 = 3.5, except in the second column, where ξ2 = 0.35. The average energy is chosen to be ε̄ = 80m for the first, second,
and fourth columns, while for the third column we choose ε̄ = 100m. The transverse momentum px is 0.1m for the last column; otherwise, it
is zero.

on φ1 and φ2, with the much bigger φ2 dominating over the
smaller φ1.

In Fig. 1(c), the momentum in the transverse plane is dis-
played. Equation (27) shows us that oscillations in Px and Py

consist of two parts. One of them is related to the ξ1 laser.
Since the electron is propagating along with ξ1, this oscillation
gives the large enclosing circle, which is of size mξ1. The
small-amplitude and high-frequency oscillations caused by
the ξ2 laser then gave the small kinks and arcs along the big ξ1

circle. The number of these arcs is related to ω2/ω1 because
it depends on how many ξ2 oscillations the electron is cycling
through during one ξ1 oscillation and therefore depends lin-
early on the energy of the electron. The radius of the arc, on
the other hand, depends on mξ2.

To show the accuracy of our analytical solutions, we com-
pared the analytical result with the numerical one in Fig. 2. It
was shown in Eq. (27) as well as in Fig. 1 that the higher-order
oscillation, namely, the crossing term, appears only in ε for
the counterrotating case and in Pz for the corotating case.
Therefore, we plot the energy ε for the counterrotating case
and the Pz momentum for the corotating case in Fig. 2.

Comparing the first column with the second one, we can
see that the oscillation amplitude decreases by about one order
of magnitude, while the average Pz (corotating) or ε (counter-
rotating) remains the same. This is because ξ2 decreases by
one order of magnitude and the crossing term is proportional
to it [see Eq. (27)]. By increasing the energy ε from 80m (first
column) to 100m (third column), the oscillation amplitude
decreases again because the prefactor of the crossing term is
proportional to 1/ε in the counterrotating case and 1/Pz in the
corotating case. In the fourth column, a transverse momentum
of px = 0.1m is introduced. We observe now two kinds of
oscillations in both ε and Pz. This is because if px 
= 0, the
oscillation related solely to ξ1 or ξ2 in ε and Pz appears in
addition to the crossing term. The fast oscillation is now the

result of two individual oscillations, which relate to ξ2 and the
crossing term of ξ1ξ2.

In order to quantitatively characterize the disagreement
between the numerical and analytical results, we introduce the
relative deviation of the analytical prediction (subscript a) of
a quantity X with respect to the numerically calculated value
(subscript n) as follows:

�X ≡ 1

2T

∫ T

−T
dt

∣∣∣∣Xa − Xn

Xn

∣∣∣∣, (29)

with X being either the longitudinal momentum Pz for the
corotating case or the energy ε for the counterrotating case.
The integration time is taken to infinity, i.e., T → ∞. It
should be noted that the phases φ1 and φ2 contain arbitrary
constants �1 and �2. In order to compare the analytical
and numerical quantities these constants should be specified.
We write down �1 and �2 as �1 = k1 · x0 and �2 = k2 · x0,
where x0 is the temporal and spatial location of the particle
at the moment when the turn-on process in the numerical
simulation is finished. In this case we can have the same initial
phase for both analytical and numerical solutions. The relative
difference for the four cases shown in Fig. 2 is calculated
together with the conditions (26) of the analytical solutions
in Table I.

From Table I, we can see that the relative difference be-
tween the numerical solution and the analytical solution is
quite small within the parameter regime we consider and
increases if the criteria are not well fulfilled anymore, for
example, when the transverse momentum is introduced. This
critical dependence on the transverse momentum also de-
mands that the collision angle between the electron and the
laser pulse is small. From Eq. (26), we can estimate this
collision angle as tan θ = Px/Pz � (1 + ξ 2

1 + ξ 2
2 )/(2γ ξ1).
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TABLE I. The relative difference in the energy �ε for the coun-
terrotating case and in the longitudinal momentum �Pz for the
corotating case with the same parameters as in Fig. 2.

