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Quantifying environment nonclassicality in dissipative open quantum dynamics
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Open quantum systems are inherently coupled to their environments, which in turn also obey quantum
dynamical rules. Restricting ourselves to dissipative dynamics, here we propose a measure that quantifies how
far the action of an environment on a system departs from the influence of classical noise fluctuations. It is based
on the lack of commutativity between the initial reservoir state and the total system-environment Hamiltonian.
Independently of the nature of the dissipative system evolution, Markovian or non-Markovian, the measure
can be written in terms of the dual propagator that defines the evolution of system operators. The physical
meaning and properties of the proposed definition are discussed in detail and also characterized through different
paradigmatic dissipative Markovian and non-Markovian open quantum dynamics.
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I. INTRODUCTION

Open quantum systems are inherently coupled to their
supporting environments [1,2]. This interaction induces time-
irreversible behaviors such as dissipation and decoherence.
These phenomena have been studied in a wide range of
systems such as, for example, in quantum optics [3], mag-
netic resonance [4,5], solid state devices [6], and quantum
sensing [7].

In a full microscopic description not only the system but
also the environment obeys quantum dynamical rules. Nev-
ertheless, depending on system and environment properties,
as well as on the studied regimes, the system fluctuations in-
duced by the environment influence can be well approximated
by the action of classical stochastic fields. In fact, open quan-
tum systems driven by classical noises is a well-established
physical modeling [4–7] that has been characterized from dif-
ferent perspectives. Many specific studies rely on assuming,
for example, Gaussian [8–12] or telegraphic noises [13–15].

In the context of open quantum system theory it is of
interest to establish the conditions under which the environ-
ment action can be approximated by classical noises. For
example, the possibility of representing the system evolution
in terms of a statistical superposition of unitary dynamics
has been recently explored [16–19]. When the open system
dynamics leads only to dephasing [20–26], the possibility of
detecting quantum entanglement between the system and the
environment [22–25] provides a strong criterion for determin-
ing when a classical noise representation is appropriate or
not. In addition, many related contributions have focused on
this problem, providing general or particular conditions un-
der which a classical representation is a valid approximation
[27–41].

The main goal of this work is to introduce a measure that
quantifies how much the environment action departs from the
influence of classical noise fluctuations. This result provides
an interesting insight and contribution in the described re-
search line. Unlike previous analysis (see Refs. [16–25]), here

we are mainly interested in dissipative open quantum dynam-
ics; that is, the environment not only induces decoherence but
is also able to induce (energy) transitions between the system
states.

The proposed measure has a clear physical motivation
related to the quantumness of the microscopic dynamics. In
fact, the main ingredient is the lack of commutativity between
the initial reservoir state and the total system-environment
Hamiltonian. In contrast, there are alternative proposals where
the quantumness of a qubit channel is established by the
noncommutativity of two system output states [42]. Due to its
alternative microscopic definition, the present approach leads
to predictions consistent with former results [5,43] in which
the influence of a quantum reservoir, in a high-temperature
limit, is approximated by noisy (commuting) scalar functions.

The formalism applies independently of the system dy-
namical regime, that is, Markovian or non-Markovian. In
fact, regardless of which approach is used to define mem-
ory effects, operational [44,45] or nonoperational [46,47],
the proposed measure can be written in terms of the dual
evolution associated with system operators. Thus, it can be
consistently defined for Markovian Lindblad equations [48]
but also, in the same way, outside this regime. The proposal is
characterized in detail through its general properties and also
through specific dissipative Markovian and non-Markovian
dynamics.

The paper is outlined as follows. In Sec. II we motivate
and formulate the environment nonclassicality measure. In
Sec. III the measure is characterized for some general classes
of open quantum dynamics. In Sec. IV we study its behavior
for specific Markovian and non-Markovian dissipative open
system dynamics. In Sec. V we provide the conclusions.

II. MEASURE OF ENVIRONMENT NONCLASSICALITY

Here we introduce the environment nonclassicality mea-
sure, providing some of its general properties.
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A. Physical motivation

We consider a system (s) that interacts with its environment
(e). Their quantum dynamics is set by a total Hamiltonian
H = Hs + He + HI , where Hs and He are the system and en-
vironment Hamiltonians, respectively, while HI defines their
mutual interaction. The system density matrix ρt can be
written as

ρt = Gt,0[ρ0] ≡ Tre[e−iHt (ρ0 ⊗ σ0)e+iHt ]. (1)

Here, Tr[· · · ] is the trace operation. In addition, ρ0 and σ0

are the initial system and environment states, respectively. To
avoid introducing intrinsic quantum features that cannot be
recovered in a classical noise approximation we only consider
uncorrelated s-e initial conditions.

The quantum nature of the system and its environment can
be read straightforwardly from Eq. (1). In fact, all objects
appearing in this expression can be written as matrices that,
in general, do not commute. Focusing on the environment,
we argue that the nature of its influence over the system is
inherently quantum because, in general, its initial state does
not commute with the total Hamiltonian, that is, [H, σ0] �=
0. Supporting this argument, when the initial environment
state approaches the identity matrix σ0 � Ie, which implies
[H, σ0] ≈ 0, its action over the system can be represented
by classical noises. This result, which is rederived in Ap-
pendix A, is well known in the context of magnetic resonance
[5] and also has been characterized when expressing the
system evolution in terms of stochastic wave vectors [43].
For systems coupled to thermal environments, the property
[H, σ0] ≈ 0 becomes valid in a high-temperature limit.

Under the motivation of the above perspective, we rewrite
the system state [Eq. (1)] as

ρt = Tre[(e−iHtρ0e+iHt )σ0] + Tre[(e−iHtρ0e+iHt )�σt ], (2)

where �σt ≡ e−iHtσ0e+iHt − σ0. We identify the first term in
the right-hand side of Eq. (2) with the “classical” contribution
of the environment influence. In fact, when [H, σ0] ≈ 0, the
first contribution does not vanish while the second one fades
out (vanishes) correspondingly. Interestingly, when describing
the system evolution in a weak interaction and Markovian
limits, the previous splitting recovers the structure of quantum
master equations [5,49,50] proposed for dealing with a high-
temperature approximation [5].

Even when the property Trs[ρt ] = 1 is satisfied, each con-
tribution in Eq. (2) does not preserve trace of the system by
itself. Thus, for measuring the incompatibility of the environ-
ment action with respect to the action of classical noises we
arrive at the (dimensionless) time-dependent “noncommuta-
tivity measure”

Qt ≡ Trse[(e−iHtρ0e+iHt )σ0]. (3)

It corresponds to the trace over the system degrees of freedom
of the first term in the right-hand side of Eq. (2).

