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Comment on “Subluminality of relativistic quantum tunneling”
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The central claim of Gavassino and Disconzi [Gavassino and Disconzi, Phys. Rev. A 107, 032209 (2023)] that
relativistic quantum tunneling is an entirely subluminal process is shown to be incorrect. The Hartman effect can
lead to superluminal tunneling, but not to superluminal signaling.
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The central thrust of the paper by Gavassino and Disconzi
(GD) [1] is to prove the claim, as stated in their abstract,
that “the relativistic quantum tunneling (if modeled using
the Dirac equation) is an entirely subluminal process, and it
is not instantaneous.” The first part of this claim is not in
agreement with numerical observations [2] and the second
part is not new: We have shown in two recent papers [2,3]
that the tunneling time, when appropriately defined, is just the
well-known Wigner phase time [4].

In the caption of their Fig. 3, the authors claim that the
“only way for a tunneled wave packet to exit at a time
t < L is that � �= 0 on the right of Q already at t = 0.”
They further clarify this comment in their text, stating “we
must assume that the incoming wave packet had a long tail,
which extended largely inside the barrier, and that the tun-
neled wave packet is just the (subluminal) evolution of such
long tail.” The numerical evidence presented in our paper [2]
negates this claim of the authors. We stated that the initial
density of the wave packets we used had a density at the left
edge of the barrier which is 10−27 less than the peak value
of the incident wave packet. The transmitted superluminal
density as shown in Fig. 1 of our paper is greater than or
equal to 2×10−12. This does not negate the arguments and
estimates of Appendix B of GD. Indeed, the initial density
within the light cone is much larger than the transmitted
density.

In our numerical experiments [2] we found a superlumi-
nal peak in the scattering of a tunneling particle through a
thick barrier, attributed to the Hartman effect. Gavassino and
Disconzi claim that the superluminal peak is not superluminal
but is related purely to that part of the incident wave function
which was within the light cone and that therefore any particle
arriving early is not superluminal but comes from the front of
the wave packet which as stated is within the light cone. In
Fig. 1 we plot the time distribution of transmitted particles
for three different widths of the incident wave packet, 15λ̄,
10λ̄, and 7λ̄, with the other parameters the same as in Fig. 1c
of Ref. [2]. One notes that the superluminal peak persists
and changes very little, even though the width of the inci-
dent wave packet has changed significantly. The integrated

density within the light cone is in all three cases greater than
or equal to 10−2, much larger than the transmission proba-
bility. However, whereas decreasing the wave-packet width
decreases the density within the light cone, the integrated flux
associated with the superluminal peak actually increases (note
the increasing superluminal peak flux in Fig. 1). This is in
accord with the MacColl-Hartman effect, which we believe
causes the superluminality and not the existence of an initial
tail under the barrier, as claimed by GD.

The authors claim on p. 4 of their paper that “we would like
to point out that, when we say that the tunneled wave packet
originates from the right tail, we are just making two rigor-
ous mathematical statements. First, that if you change your
initial data by removing the tail, i.e., by replacing �(t = 0)
by �(t = 0)�(Q − z), where � is the Heaviside step [func-
tion], the tunneled wave packet disappears.” It is not clear
what the authors mean by the “tunneled wave packet.”
Gavassino and Disconzi have not demonstrated that the su-
perluminality observed in our numerical experiments will
disappear.

Gavassino and Disconzi then continue to state the fol-
lowing: “Second, if you instead replace �(t = 0) with
�(t = 0)�(z − Q), leaving only the tail and cutting all the
rest, the tunneled wave packet still remains, and it is com-
pletely unaffected” (emphasis ours). Quantum mechanics
cannot predict the trajectory of a single particle. In the tun-
neling experiment we considered, one will observe particles
that are transmitted at times that are earlier than those of
transmitted free particles. Gavassino and Disconzi relate these
particles to the front of the incident wave packet. However,
this is not possible because the operator which projects out
the component of a wave packet that transmits at a particular
time does not commute with the position operator. One cannot
relate the transmitted wave function to any particular part of
the incident wave. Furthermore, multiplying any wave func-
tion with a step function fundamentally alters the properties of
the wave function and therefore it is not at all clear that “the
tunneled wave packet still remains” whatever that means. This
is well known, but to prevent any possible misunderstanding
we demonstrate this as follows.
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FIG. 1. Tunneled flux versus time for an electron tunneling
through the barrier of Fig. 1c of Ref. [2]. The barrier height and width
are 6.7mc2 and 15λ̄. The particle wave-packet widths are (a) 15λ̄,
(b) 10λ̄, and (c) 7λ̄ (1 λ̄ = 386 fm, the reduced Compton wavelength
of an electron). Also shown (dashed lines) are the corresponding
distributions for photons in a vacuum. The times of maximum flux
are indicated by the tick marks on the time axis. The unit of time is
λ̄/c = 1.29×10−21 s.