Case Criteria [Eq. (26)] �Pz �ε

First column [0.011,0.0,0.0] 1.05 × 10−4 7.84 × 10−5

Second column [0.001,0.0,0.0] 2.87 × 10−6 7.68 × 10−7

Third column [0.007,0.0,0.0] 4.68 × 10−5 3.58 × 10−5

Fourth column [0.011,0.010,0.00003] 2.10 × 10−4 1.50 × 10−4

The analytical results and all the analysis above concern
monochromatic plane waves because the laser pulses are as-
sumed to be turned on adiabatically. However, the laser pulses
always have finite length in realistic experiments, especially
for high intensity. In order to apply the analytics to a realistic
scenario, we compare the analytics with the numerics for finite
pulse length. From Fig. 3, we can see that the analytical results
agree well with the numerics even for short pulse length. Here,
we choose the pulse length of the ξ1 laser L1 as a parameter. In
our scenario, the ultrarelativistic electron copropagates with
the ξ1 laser and counterpropagates with the ξ2 laser. Because
of the Doppler effect, the length of the ξ2 laser pulse needs
to be at least n (= ω2/ω1 = 4γ 2

∗ � 1) times longer than the
period of the ξ1 laser, such that the electron goes through at
least one cycle of ξ1 during the overlap of the two lasers.
Otherwise, for a short ξ2 laser, the dynamic of the electron
will be mainly controlled by the ξ2 laser because the ξ1 laser
will act only as a constant field in this case. Therefore, the
length of the ξ1 laser plays a dominant role in the application
of the analytics in a realistic situation.

The small relative difference with respect to the exact nu-
merical solution now gives us the justification to employ the
analytical solution to study the radiation of an ultrarelativistic
electron in a CPW setup within certain parameter regimes.

FIG. 3. The relative difference between the finite-pulse-length
(numerical) results and the infinite-pulse-length (analytical) results
regarding the energy �ε (blue line) for the counterrotating case
and regarding the longitudinal momentum �Pz (red line) for the
corotating case. Here, we choose the envelope functions g1,2(φ) to
be cos2(φ/L) during the switch-on and -off process. We compare the
analytics and numerics in one cycle of the ξ1 laser after the switch-on.
The other parameters are the same as in the first column in Fig. 2

III. QUANTUM RADIATION

A. Radiation formulas

If the classical trajectory is applied, the emission can be
calculated according to the Baier-Katkov method [31–33]. For
the sake of simplicity, we start with a spinless particle. An
analogous derivation for the spinor case is given later. The
Baier-Katkov expression for the emitted intensity dI reads

dI = αε

(2π )2ε′T0
|Tμ|2d3k′, (30)

where α is the fine-structure constant, T0 is the interaction
time, and ε′ = ε − ω′ is the energy of the electron after the
emission of a photon. The transition amplitude

Tμ(k′) =
∫ ∞

−∞
dtvμ(t )eiψ, ψ ≡ ε

ε′ k
′ · x(t ), (31)

with vμ = dxμ/dt . k′
μ is the emitted photon four-momentum,

characterized by its energy ω′ and the emission direction n =
(cos ϕ sin θ, sin ϕ sin θ, cos θ ) as

k′
μ = ω′(1, n). (32)

Within the realm of this theory, the oscillation of δε is
assumed to be small compared to ε, which holds in our case, as
shown in the previous section. Accordingly, the factor appear-
ing in the phase may be approximated as ε

ε′ ≈ ε̄
ε̄′ [1 + (δε)2

ε̄ε̄′ ].
In the following derivation the second-order correction is
neglected. Moreover, for reasons of simplicity, the average
energy ε̄ is replaced from now on by ε. Since the trajectory
presented in Sec. II is given in terms of the proper time τ , we
change the integration variable in Eq. (31), leading to

Tμ(k′) =
∫ ∞

−∞
dτ

Pμ(τ )

m
eiψ, (33)

where the relation between Pμ and dxμ/dτ was used. With
the substitution of the trajectory (28) and the emitted photon
wave vector (32) into expression (33), the phase reads

ψ = ψlτ − z11 sin φ1 − z12 cos φ1 − z21 sin φ2 − z22 cos φ2

− z±
3 sin(φ1 ± φ2), (34)

where + and – correspond to the counterrotating and
corotating cases, respectively. For further simplification the
following quantities were introduced:

z11 = −umξ1

ω1

[
−nx + pxω

εω1
(1 − nz )

]
, z12 = −umξ1ε1

ω1
ny,

z+
3 = −uωm2ξ1ξ2ε+

ε(ω1 + ω2)2
, z−

3 = uωm2ξ1ξ2ε−nz

ε(ω1 − ω2)2
,

z21 = −umξ2

ω2

[
−nx + pxω

εω2
(1 + nz )