B. Degree of environment quantumness

The noncommutativity measure Qt has some desirable
properties. For example, when [H, σ0] = 0 it follows Qt = 1.

Therefore, this value is associated with classicality. On the

other hand, it is straightforward to obtain

dQt

dt
= +(i)Trse[(e−iHtρ0e+iHt )[H, σ0]], (4)

while its n time derivative reads
dnQt

dtn
= +(i)nTrse[(e−iHtρ0e+iHt )[H (n), σ0]], (5)

where [H (1), σ0] = [H, σ0], [H (2), σ0] = [H, [H, σ0]], and,
in general, [H (n), σ0] = [H, [H (n−1), σ0]]. From these ex-
pressions we conclude that the time derivatives of Qt are
proportional to the lack of commutativity of σ0 with higher
nested commutators of the total Hamiltonian H.

In spite of the previous properties, the definition of Qt

[Eq. (3)] is symmetrical in the initial system and environment
states. In particular, when ρ0 = Is/ dim(Hs), where Is is the
identity matrix and dim(Hs) is the dimension of the system
Hilbert space, it follows that Qt = 1.

The difference between the roles played by the system and
the environment is introduced as follows. As usual, we assume
that the system state [obtained from the unitary microscopic
dynamics, Eq. (1)] always achieves a stationary regime. This
property, in general, demands a reservoir with an infinite
number of degrees of freedom such that its eigenfrequencies
form a continuous spectrum [1]. Thus, we define a “degree of
environment quantumness,” denoted as DQ, which reads

DQ ≡ max
[ρ0]

∣∣∣∣ lim
t→∞

∫ t

0
dt ′ dQ(t ′)

dt ′

∣∣∣∣ = max
[ρ0]

| lim
t→∞ Qt − 1|. (6)

The stationary limit of Qt is granted by the above assumptions
and it has been used that Q0 = 1. The maximization is over
the initial system state ρ0. With this definition at hand, en-
vironment classicality is associated with DQ = 0. Moreover,
this parameter allows us to study the (time-dependent) non-
commutativity measure Qt [Eq. (3)] by choosing system initial
conditions that maximize DQ.

C. Definition in terms of the operator dual evolution

Given a system operator A, by definition its expectation
value reads 〈A〉t ≡ Trs[ρt A]. It can alternatively be written as
〈A〉t = Trs[ρ0At ] = Trs[ρ0G

�
t,0[A0]], where the dual propaga-

tor G�
t,0 for the operator evolution, from Eq. (1), is given by

At = G�
t,0[A0] ≡ Tre[e+iHt A0e−iHtσ0]. (7)

Therefore, from this expression and Eq. (3) it follows that the
noncommutativity measure Qt can be written as

Qt = Trs[G
�
−t,0[ρ0]], (8)

which only depends on the operator dual evolution and the
initial system state. From this expression it follows that
Qt/ dim(Hs) can be read as the expectation value of the “op-
erator” ρ0 at time t given that the “initial system state” is
Is/ dim(Hs) [see Eqs. (7) and (8)]. This result also ensures
that limt→∞ Qt exists [Eq. (6)] whenever limt→∞ ρt exists
[Eq. (1)].

Taking into account that ρ0 is a positive definite operator,
the previous equivalent interpretation of Qt allow us to obtain

0 � Qt � dim(Hs). (9)
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This inequality is valid independently of the system and
environment initial conditions and also of the particular mi-
croscopic model. In addition, Eq. (9) implies

0 � DQ � dim(Hs) − 1, (10)

where classicality corresponds to DQ = 0. Both constraints
[Eqs. (9) and (10)] imply that the quantumness of the envi-
ronment influence is bounded by the dimension of the system
Hilbert space.

D. Optimal initial states

By analyzing the stationary regime of Eq. (3), or alterna-
tively Eq. (8), it follows that

lim
t→∞ Qt = dim(Hs)Trs[ρ̃∞ρ0], (11)

where the stationary system state is ρ̃∞ ≡ limt→∞ ρ̃t . The up-
per tilde symbol represents a time-reversal operation, t ↔ −t .
Equations (6) and (11) imply that

DQ

dim(Hs)
= max

[ρ0]

∣∣∣∣Trs[ρ̃∞ρ0] − 1

dim(Hs)

∣∣∣∣. (12)

Thus, DQ can be seen as a functional of ρ0 that is parametrized
by the stationary state ρ∞. The optimal state ρ0 that maxi-
mizes DQ is obtained below.

The expression (12) provides a clear geometric interpre-
tation of DQ. Introducing a basis of vectors {|i〉} where
the stationary system state is a diagonal matrix, ρ̃∞ =∑

i λi|i〉〈i|, with i = 1, . . . , dim(Hs), it follows that DQ =
max{pi} | dim(Hs)

∑
i λi pi − 1|, where pi ≡ 〈i|ρ0|i〉. There-

fore, DQ is the maximal (absolute) value assumed by the
hyperplane defined by the variables {pi} when restricted to
the domain

∑
i pi = 1. It is straightforward to bound the

main contribution to DQ as
∑

i λi pi � (
∑

i pi ) max({λi}) =
max({λi}). This boundary is always achieved by choosing
ρ0 as the eigenprojector of ρ̃∞ with the maximal eigenvalue.
Thus, we conclude that

DQ = dim(Hs) max({λi}) − 1, ρ0 = |imax〉〈imax|, (13)

where max({λi}) is the largest eigenvalue of the station-
ary state ρ̃∞ ≡ limt→∞ ρ̃t , while |imax〉 is the corresponding
eigenstate ρ̃∞|imax〉 = max({λi})|imax〉. This expression for
DQ is valid when the stationary state does not depend on the
initial condition. Moreover, we note that, in general, more than
one initial state, ρ0 �= |imax〉〈imax|, can lead to this extreme
value (see Sec. IV). On the other hand, it is simple to realize
that when the time-reversal operation is equivalent to conju-
gation Eq. (13) is valid with ρ̃∞ → ρ∞.

III. CLASSICALITY FOR DIFFERENT CLASSES
OF OPEN SYSTEM DYNAMICS

In this section we characterize the previous proposal for
different classes of open quantum system dynamics where the
noncommutativity measure indicates classicality Qt = 1 ∀t,
which, in turn, implies DQ = 0.