]
, z22 = −umξ2ε2

ω2
ny,

(35)

with u ≡ ω′/(ε − ω′). By utilizing the definitions

z1 =
√

z2
11 + z2

12, z2 =
√

z2
21 + z2

22, (36)

ϕ1 = tan−1

(
z12

z11

)
, ϕ2 = tan−1

(
z22

z21

)
, (37)
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the phase can be simplified even more to

ψ = ψlτ − z1 sin(φ1 − ϕ1) − z2 sin(φ1 − ϕ1)

− z±
3 sin(φ1 ± φ2). (38)

The linear term in the phase has the coefficient

ψl = ε2u

m
(1 − vxnx − vznz ), (39)

with vx = px/ε and vz = P̄z/ε being the average velocities
along the x and z directions. Substituting Eq. (38) as well as
Eq. (27) into Eq. (33) and using the Jacobi-Anger expansion
for the Bessel function, we can obtain the transition ampli-
tudes after some tedious, but straightforward, derivations:

Tμ = 2π
∑

s1,s2,s3

Mμ(s1, s2, s3)δ(�s1,s2,s3 ), (40)

where the δ function argument is given by

�s1,s2,s3 ≡ ψl − ε

m
[(s1 + s3)ω1 + (s2 ± s3)ω2], (41)

with + and – in the last term representing the counterrotating
and the corotating cases, respectively. One may notice that
different combinations of the indices s1, s2, and s3 may yield
the same δ function argument. As a result, when T is squared,
interference terms will arise which depend on the quantity
ω2/ω1. If this ratio is an integer, the motion is periodic with
the frequency 2π/ω1. Otherwise, the motion is nonperiodic.
Because the periodic motion is not easily fulfilled in reality,
we will focus on the nonperiodic motion below.

By defining sR ≡ s1 + s3 and sL ≡ s2 ± s3, one may write

Tμ = 2π
∑
sL,sR

Mμ(sL, sR)δ(�sL,sR ), (42)

with �sR,sL ≡ ψl − ε/m(sRω1 + sLω2). The matrix elements
take the form

M0 =
∑

s3

[(
ε

m
B0(3) + ε+ωmξ1ξ2

ε(ω1 + ω2)
B1(3)

)
B0(1)B0(2) + pxω

(
ξ1

εω1
B1(1)B0(2) + ξ2

εω2
B0(1)B1(2)

)
B0(3)

]
, (43)

M1 =
∑

s3

[ px

m
B0(1)B0(2)B0(3) + [ξ1B0(2)B1(1) + ξ2B0(1)B1(2)B0(3)]

]
, (44)

M2 =
∑

s3

[ξ1ε1B0(2)B2(1) + ξ2ε2B0(1)B2(2)]B0(3), (45)

M3 =
∑

s3

[(
P̄z

m
B0(3) − ε−ωmξ1ξ2

ε(ω1 − ω2)
B1(3)

)
B0(1)B0(2) + pxω

(
ξ1

εω1
B1(1)B0(2) − ξ2

εω2
B0(1)B1(2)

)
B0(3)

]
. (46)

Here, we have 1 ≡ (s1, z1, ϕ1), 2 ≡ (s2, z2, ϕ2), and 3 ≡
(s3, z3, 0). In the derivation, we consider the identities used
in Ref. [65],

(1, cos φ, sin φ)e−z sin (φ−ϕ) =
∑

s

(B0, B1, B2)e−isφ. (47)

The functions B0, B1, and B2 are related to the Bessel function
Js(z) and its first derivative J ′

s(z) through

B0(s, z, ϕ) = Js(z)eisϕ, (48)

B1(s, z, ϕ) =
[

s

z
Js(z) cos ϕ − iJ ′

s(z) sin ϕ

]
eisϕ, (49)

B2(s, z, ϕ) =
[

s

z
Js(z) sin ϕ + iJ ′

s(z) cos ϕ

]
eisϕ. (50)

Finally, the emitted intensity may be obtained by integrat-
ing (30) over the polar angle:

dI

dω′dϕ
= αm

2πε′

∫
d (cos θ )ω′2 ∑

sL,sR

|Mμ(sL, sR)|2δ(�sL,sR ),

(51)

where the identity δ2(�sL,sR ) = τ0
2π

δ(�sL,sR ) has been used.
The proper interaction time is given by τ0 = (m/ε)T0. As
squaring T does not mix terms associated with different sL

and sR indices, the interference takes place only between terms
included within Mμ(sL, sR). The condition imposed by the