A. Hamiltonian ensembles

In Refs. [16–19] the classicality of the environment action
was related to the possibility of representing the open system

dynamics in terms of Hamiltonian ensembles, that is, a statis-
tical superposition of different system unitary dynamics. This
kind of dynamics is recovered in the present approach after
assuming that [H, σ0] = 0. In fact, introducing a complete
basis of environment states {|e〉} where the initial state is
diagonal, σ0 = ∑

e pe|e〉〈e|, with pe = 〈e|σ0|e〉, the system
density matrix [Eq. (1)] can be written as

ρt =
∑

e

pee−itH (e)
s ρ0e+itH (e)

s , ⇒ Qt = 1, (14)

where the system Hamiltonians are H (e)
s ≡ Hs + 〈e|(He +

HI )|e〉. The equality Qt = 1 follows from Eq. (3) and is valid
independently of the system initial condition. The degree of
quantumness [Eq. (6)] also indicates the presence of a classi-
cal environment influence, DQ = 0.

B. Stochastic Hamiltonians

The coupling of a quantum system to classical noises is
usually modeled by (system) stochastic Hamiltonians Hst (t ).
Their time dependence takes into account the action of classi-
cal fluctuating external fields. The noises can have arbitrary
statistical properties (see, for example, Refs. [8–15]). Even
more, their correlation can also be arbitrary, that is, δ corre-
lated (white noises) or color ones (finite correlation times).

For each realization of the noises, we introduce the stochas-
tic propagator Tst (t ) = �exp −i

∫ t
0 dt ′Hst (t ′)�, where �· · · �

means a time-ordering operation. The system density matrix
can then be written as

ρt = Tst (t )ρ0T †
st (t ), ⇒ Qt = 1, (15)

where the overline denotes an average over noise realizations.
The equality Qt = 1 is valid for arbitrary system initial con-
ditions. It can be derived by using the alternative definition in
terms of the dual evolution [Eq. (8)]. Consistently, in this case
DQ = 0.

C. Collisional dynamics

Open quantum systems dynamics, in Markovian and non-
Markovian regimes, can also be modeled through collisional
models [51,52]. The underlying stochastic dynamics consists
of free propagation with the system Hamiltonian added to
the action of instantaneous transformations occurring at suc-
cessive random times. The (stochastic) state of the system
conditioned on the occurrence of n collisional events can be
written as

ρ
(n)
t = Gt−tnEGtn−tn−1 · · · EGt2−t1EGt1 [ρ0]. (16)

Here, Gt is the propagator of the free evolution, Gt [•] ≡
exp[−itHs] • exp[+itHs], while E is an arbitrary completely
positive trace-preserving superoperator. The times {ti}n

i=1 are
random variables in the interval (0, t ). The state of the system
follows as

ρt =
∞∑

n=0

ρ
(n)
t , (17)

where the overline means an average over the random colli-
sional times. The dual operator dynamics can be written in a
similar way. In Appendix B we develop a formal derivation.
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Using the definition (8), it is possible to conclude (see
Appendix B) that

Trs[E�[A]] = Trs[A], ⇒ Qt = 1, (18)

where the dual superoperator is defined from the relation
Trs[AE[ρ]] = Trs[ρE�[A]], with A being an arbitrary system
operator. Thus, when the dual superoperator E� preserves
trace the environment influence is classical, DQ = 0. The
condition (18) is fulfilled when E corresponds to a unitary
transformation and, in general, is satisfied by unital maps (see
below).

D. Lindblad equations

When the system-environment coupling is weak and the
time correlations of environment operators define the minor
timescale of the problem, a Born-Markov approximation ap-
plies. Discarding nonsecular terms, the system evolution can
be written as a Lindblad equation [1,48],

dρt

dt
= −i[H̄,ρt ] +

∑
μν

aμν

(
VμρtV

†
ν − 1

2
{V †

ν Vμ, ρt }+
)

.

(19)

Here, H̄ is an effective system Hamiltonian that may include
contributions induced by the interaction with the environment.
{Vμ} are system operators, while the matrix of rate coefficients
{aμν} defines a semipositive definite matrix. The anticommu-
tator operation is defined as {a, c}+ ≡ (ac + ca).

The noncommutativity measure Qt can be calculated for
the previous quantum master equation by using its definition
in terms of the dual evolution [Eq. (8)]. For an arbitrary
operator At it reads [48]

dAt

dt
= +i[H̄ , At ] +

∑
μν

aμν

(
V †

ν AtVμ − 1

2
{V †

ν Vμ, At }+
)

.

(20)

Consistently, notice that this evolution does not preserve trace.
By solving Eq. (20) with the initial condition At |t=0 = ρ0, the
noncommutativity measure can be written as Qt = Trs[Ãt ],
where the tilde symbol takes into account the time-reversal
operation t ↔ −t . In this way, the present approach can be
applied in the Markovian regime where a Lindblad equa-
tion approximates the open system dynamics.

Interestingly, Lindblad equations that are compatible with
the influence of classical noises have been characterized from
a rigorous mathematical point of view [21,53]. The proposed
structures were derived as commutative dilations of dynam-
ical semigroups. Specifically, they correspond to Eq. (19)
written in a diagonal base of operators (aμν = δμνaμ) with
the constraints of Hermitian operators, Vμ = V †

μ , or, alterna-
tively, unitary ones, V †

μVμ = Is. These solutions can be put in
one-to-one correspondence with models based respectively on
stochastic Hamiltonians [Eq. (15)] with white-noise fluctua-
tions and collisional models [Eqs. (17) and (18)] with Poisson
statistics between collisional events.

E. Unital open system dynamics

A completely positive open system dynamics can always
be written in a Kraus representation as [1]

ρt =
∑

α

Tαρ0T †
α ,

∑
α

T †
α Tα = Is, (21)

where the system operators {Tα} are time dependent, Tα =
Tα (t ). The dynamics is defined as unital when, in addition,
it is fulfilled that∑

α

TαT †
α = Is, ⇒ Qt = 1. (22)

We notice that the result Qt = 1, valid for arbitrary system ini-
tial conditions, follows from Eq. (8) and after noting that the
dual operator evolution can be written as At = ∑

α T †
α A0Tα,

which implies that Trs[At ] = ∑
α Trs[TαT †

α A0] = Trs[A0].
In general, it is possible to argue that any open quantum

dynamics induced by coupling the system with stochastic
classical degrees of freedom is always unital, which con-
sistently implies Qt = 1. In fact, the dynamics defined by
Eqs. (15) and (17) can be read as “non-Markovian” exten-
sions of the commutative dilations of dynamical semigroups
obtained in Ref. [53]. With non-Markovian, here we mean
considering non-white noises or non-Poisson statistics, re-
spectively.

On the other hand, the inverse implication is not valid
in general; that is, there exist unital dynamics that cannot
be obtained by considering the action of classical stochastic
fields. This property emerges, for example, in dephasing dy-
namics with dim(Hs) � 3 [21]. In addition, this feature has
been related to the break of a time-reversal symmetry [26].
While these cases imply a limitation on the applicability of the
indicator Qt and the related measure DQ, the corresponding
class of dynamics is well characterized. On the other hand, the
examples studied in the next section explicitly demonstrate the
consistence of the proposed approach.

IV. EXAMPLES

Here we characterize the noncommutativity measure Qt

and the degree of environment quantumness DQ for some spe-
cific dissipative Markovian and non-Markovian open quantum
dynamics.

A. Two-level system in contact with a thermal environment

We consider a two-level system interacting with a bosonic
bath at temperature T . Its density matrix ρt evolves as [1]

dρt

dt
= −iω0

2
[σz, ρt ] + κ

(
σρtσ

† − 1

2
{σ †σ, ρt }+

)

+ ζ

(
σ †ρtσ − 1

2
{σσ †, ρt }+

)
. (23)

With σz we denote the z Pauli matrix. σ and σ † are
the standard lowering and raising operators with respect
to the eigenvectors of σz. Furthermore, κ = γ (nth + 1) and
ζ = γ nth, where γ is the natural decay rate and nth =
exp(−β h̄ω0)/[1 − exp(−β h̄ω0)] is the average number of
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thermal boson excitations at the natural frequency of the sys-
tem, with β = 1/kT .

Using the alternative definition (8), jointly with the dual
evolution (20), for arbitrary system initial conditions it is
possible to obtain

Qt = 1 + 〈σz〉∞〈σz〉0[1 − e−t (κ+ζ )], (24)

where the operator mean values are 〈σz〉0 = Trs[σzρ0] and
〈σz〉∞ = limt→∞ Trs[σzρt ] = (ζ − κ )/(ζ + κ ) � 0. In gen-
eral, depending on the initial condition, as a function of time,
Qt decays or grows in a monotonic way. In any of these cases,
consistently with Eq. (9), it is fulfilled that 0 � Qt � 2.

From Eq. (24) it follows that limt→∞ Qt = 1 +
〈σz〉∞〈σz〉0. This stationary value has maximal departure
from the unit value when 〈σz〉0 = ±1. Thus, the initial
conditions that maximize the definition of DQ [Eq. (6)]
are pure states, which in turn are eigenvectors of σz. This
result is consistent with Eq. (13). The degree of environment
quantumness finally reads

DQ = |〈σz〉∞| =
∣∣∣∣ζ − κ

ζ + κ

∣∣∣∣ = tanh
(
β

h̄ω0

2

)
. (25)

In the last equality we have used the dependence on tempera-
ture of the characteristic rates.

Equation (25) defines the degree of environment quantum-
ness corresponding to the evolution (23). As a function of the
inverse temperature β, it has the expected behaviors. In fact,
in the limit of high temperatures it follows limβ→0 DQ = 0,

which correctly means that the environment influence can
be represented through classical noises [5,43] (see also Ap-
pendix A). In the limit of vanishing temperatures, DQ assumes
its maximal value [Eq. (10)], limβ→∞ DQ = 1.

B. Non-Markovian decay at zero temperature

Unlike the previous case, here we consider a dynam-
ics where the Born-Markov approximation does not apply
in general. The microscopic dynamics is defined by the
Hamiltonians Hs = (ω0/2)σz and He = ∑

j ωka†
kak, while the

interaction is set by HI = ∑
k (gkσ

†ak + g∗
kσa†

k ). With ak and
a†

k we denote the annihilation and creation operators associ-
ated with each mode of the bosonic environment. Memory
effects for this open dynamics has been studied from both non-
operational [54] and operational [55] approaches to quantum
non-Markovianity.

The (two-level) system dynamics can be solved in an exact
way by assuming that all modes of the environment start in
their ground states, which is equivalent to a vanishing temper-
ature assumption. The system density matrix reads [1]

ρt =
(

ρ++
0 |ct |2 ρ+−

0 ct

ρ−+
0 c∗

t ρ−−
0 + ρ++

0 (1 − |ct |2)

)
. (26)

Here, ρss′
0 ≡ 〈s|ρ0|s′〉, where {|s〉} = |±〉 are the eigenvectors

of σz. The function ct is defined by (d/dt )c(t ) = − ∫ t
0 f (t −

t ′)c(t ′)dt ′, where the memory kernel corresponds to the bath
correlation function f (t ) ≡ ∑

k |gk|2 exp[+i(ω0 − ωk )t].
Using that 〈A〉t = Trs[ρt A] = Trs[ρ0At ], from Eq. (26)

it is possible to obtain the operator dual dynamics, which

explicitly reads

At =
(

A++
0 |ct |2 + A−−

0 (1 − |ct |2) A+−
0 c∗

t

A−+
0 ct A−−

0

)
, (27)

where Ass′
0 ≡ 〈s|A0|s′〉. The noncommutativity measure Qt can

be obtained from the relation (8), which here delivers

Qt = 1 − 〈σz〉0[1 − |ct |2], (28)

where 〈σz〉0 = Trs[σzρ0].
From Eq. (28) it follows that limt→∞ Qt = 1 − 〈σz〉0. This

limit assumes extreme values when 〈σz〉0 = ±1. Therefore,
the degree of environment quantumness is maximal [Eq. (10)],

DQ = 1. (29)

Consistently, this value also emerges from the Lindblad mod-
eling Eq. (23) when the environment temperature vanishes
[see Eq. (25)]. In addition, the expressions for Qt , Eq. (24)
with 〈σz〉∞ = −1 and Eq. (28), assume the same structure.
Non-Markovian effects appear through the temporal behavior
of the decay function |ct |2, which, unlike the Markovian case,
may develop oscillatory behaviors [1]. For example, assuming
a Lorentzian spectral density, which implies the exponen-
tial correlation f (t ) = (γ /2τc) exp[−|t |/τc], it follows that
ct = e−t/2τc [cosh(tχ/2τc) + χ−1 sinh(tχ/2τc)], where χ ≡√

1 − 2γ τc. In a weak-coupling limit γ � 1/τc, where the
correlation time τc of the bath is the minor timescale of the
problem, a monotonic exponential decay is recovered, ct �
exp(−γ t/2) [Eq. (24)].