δ function, namely, �sL,sR = 0, illustrates the energy conser-
vation in the radiation process and determines the relation
between cos θ and ω′ and ϕ,

1 − ρ − v̄z cos θ = v̄x cos ϕ
√

1 − cos2 θ. (52)

By squaring and solving this equation one obtains two possi-
ble angles,

cos θ± = v̄z(1 − ρ) ± v̄x cos ϕ
√

�

v̄2
z + v̄2

x cos2 ϕ
, (53)

where the following quantities are introduced:

� ≡ v̄2
z + v̄2

x cos2 ϕ − (1 − ρ)2, (54)

ρ ≡ (sRω1 + sLω2)

uε
. (55)

Note that, here, ± just represents different solutions for cos θ

and does not relate to the co- or counterrotating cases. When
(52) is squared, a redundant solution is added, which solves
an equation similar to Eq. (52), but with a minus sign on the
left side. Thus, the solutions given in (53) are physical only if,
when they are substituted into the left-hand side of (52), a pos-
itive result follows. A solution that does not meet this criterion
is therefore excluded. Physically, this exclusion ensures that
the emission is along the electron’s direction of propagation.
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Employing the δ function to perform the integration leads to

dI

dω′dϕ
= αεω′2

2πε′m

∑
i=±

∑
sL,sR

|Mμ(sL, sR)|2
∣∣∣ d�sL,sR

d (cos θ )

∣∣∣−1

θ=θi

.

(56)
The reciprocal of the derivative of the δ function, required for
the integration, reads

∣∣∣ d�sL,sR

d (cos θ )

∣∣∣−1
= m

ε2u

∣∣∣∣ 1

v̄x cos ϕ cot θ − v̄z

∣∣∣∣ ≡ κ (θ ). (57)

Substituting (57) into (56) yields the final result

dI

dω′dϕ
= αω′2

2πεε′
∑
i=±

∑
sL,sR

|Mμ(sL, sR)|2κ (θi). (58)

Here, i = ± represent the two solutions for cos θ in Eq. (53).
For a spinor particle the initial emission expression (30) is

modified as follows:

|T |2 → |K |2 ≡ −
(

ε′2 + ε2

2εε′

)
|Tμ|2 + ω′2

2ε′2ε′2 |T0|2. (59)

Therefore, the final results for a spin- 1
2 particle are obtained:

dI

dω′dϕ
= αmω′2

2πε

∑
i=±

∑
sL,sR

κ (θi )

[
−

(
ε′2 + ε2

2εε′

)
|Mμ(sL, sR)|2

+ ω′2

2ε′2ε′2 |M0(sL, sR)|2
]
. (60)

In the derivation above, we include only the linear depen-
dence on τ for phases φ1 and φ2 in the classical momentum
(27) and trajectory (28) and ignore the higher-order correc-
tions. From Eqs. (22) and (23), we can see that the next order
corrections are oscillations with an amplitude of C1, C2, C1−2,
and C1+2 in Eq. (24). The difference between the co- and
counterrotating cases is C1−2 and C1+2, which have the same
order of magnitude. Therefore, by following the same proce-
dure as in the previous work in [64], we can infer the same
validity conditions for the matrix elements in Eqs. (43)–(46);
see Eq. (111) in Ref. [64].

B. Numerical results

In the following we present typical spectra for an ultrarel-
ativistic electron in the strong-field regime (ξ1 � 1), and we
will focus on the influence of the sense of rotation of the laser
fields on the electron’s radiation spectra. We know that the
quantum parameter χ = e

√
−(FμνPν )2/m3 can totally char-

acterize the radiation property if the LCFA is applied, but
in a general field configuration where the LCFA may not
be fully valid, χ can still characterize some aspects of the
radiation. From a previous study [22] we know that there are
three different regimes where the radiation behavior changes
dramatically. Therefore, we will also investigate the influence
of the corotating and counterrotating laser beams on the radi-
ation spectra in these three regimes. In order to distinguish the
different regimes, we also define χ1,2 ≡ ξ1,2k1,2 · P̄/m2 as the
quantum parameters for the ξ1 and ξ2 lasers, respectively.