C. Resonance fluorescence

An optical two-level transition submitted to the action of a
resonant external laser field can be well approximated by the
evolution [3]

dρt

dt
= −i

�

2
[σx, ρt ] + γ

(
σρtσ

† − 1

2
{σ †σ, ρt }+

)
. (30)

Here, γ is the natural decay rate while the frequency � is
proportional to the intensity of the external excitation. With
σ j ( j = x, y, z) we denote the j Pauli matrix. As before, σ

and σ † are the standard lowering and raising operators. We
observe that the effective environment action corresponds to
a thermal bath at zero temperature. Next we study how the
previous result DQ = 1 [Eqs. (25)] is affected by the presence
of the external excitation.

From Eqs. (8) and (20), in a Laplace domain [ f (u) =∫ ∞
0 dte−ut f (t )], Qt is defined by the exact expression

Qu = 1

u
− 〈σz〉0

γ (2u + γ )

u[(u + γ )(2u + γ ) + 2�2]

+〈σy〉0
2γ�

u[(u + γ )(2u + γ ) + 2�2]
, (31)

where 〈σ j〉0 = Trs[σ jρ0]. Explicitly,

〈σz〉0 = (ρ++
0 − ρ−−

0 ), 〈σy〉0 = i(ρ+−
0 − ρ−+

0 ). (32)

In the time domain, from Eq. (31) it is possible to write

Qt = 1 +
∫ t

0
γ dt ′e− 3

4 γ t ′
[〈σz〉0 z(t ′) + 〈σy〉0 y(t ′)], (33)
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where the auxiliary functions are

y(t ) ≡ 4
�

�
sinh

(
t�

4

)
, (34a)

z(t ) ≡ cosh

(
t�

4

)
− γ

�
sinh

(
t�

4

)
, (34b)

with � ≡
√

γ 2 − (4�)2.

The stationary value of Qt can be obtained straightfor-
wardly from Eq. (31) as Q∞ = limt→∞ Qt = limu→0 uQu,

which leads to

Q∞ = 1 + 〈σz〉∞〈σz〉0 + 〈σy〉∞〈σy〉0, (35)

where the stationary mean values are

〈σz〉∞ = − γ 2

γ 2 + 2�2
, 〈σy〉∞ = 2γ�

γ 2 + 2�2
. (36)

Consistently, these expressions also follow as 〈σ j〉∞ =
limt→∞ Trs[σ jρt ].

The system initial conditions that lead to extreme values
of (Q∞ − 1) can be determined from Eq. (35). It is found
that the initial state must be pure, ρ0 = |ψ0〉〈ψ0|, where the
state |ψ0〉 is parametrized in terms of angles (θ0, φ0) on the
Bloch sphere, |ψ0〉 = |ψ (±, θ0, φ0)〉 [56]. Maximization im-
plies that

tan(θ0) = −2�

γ
= 〈σy〉∞

〈σz〉∞ , φ0 = π

2
. (37a)

We remark that there are two different orthogonal states
{|ψ (±, θ0, φ0)〉} associated with the direction defined by these
angles. They correspond to the basis where the stationary
state, ρ∞ = limt→∞ ρt , is a diagonal matrix. In addition, it
is found that maximization is achieved with

tan(θ̃0) = 2�

γ
= −〈σy〉∞

〈σz〉∞ , φ̃0 = 3π

2
. (37b)

These angles define the basis where the (time-reversed) sta-
tionary system density matrix is a diagonal operator, ρ̃∞ =
limt→∞ ρ∗

t , where conjugation is taken in the basis defined by
the eigenvectors of σz. These last solutions are consistent with
Eq. (13).

With the previous choice of initial conditions, from the
definition (6) and Eq. (35), the degree of environment quan-
tumness associated with the dynamics (30) can be written as

DQ = γ
√

γ 2 + 4�2

γ 2 + 2�2
. (38)

In Fig. 1(a) we plot the time dependence of Qt [Eq. (33)] as-
suming system initial conditions that maximize the degree of
environment quantumness [Eq. (37)]. When �/γ = 0, that is,
in the absence of the external excitation, a monotonic behavior
is obtained, Qt = 1 ∓ [1 − e−tγ ]. Consistently, this case can
be recovered from Eq. (24) after taking a vanishing environ-
ment temperature, 〈σz〉∞ = −1, and 〈σz〉0 = ±1. On the other
hand, as �/γ increases, oscillations arise in the behavior of
Qt . Furthermore, the asymptotic values limt→∞ Qt begin to
approach the unitary value. Even more, when �/γ � 1 it
follows that limt→∞ Qt ≈ 1.

(a) (b)

FIG. 1. (a) Qt [Eq. (33)] as a function of time for different values
of �/γ . The system initial conditions fulfill Eq. (37). The curves
above and below Qt = 1 correspond to the lower and upper initial
states, respectively. (b) Degree of quantumness DQ [Eq. (38)] (solid
line) jointly with the weak- and strong-intensity approximations
[Eqs. (39) and (40)] (dotted lines). By definition both Qt and DQ

are dimensionless quantities.

Since for each value of �/γ the initial states of the system
meet the condition (37), the asymptotic values of Qt shown in
Fig. 1(a) are related to the degree of environment quantumness
[Eq. (6)] as DQ = | limt→∞ Qt − 1|. In Fig. 1(b) we plot DQ

as a function of the amplitude of the external field �/γ .

When the external excitation is weak, Eq. (38) can be well
approximated by

DQ � 1 − 2(�/γ )4, (�/γ ) < 1. (39)

Thus, in this regime the quantumness of the environment
influence is maximal. In fact, the deviation from DQ = 1
depends on the fourth power of �/γ . On the other hand, when
the external excitation is strong enough, it follows that

DQ � 1/(�/γ ) → 0, (�/γ ) � 1. (40)

This result means that, in this extreme regime, the environ-
ment influence can be well approximated by classical noises.
This is a nonintuitive result. In fact, some quantum features
of the dynamics (30) emerge by increasing the external co-
herent field [3]. This apparent contradiction is raised up when
realizing that the proposed measure quantifies how much the
environment action departs from the influence of classical
noise fluctuations by considering the full open quantum dy-
namics, that is, reservoir and external fields.

By finding the explicit solutions of the matrix elements of
ρt , when �/γ � 1 it is possible to approximate the Lindblad
evolution (30) by

dρt

dt
≈ −i

�

2
[σx, ρt ] + 3

4
γ (σzρtσz − ρt ), (�/γ ) � 1.

(41)

Thus, the combined action of the reservoir (whose effective
temperature is zero) and the external excitation can be repre-
sented by a dephasing mechanism, that is, (3γ /4)(σzρtσz −
ρt ). This contribution can always be obtained by coupling the
system to external white noises such as, for example, Gaussian
[8] or Poisson noises [21]. Consequently, the classicality indi-
cated by the result (40) is completely consistent, which in turn
also shows the physical meaning of the developed approach.
On the other hand, when considering measures based on the
commutativity of two output states, due to a different un-
derlying physical motivation, the quantumness of dephasing
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(a) (b)

FIG. 2. Degree of environment quantumness DQ [Eq. (44)]
and concurrence of the initial optimal state C[ρ0] = C[|imax〉〈imax|]
[Eq. (45)], corresponding to the bipartite evolution (42). The plotted
objects are dimensionless.

(qubits) maps becomes proportional to the system coherence
decay [42]. Thus, classicality is only achieved in a stationary
regime (instead, here Qt = 1 ∀t and DQ = 0).

D. Optimal states for two interacting qubits

We consider two qubits (a and b) whose bipartite density
matrix ρab

t evolves as

dρab
t

dt
= −i

�

2

[
σx ⊗ σx, ρ

ab
t

] + γLa
[
ρab

t

] + γLb
[
ρab

t

]
. (42)

The frequency � scales the Hamiltonian interaction between
both systems. In addition, La and Lb define the dissipative dy-
namics of each subsystem. They are defined by the dissipative
contribution in Eq. (30), here written in each Hilbert space.
We study the relationship between the proposed noncommu-
tativity measure Qt and the optimal initial conditions ρab

0 that
lead to its maximal value in the stationary regime [Eq. (6)].

The stationary state [ρab
∞ = limt→∞ ρab

t ] of the dynamics
(42) can be obtained in an exact analytical way. Introducing
the standard base of states {| + +〉, | + −〉, | − +〉, | − −〉}, it
follows that

ρab
∞ = 1

4�2

⎛
⎜⎜⎜⎜⎝

�2 0 0 −i2γ�

0 �2 0 0

0 0 �2 0

i2γ� 0 0 4γ 2 + �2

⎞
⎟⎟⎟⎟⎠, (43)

where � ≡
√

γ 2 + �2. By using Eq. (13), the degree of en-
vironment quantumness can be written in terms of the largest
eigenvalue of ρ̃ab

∞ = ρ∗ab
∞ . We get

DQ = γ (γ + 2
√

γ 2 + �2)

γ 2 + �2
. (44)

In Fig. 2(a) we plot DQ as a function of �/γ . We notice that
by increasing the influence of the Hamiltonian contribution
classicality is achieved, lim�/γ→∞ DQ = 0. Similarly to the
previous case [Eqs. (38) and (41)], in this limit the combined
action of the environment and the subsystems interaction
Hamiltonian can be written in terms of dephasing (unital)
mechanisms.

Equation (13) also characterizes the initial condition ρab
0 =

|imax〉〈imax| that leads to maximal stationary values of the
noncommutativity measure Qt . |imax〉 is the eigenstate of the

stationary state ρ̃ab
∞ with the largest eigenvalue. It reads

|imax〉 = 1√
2�(� − γ )

[i(� − γ )| + +〉 + �| − −〉], (45)

where, as before, � =
√

γ 2 + �2, and 〈imax|imax〉 = 1.

In general |imax〉 is an entangled state. This feature
can be quantified through its concurrence [57] C[ρ0] =
C[|imax〉〈imax|]. In Fig. 2(b) we plot its dependence on �/γ .

In the limit of a vanishing unitary coupling, from Eq. (45) it
follows that

lim
�/γ→0

|imax〉 = | − −〉. (46)

This is an unentangled state, implying C[ρ0] = 0. In contrast,
in the limit of strong coupling we get

lim
�/γ→∞

|imax〉 = 1√
2

(i| + +〉 + | − −〉), (47)

which is a maximal entangled state, C[ρ0] = 1.

The previous behaviors have an interesting physical im-
plication. In the weak-coupling limit [�/γ ≈ 0], a (nearly)
unentangled initial state leads to the maximal departure from
classicality of the environment action (quantified by DQ).
By increasing the unitary coupling [�/γ > 0], an increasing
initial entanglement between both subsystems is necessary to
obtain the maximal deviation from classicality.

For this model the measure Qt assumes a simple form
[Eq. (8)]. When maximizing its stationary value with respect
to the initial conditions, it follows that

Qt = 1 + γ 2(1 + e−2γ t )

�2
+ 2

γ

�
[1 − λe−2γ t cos(�t )], (48)

where λ ≡ 1 + (γ /�). Consistently, the initial state that leads
to this expression is ρab

0 = |imax〉〈imax| [Eq. (45)].
The previous results rely on taking both subsystems as

the system of interest. One can also deal with the partial
dynamics ρa

t = Trb[ρab
t ] or, alternatively, ρb

t = Tra[ρab
t ]. The

corresponding stationary states read

ρs
∞ = 1

2�2

(
�2 0

0 2γ 2 + �2

)
, s = a, b. (49)

Performing similar calculations, the degree of environment
quantumness and the optimal state are

DQ = γ 2

γ 2 + �2
, |imax〉 = |−〉. (50)

Given the symmetry of Eq. (42), this results applies to both
subsystems. Furthermore, assuming ρab

0 = |imax〉〈imax| ⊗ ρb
0,

where ρb
0 is an arbitrary state, it follows that

Qt = 1 + γ 2

�2
+ γ e−γ t

�2
[� sin(�t ) − γ cos(�t )]. (51)

The same expression follows from ρab
0 = ρa

0 ⊗ |imax〉〈imax|.
These results differ from those obtained starting from a bi-
partite representation [Eqs. (44), (45), and (48)]. This feature
shows that the environment’s influence over a system cannot,
in general, be related in a simple way with the action over the
constitutive subsystems.
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E. Quantum harmonic oscillator coupled
to a thermal environment

The developed approach applies consistently to systems
with a Hilbert space of finite dimension [see Eqs. (9) and
(10)]. Complementarily, here we study the case of a quantum
harmonic oscillator coupled to a thermal environment at a
finite temperature.