From Eqs. (43)–(46) for the matrix elements, we can see
that the differences between the corotating and counterrotat-
ing cases appear in four places:

(i) The crossing term in Mμ, proportional to ξ1ξ2, moves
fromM3 in the corotating case toM0 in the counterrotating
case. This is because of the crossing term in the classical four-
momentum appearing in energy for the corotating case while
appearing in Pz for the counterrotating case [see Eq. (27)].

(ii) Two terms in M2 show a different sign with respect
to each other in the counterrotating case. This is related to
the oscillations in Py changing their direction between co- and
counterrotating cases.

(iii) One of the arguments for the Bessel function z±
3 in

Eq. (35) shows a difference between the two cases. The reason
is again due to the crossing term in the four-momentum since
this term has different prefactors in the co- and counterrotating
cases.

(iv) For the Bessel function with the argument z2 the order
also changes between the two cases. From Eq. (41), we can
see that sR and sL are the same for both cases when the emitted
photon k′

μ is fixed. However, sL = s2 ± s3 depends on s2 and
s3 differently for the co- and counterrotating cases, which
changes the physical meaning of s3. In the corotating case s3

represents the process of absorbing a certain number of pho-
tons from one laser and then emitting the same number to the
other laser, while in the counterrotating case s3 corresponds
to either absorbing from or emitting to both lasers the same
number of photons at one time, depending on s3 being positive
or negative.

From Eqs. (43)–(46), we can see that the terms propor-
tional to the transverse momentum px are the same for both the
corotating and counterrotating cases and will not contribute
to the dissimilarities between the two cases. Therefore, we
choose px = 0 in the following calculations, but the conclu-
sion is the same for px 
= 0. Moreover, when px = 0, the
validity conditions for the matrix elements will be fulfilled
automatically [64].

In regime I (χ1 � χ2), the ξ1 laser will dominate the radi-
ation process. The major task in calculating the spectrum is
to evaluate the Bessel functions in the matrix elements. We
know that Jn(z) will vanish if its order n is larger enough than
the argument z. Therefore, it is wise to estimate the maximum
value of the Bessel function’s argument before calculating
the matrix elements. For this purpose Fig. 4 illustrates the
behavior of said arguments and cos(θ ) depending on sR. It
shows that arguments z1 and z2 and the angle θ are the same
for both cases, as expected. The only difference lies in z3,
which depends on the emission angle in the corotating case
but is a constant in the counterrotating case [see also Eq. (35)].

Because ξ1 = 200 and ε = 767m in the calculation, z1 is
rather large and increases with the emission angle. However,
from the two panels in the first row of Fig. 4, we can see that
there is a certain region (between the two vertical dashed lines
in the plots) when z1 ∼ s1 and the contribution from Js1 (z1)
in the matrix elements is not negligible. Please note that s1 =
sR − s3 and s3 is usually much smaller than sR as z3 � z1.
In this region, cos θ is around 0.965, which coincides with
the propagation direction of the electron Pz/ε ≈ 0.9654, as
expected.

For the third row in Fig. 4, we can see that z2 is the same for
both the co- and counterrotating cases. However, s2 is different
between the two cases, as mentioned before. Naturally, now
the question arises of whether this difference in s2 will lead to
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FIG. 4. The emission direction cos θ and the arguments of the Bessel function z1, z2, and z3 as a function of sR. The left column (red lines)
shows the corotating case, while the right one (blue lines) shows the counterrotating case. Here, ξ1 = 200, ξ2 = 0.35, and the average energy
ε = 767m, which corresponds to χ1/χ2 = 10. The emitted photon energy ω′ is chosen to correspond to u = 0.02. The dashed lines in the first
row correspond to z1 = sR.

a difference in spectra. Our conjecture is no because the sum
over s3 in Eqs. (43)–(46) will cover the whole region within
which Js2 (z2) is not negligible. The only effect will be the peak
of the harmonic in the spectrum perhaps being shifted when
the harmonic structure is obvious.

From Eq. (35) we can estimate that in the relevant region
z−

3 and z+
3 will have similar amplitudes in the co- and coun-

terrotating cases (see also the fourth row of Fig. 4), despite
z−

3 depending on the direction of emission. The different signs
between z−

3 and z+
3 will not play a major role when summing

over s3, and only a quantitative difference may appear in the
spectra.