The density matrix evolution can be written as in Eq. (23)
under the replacements σ † → a† and σ → a, where a† and a
are the creation and annihilation bosonic operators of the sys-
tem, respectively [1]. Alternatively, the evolution can be writ-
ten using a Wigner function. It is defined as the Fourier trans-
form W (α, α∗, t ) ≡ (1/π2)

∫
d2zχ (z, z∗)e−iz∗α∗

e−izα, where
the characteristic function is χ (z, z∗) ≡ Trs[ρt exp(iz∗a† +
iza)]. Denoting Wt = W (α, α∗, t ), its time evolution reads [3]

∂Wt

∂t
=

{
ϕ

∂

∂α
α + ϕ∗ ∂

∂α∗ α∗ +
(

κ + ζ

2

)
∂2

∂α∂α∗

}
Wt , (52)

where ϕ ≡ iω0 + (κ − ζ )/2. Here, ω0 is the natural frequency
of the system. Note that dissipative contributions (first-order
derivatives) are present whenever the underlying rates are
different, κ �= ζ . On the other hand, diffusion (second-order
derivatives) always develops, being scaled by (κ + ζ )/2.

The operator evolution can be obtained in a similar
way from the dual dynamics associated with the sys-
tem density matrix. Alternatively, it can be deduced us-
ing that operator expectation values can be written as
〈A〉t = ∫

dαdα∗Wt A0(α, α∗) = ∫
dαdα∗W0A(α, α∗, t ),

where A0(α, α∗) is the “scalar representation” of the system
operator A. From Eq. (52) we get [At = A(α, α∗, t )]

∂At

∂t
= −

{
ϕα

∂

∂α
+ (ϕα)∗

∂

∂α∗ −
(

κ + ζ

2

)
∂2

∂α∂α∗

}
At .

(53)

Using this representation, from Eq. (8) we get Qt =∫
dαdα∗At , where At is the solution of the dual evolution

with the initial condition A0 = W0. By integration by parts
of Eq. (53), it is simple to arrive at (d/dt )Qt = (κ − ζ )Qt ,

which leads to

Qt = exp[(κ − ζ )t]. (54)

This result is valid regardless of the initial system density ma-
trix. Therefore, no maximization procedure is available. The
same expression for Qt follows by using a Glauber-Sudarshan
P representation or Q representation [3], or even from a (di-
agonal) Fock-number characteristic function approach [58].

Since κ � ζ [κ = γ (nth + 1) and ζ = γ nth], the indicator
Qt develops an exponential divergence in time for any finite
bath temperature. Only when the reservoir temperature is
infinite (κ = ζ ) does a classical noise representation apply,
Qt = 1 and DQ = 0. This behavior has a clear interpretation.
In fact, for any finite reservoir temperature, the Wigner func-
tion involves dissipative contributions [see Eq. (52)]. These
(trace-preserving) effects develop in the system Hilbert space
and cannot be reproduced by any classical external influence.
Dissipative contributions only disappear when κ = ζ , consis-
tently supporting the (discontinuous) temperature dependence
of the degree of quantumness in this case.

Although the previous result is consistent, it differs
strongly from the case of the two-level system [see Eq. (25)],
where DQ has a continuous dependence on the reservoir
temperature. Interestingly, for infinite-dimensional Hilbert
spaces, the expression (12) allows us to define a renor-
malized degree of environment quantumness as DQR ≡
max[ρ0] Trs[ρ̃∞ρ0]. In terms of the Wigner function, it is

DQR = max
[W0]

∫
dαdα∗W̃∞W0. (55)

Here, maximization must be performed over all possible (nor-
malized) initial conditions W0. Furthermore, Eq. (52) implies
that W̃∞ = W∞ = limt→∞ Wt = (1/πσ∞) exp(−|α|2/σ∞),
where σ∞ = (1/2)(κ + ζ )/(κ − ζ ) = nth + (1/2) = (1/2)
(tanh[β h̄ω0/2])−1.

Since DQR is a linear functional of W0, the maximization
problem cannot be solved by using standard functional deriva-
tive techniques. As an ansatz we assume that W0 is also a
Gaussian function. In such a case, it follows that W0 must have
the smallest possible width. Therefore, it must be the Wigner
function of the ground state of the system, which in turn from
Eq. (55) delivers

DQR = 1

σ∞ + (1/2)
= 1 − exp(−β h̄ω0). (56)

The same result is obtained by performing a similar ansatz
in the energy eigenbasis representation. DQR has the expected
dependence on the environment temperature. In particular,
classicality [DQR = 0] is approached in a high-temperature
limit. In contrast to the two-level system case [Eq. (25)], here
the renormalized degree of quantumness cannot be associ-
ated with the time-dependent noncommutativity measure Qt

[Eq. (54)].

V. SUMMARY AND CONCLUSIONS

We have developed a consistent proposal that allows us
to quantify to what extent the influence of a given environ-
ment on an open quantum system departs from the action
of classical stochastic fields. Its physical ground is based
on associating the quantumness of the environment influence
with the lack of commutativity between the initial state of the
reservoir and the system-environment total Hamiltonian. On
this basis we introduced a (time-dependent) noncommutativ-
ity measure [Eq. (3)]. Its stationary value (long time-regime)
when maximized over all possible initial conditions of the sys-
tem defines a degree of environment quantumness [Eq. (6)].
For dissipative dynamics it can be determined from the largest
eigenvalue of the (time-reversal) stationary system density
matrix [Eq. (13)]. Independently of the system dynamical
regime, the noncommutativity measure can be written in terms
of the dual evolution of operators [Eq. (8)]. This alternative
definition provides a powerful tool to characterize the envi-
ronment quantumness in both Markovian and non-Markovian
regimes.

Consistently the nonclassicality measure vanishes identi-
cally for a broad class of quantum dynamics, which include
Hamiltonian ensembles [Eq. (14)], stochastic Hamiltonians
[Eq. (15)], and a class of collisional dynamics [Eq. (18)]. All
these dynamics can be obtained by considering the action of
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underlying classical stochastic processes. Despite the consis-
tency of this result, the quantumness indicator also vanishes
when the open system dynamics is defined by a unital map
[Eq. (22)]. Hence, the proposed indicator can also be read as
a measure of departure from this dynamical property.

The consistency of the developed approach was supported
by studying different dissipative open system dynamics. For
two-level systems coupled to a thermal bath, the degree of
environment quantumness decreases monotonically with the
reservoir temperature [Eq. (25)]. For an optical transition
(resonant fluorescence) the amplitude of the external coher-
ent excitation monotonically drives the environment influence
toward classicality [Eq. (38)]. The consistency of this result
derives from the possibility of describing the high-intensity
regime in terms of a dephasing quantum master equation that
can be represented by the action of classical noises. On the
other hand, by analyzing two interacting qubits it was found
that quantum entanglement may become a necessary resource
for detecting the quantumness of the environment influence
when approaching a regime in which a classical noise rep-
resentation becomes a valid approximation. Application to
systems endowed with a Hilbert space of infinite dimension
was also established.

The present formalism leaves open some interesting ques-
tions. For example, it is unknown what dynamical features
determine the presence or absence of revivals in the tempo-
ral behavior of the noncommutativity measure. On the other
hand, an operational definition and experimental measurabil-
ity are also interesting issues that can be addressed from the
proposed approach.
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APPENDIX A: CLASSICAL NOISE APPROXIMATION

The microscopic derivation of a classical noise represen-
tation of the environment influence is usually performed in
a weak-coupling limit [5] or, more generally, using projectors
techniques [43]. Here we sketch the derivation. Given the total
Hamiltonian H = Hs + He + HI , in an interaction representa-
tion with respect to Hs + He, the system state (ρt → ρI

t ) can
be written as

ρI
t = Tre

(⌈
e−i

∫ t
0 dt ′HI (t ′ )⌉ρ0 ⊗ σ0

⌊
e+i

∫ t
0 dt ′HI (t ′ )⌋)

, (A1)

where HI (t ) = exp[+it (Hs + He)]HI exp[−it (Hs + He)]. In
addition, �· · · � and �· · · � denote a time ordering opera-
tion and an antichronological ordering operation, respectively.
Without loss of generality, the interaction is taken as

HI (t ) = λVt ⊗ Bt , (A2)

where Vt and Bt are respectively system and reservoir
operators written in the interaction representation, Vt =
exp[+itHs]V exp[−itHs] and Bt = exp[+itHe]B exp[−itHe].
The dimensionless parameter λ measures the interaction
strength.

The environment action over the system is classical when
the (interaction) environment operator can be replaced by a
scalar noisy function,

Bt → ξt . (A3)

Notice that this replacement implies that the environment
operator Bt can be treated as a communting scalar function.
Correspondingly, the system state (A1), under the change
Tre(· · · ) → (· · · ), can be approximated as

ρI
t ≈ ⌈

e−iλ
∫ t

0 dt ′Vt ′ ξt ′
⌉
ρ0

⌊
e+iλ

∫ t
0 dt ′Vt ′ ξt ′

⌋
, (A4)

where the overline denotes an average over realizations of
the classical noise ξt . In general, Eqs. (A1) and (A4) are
incompatible or inconsistent. The conditions under which this
mapping is valid are obtained by performing an expansion on
the interaction parameter λ [5,43]. Next, we derive the same
conditions in an alternative simplified way.

In terms of operator commutation properties, the replace-
ment (A3) implies that [HI (t ), σ0] ≈ 0. This relation, in turn,
implies that there exists an environment basis {|ω〉} where
both objects, HI (t ) and σ0, are diagonal. Thus, Eq. (A1) can
be approximated as

ρI
t ≈

∑
ω

σω

⌈
e−iλ

∫ t
0 dt ′Vt ′ 〈ω|Bt ′ |ω〉⌉ρ0

⌊
e+iλ

∫ t
0 dt ′Vt ′ 〈ω|Bt ′ |ω〉⌋,

(A5)

where σω ≡ 〈ω|σ0|ω〉. In this expression the influence of the
reservoir has been reduced to a classical one. In fact, each
contribution Vt ′ 〈ω|Bt ′ |ω〉 can be read as a random (system)
Hamiltonian that participates with weight σω. Given this
feature, the (unknown) statistical properties of ξt (all time-
correlations) can be obtained by developing Eqs. (A4) and
(A5) as series in the interaction strength.

To first order in λ, it follows that the condition

ξt =
∑

ω

σω〈ω|Bt |ω〉 ≈ Tre[σ0Bt ]. (A6)

This relation can always be satisfied consistently. On the other
hand, to second order in λ, we get

ξtξt ′ =
∑

ω

σω〈ω|Bt |ω〉〈ω|Bt ′ |ω〉 ≈ Tre[σ0Bt Bt ′ ], (A7)

where t �= t ′. While this correlation mapping seems con-
sistent, it implies that Tre[σ0Bt Bt ′ ] ≈ Tre[σ0Bt ′Bt ]. Due to
the intrinsic quantum nature of the environment, this last
property is not valid in general. The correlation inequality
Tre[σ0Bt Bt ′ ] �= Tre[σ0Bt ′Bt ] is avoided when σ0 � Ie, which
in turn for thermal environments is fulfilled in a high-
temperature limit [5,43]. On the other hand, contributions
proportional to higher orders in λ define higher noise cor-
relations. For Gaussian fluctuations [43], all of them can be
reduced to Eq. (A7).

APPENDIX B: RENEWAL COLLISIONAL MODELS

In these models the statistics of the collisional times are
defined by a “waiting time distribution” w(t ). It gives the
probability density for the time interval between consecu-
tive collisional events. The corresponding survival probability
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is defined as P0(t ) = 1 − ∫ t
0 dt ′w(t ′). Poisson statistics cor-

responds to w(t ) = γ exp(−γ t ) and P0(t ) = exp(−γ t ), an
assumption that leads to Markovian Lindblad equations for
the system dynamics.

In correspondence with Eq. (17), the system density matrix
can be written in general as [51]

ρt =
∞∑

n=0

∫ t

0
dt ′P0(t − t ′)W (n)(t ′)ρ0. (B1)

The involved superoperators are written in the Laplace do-
main [ f (u) = ∫ ∞

0 dte−ut f (t )] as

P0(u) ≡ P0(u − Ls), W (n)(u) ≡ [Ew(u − Ls)]n. (B2)

Here, P0(u) = [1 − w(u)]/u. Furthermore, the free propaga-
tor between events was written as Gt = exp(tLs). Notice that

in a time domain W (n)(t ) consists in the convolution of free
propagation and n collisional events. Consistently, the func-
tion P0(u)wn(u) gives the probability of occurring n events up
to time t .

Using that 〈A〉t = Trs[A0ρt ] = Trs[ρ0At ], from Eq. (B1)
the operator dual evolution reads

At =
∞∑

n=0

∫ t

0
dt ′W�(n)(t ′)P�

0 (t − t ′)A0. (B3)

Here, the involved superoperators are defined as P�
0 (z) =

P0(z − L�
s ) and W�(n)(z) = [w(z − L�

s )E�]n. These ex-
pressions rely on the definitions Trs[AE[ρ]] = Trs[ρE�[A]]
and Trs[A exp(tLs)[ρ]] = Trs[ρ exp(tL�

s )[A]].
The time-dependent noncommutativity measure Qt can be

calculated as the trace of dual dynamics [Eq. (8)]. The prop-
erty Trs[At ] = Trs[A0] leads to the condition Trs[E�[A]] =
Trs[A], which recovers Eq. (18).
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