To test our above conjectures, the spectra for both the
co- and counterrotating cases are displayed in Fig. 5. From
Fig. 5(a), we can see that the spectra for both cases have,
indeed, exactly the same shape, and the difference is almost
invisible. Only if we zoom in can we see that the corotating
case gives slightly larger values than the counterrotating one.
More interestingly, the LCFA formula [65] predicts almost
the same spectrum for both cases (see the zoomed-in scale).
The relative difference would be very large at the beginning
because the harmonic structure at low energies cannot be
reproduced by the LCFA [16].

The relative difference between accurate spectra for the
corotating case and for the counterrotating case is shown in
Fig. 5(b),where the relative difference of the accurate spectra
is less than 3% in the main part of the spectrum. This small
difference can be explained by looking at the quantum param-
eter χ in Fig. 6. From Fig. 6 we can see that χ has similar
average values for both the co- and counterrotating setups and
therefore gives almost the same results for both cases. The
general behavior of χ can be estimated by the well-known
formula χ ≈ |dP/dτ |/m2; the small difference between the

co- and counterrotating cases, however, is due to higher-order
corrections that are not included in this estimation.

This small difference also means that differences (i) and (ii)
mentioned before also do not cause a big deviation between

FIG. 5. (a) The radiation spectra as a function of u for both the
corotating case (red) and the counterrotating case (blue). The inset is
a zoom of 0.02 < u < 0.03. The solid curves are the results based on
Eq. (60), and the dashed lines are the prediction of the LCFA. (b) The
relative difference between the accurate results (solid lines) and the
LCFA predictions (dashed lines). The parameters for the laser beams
and the electron are the same as in Fig. 4.
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FIG. 6. The quantum parameter χ for both the co- and coun-
terrotating (red and blue lines) cases as a function of time. All the
parameters are the same as in Fig. 5.

the co- and counterrotating cases. The reason is that when
we calculate |Mμ|2 = |M0|2 − |M1|2 − |M2|2 − |M3|2 in
Eq. (60), the differences that appear inM0,M2, andM3 will
contribute to the same degree in both cases. For example, in
the corotating case, the crossing term in M3 and the second
term in M2 have the same sign in the final expression in
Eq. (60). In the counterrotating case, on the other hand, the
crossing term moves to M0, and the second term in M2

changes sign. Hence, in the end they will make a similar
contribution to the corotating case. Moreover, the contribution
is independent of the emitted photon energy because there is
no obvious harmonic structure in the spectrum in this regime.
This leads to the linear increase in the relative difference with
respect to the emitted photon energy in Fig. 5(b) since the
prefactor in Eq. (60) is proportional to ω′.

For regime II (χ1 ∼ χ2), the two lasers will both play a
role in the radiation spectra. In Fig. 7(a), we show the accurate

FIG. 7. (a) The radiation spectra as a function of u for both the
corotating case (red line) and the counterrotating case (blue lines).
(b) The relative difference between the two accurate spectra in (a).
Here, ξ1 = 20, ξ2 = 0.35, and the average energy ε = 108m, which
corresponds to χ1/χ2 = 0.5.

FIG. 8. (a) The radiation spectra as a function of u for both the
corotating case (red lines) and the counterrotating case (blue lines).
(b) The relative difference between the two accurate spectra in (a).
Here, ξ1 = 20, ξ2 = 1, and the average energy ε = 447m, which
corresponds to χ1/χ2 = 0.01.

spectra for the co- and counterrotating cases with χ1/χ2 = 0.5
as well as the LCFA predictions. First of all, we note that
the spectra based on the BK method and LCFA are quite
different. This is because both lasers contribute to the radi-
ation process and the interference effect caused by ξ2 = 0.35
is not negligible. The second peak in the BK spectra is caused
by the contributions from the ξ2 laser as the position of this
peak roughly corresponds to the first harmonic of the ξ2 laser
with u ≈ 4ε2ω/(m2ε − 4ε2ω) = 0.0094. The two BK spectra
again have a similar shape; however, it is clearly visible that
the deviation between the two spectra is more prominent than
in regime I.

The relative difference between the co- and counterrotating
spectra based on the BK method is displayed in Fig. 7(b). As
opposed to regime I, the relative difference here is not linear in
u and oscillates. The reason is that with the present parameters
the harmonic structure starts to become visible in the spec-
trum, and therefore, difference (iv) will modify the position
of the harmonics. For example, the position of the harmon-
ics around u = 0.00035 differs by 0.001m between the two
cases. However, the main harmonics around u = 0.001 are in
the same place since this harmonic is mainly a consequence
of ξ2.

For regime III (χ1 � χ2), the radiation will now be domi-
nated by the ξ2 laser, and therefore, the LCFA predictions give
totally different spectra. From Fig. 8(a), we see that the main
structure of the spectra consists of the harmonics created by
ξ2. The additional fast oscillation is the modification from ξ1.
Like in the previous two regimes, the spectra for both cases are
the same and the relative difference between them in Fig. 8(b)
is less than 1%. This is because in the single-laser case, the
change in the sense of rotation will not affect the radiation
process. Please note that there are two solid lines on top of
each other in Fig. 8(a).

The fast oscillation in the relative difference is due to
the harmonics being shifted by different s2 for the co- and
counterrotating cases [difference (iv)]. However, the main
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peak of the spectrum is at the same position because it origi-
nates mainly from the ξ2 laser. Moreover, the average relative
difference also increases approximately linearly for a large
photon energy, which is due to the spectrum behaving like the
predictions of the LCFA at large emitted energies.

Upon comparison, the relative differences in regimes I, II,
and III appear larger in regime II but smaller in regimes I
and III. This is a consequence of the system for χ1 � χ2 or
χ1 � χ2 approaching the rotationally symmetric single-laser
case in which the change in the rotational sense will not affect
the spectrum noticeably. For χ1 ∼ χ2, on the other hand, both
lasers contribute to the radiation, and changing the laser’s
sense of rotation will induce a more significant alteration of
the spectrum. However, the spectrum does not change shape
since the change in rotational direction has no effect on the
characteristic timescale. To understand this similarity, we can
go back to the original formula for the Baier-Katkov integral
in Eq. (31), where the velocity of the electron plays a major
role. Here, the velocities for both cases are similar since the
crossing term in Eq. (27) is second order in magnitude. More
intuitively, we know that for an ultrarelativistic electron in
a strong background field the emission is mainly along the
propagation direction within the 1/γ cone and the shape of
the spectrum is determined by the electron dynamics in this
region, which can be characterized by a timescale defined
as tc := |v̇|/|v̈|, with v being the electron’s velocity in the
fields. Based on the momentum in Eq. (27), tc is similar for
both cases despite the crossing term moving from Pz in the
corotating case to ε in the counterrotating one.

IV. CONCLUSIONS

In this paper the dynamics of an ultrarelativistic electron
in counterpropagating laser beams with a variable sense of
rotation were explored. The classical momentum and trajec-
tory were analytically derived assuming that the particle’s
averaged energy is the dominant factor while the transverse
momentum is small compared to the total energy. The dif-
ference between the classical momentum for both co- and
counterrotating laser-beam arrangements was investigated.
The main difference appeared to be the crossing term related
to both laser beams which moves from Pz in the corotating
case to the total energy ε in the counterrotating case [see

Eqs. (17) and (19)]. This means that for a vanishing initial
transverse momentum the electron in a counterrotating setup
has a constant velocity in the z direction. And if we change
to the electron’s rest frame, the electron’s trajectory is almost
the same as in a two-color rotating electric-field configuration,
which is a widely used model for analyzing the so-called
dynamically assisted Schwinger effect [51,66–72]. Therefore,
the counterrotating setup can provide a mapping of this simple
model for the whole region rather than only a small vicinity
around the antinode of a standing wave, where the rotating
electric field can be realized. Moreover, a comparison with
the full numerical solution was carried out, resulting in good
agreement and validation of our analytical solution within the
given conditions.

The closed formula of the analytical approximation for
the classical electron dynamics allows one to calculate the
rates of the quantum processes in strong CPW background
fields by employing the Baier-Katkov semiclassical operator
method. In this formalism, while the electron dynamics in
the background classical fields are accounted for quasiclas-
sically, the photon emission is treated quantum mechanically,
fully taking into account the quantum recoil of the emitted
photon. The Baier-Katkov integrals were analytically solved,
yielding closed formulas in terms of various Bessel functions.
Different expressions were obtained for the corotating and
counterrotating cases. The results were employed to com-
pare the corotating and counterrotating cases in detail. We
observed that even though the classical dynamics show a qual-
itative difference between the two cases, the emitted spectra
all have the same shape for two cases in different parameter
regimes with a relative difference of only a few percent. To
understand these deviations, we analyzed the arguments of
the Bessel functions in the matrix elements in detail. The
influence of the rotational direction is prominent only when
the radiation process is dominated by both laser beams.
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