The wave function we choose initially is a coherent state
whose form is

〈x|�〉 =
(
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π

)1/4

exp

(
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(x − x0)2 + i

h̄
p0(x − x0)

)
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where x0 and p0 are the initial means of the position and
momentum of the normalized wave packet. Furthermore, this
is a minimum-uncertainty wave packet, that is,

〈(x̂ − x0 Î )2〉〈( p̂ − p0 Î )2〉 = h̄2

4
, (2)

where circumflexes denote operators and angular brackets
mean, i.e., 〈x̂〉 = ∫ ∞

−∞ dx x|〈x|�〉|2. Then GD make claims on
the properties of “cutoff wave packets,” i.e.,

〈x|�c〉 = √
NQ

(
�

π

)1/4

× exp

(
−�

2
(x − x0)2 + i

h̄
p0(x − x0)

)
�(x − Q),

(3)

where NQ is a normalization constant and one readily sees
that NQ = 2/erfc(

√
�Q), where erfc(x) is the complementary

error function. It is then a matter of straightforward algebra to
show that the mean position of this wave packet is

〈�c|x̂|�c〉 = 1√
π� exp[�(Q − x0)2]erfc[

√
�(Q − x0)]

(4)

and that its second spatial moment is

〈�c|x̂2|�c〉 = 1

2�
+ (Q − x0)〈�c|x̂|�c〉. (5)

The resulting variance in the position is thus

�x2 = 1

2�
+ 〈�c|x̂|�c〉(Q − x0 − 〈�c|x̂|�c〉). (6)

The same is now repeated for the momentum operator.
Again, straightforward algebra shows that

〈�c| p̂|�c〉 = p0, (7)

so cutting off the wave function in the configuration space
does not change its mean momentum; however, it very much
changes the second moment

〈�c| p̂2|�c〉 = h̄2|〈Q|�c〉|2 lim
x→Q−x0

δ(Q − x0 − x)

− h̄2�

2
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2
.

(8)

We see here that for any finite value of Q, the second mo-
ment of the momentum diverges. The divergence is of course
independent of the normalization. Even if GD argue that we
should cut off the front and look at it separately without
normalization, we would still get the divergence. This then
means that by cutting off the wave function one observes
properties that are very different from those of the original
wave function. The statement that the resulting tunneled wave
packet associated with this incident cutoff wave packet is
completely unaffected is therefore incorrect. The cutoff wave
packet has initial momenta which are much higher than the
barrier, thus necessarily changing the scattered wave packet
and its properties.

To gain further insight into the properties of the cutoff
wave packet, it is illuminating to consider its Wigner phase-
space representation. To simplify, we set q0 = 0. First, we
write down the phase-space representation of the coherent
state without a cutoff

�W (p, q; Q = −∞) = 1

π h̄
exp

(
−�q2 − (p − p0)2

�h̄2

)
. (9)

Then we work out the representation for the wave function
with the cutoff
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FIG. 2. Comparison of the phase-space distribution of the fully
coherent state (yellow) with the cutoff coherent state without its
normalization (red). Note how the cutoff induces a much broader
distribution in the momentum space, introducing momenta that are
not there in the full wave function.

This is an even function of (p − p0), so it is clear that the
mean momentum is just p0. However, the density itself is very
different from that of the density of �W (p, q; Q = −∞)�
(q − Q), as shown in Fig. 2. Here we set the normalization
constant NQ = 1 to facilitate the comparison. The figure is
plotted using the parameters (in atomic units) Q = 2, � =
0.25, and p0 = 1. One notes how the cutoff induces oscil-
lations in the momentum direction. It is true that when one
compares the density in configuration space of the cutoff
function with the density of the full wave function without a
cutoff, leaving out the normalization N , the two densities are
identical for any q > Q. However, the same is not true when
considering the phase-space density. The two are simply not
the same as implied by the claims of Gavassino and Disconzi.

Moreover, this figure points out an additional difficulty
with the claims of Gavassino and Disconzi. The fact that such
a wave packet would have a significant above-barrier compo-
nent in energy makes it difficult to distinguish the effects of
“tunneling” from the effects of free propagation slowed by a
potential step. At this point, one may no longer speak about a
tunneled wave packet. Since the cutoff wave packet in phase
space has components with energy above the barrier energy,
at least some part of the associated transmitted wave packet is
not tunneling at all. This also complicates the comparison to
a light-speed, free-traveling wave packet. If GD are claiming
that there exists a “tunneling wave packet” which presumably
is a part of the transmitted wave packet which remains the
same, they must prove this.

Our computations show that particles may be transmit-
ted superluminally. Particles exiting the barrier at times that
precede those of photons cannot be associated only with the
“front of the wave packet.” Their origin may come from any-
where in the incident wave packet, whether within the light
cone or outside it. However, how can one reconcile this with
the theorem stated by GD? We claim that it is not relevant
to our numerical experiment. Indeed, there are circumstances
in which the propagation is limited by the light cone. As
shown by Thaller [5], this result requires the cancellation of
beyond-the-light-cone terms in the kernel components asso-
ciated with the positive- and negative-energy subspaces. The
two kernel components exhibit exponentially decaying tails
beyond the light cone (note the modified Bessel function of
the second kind in Eq. 1.100 on p. 17 in [5]). Thus, if [as
done in our paper; see Eq. (2.7) in [2]] one restricts oneself
to the positive-energy component in the incident wave packet,
there is no strict cutoff beyond the light cone. There is instead
an exponential decay, just like the wave-packet penetration
into any other classically forbidden region. Such a restriction
is readily accessible experimentally, by scattering only elec-
trons, and therefore the superluminality would exist. Yet, as
claimed qualitatively in our paper and proved elsewhere [6],
the fact that there are superluminal particles is insufficient to
transfer information faster than light.

R.S.D. thanks McMaster University for a Professional
Development Allowance. E.P. was supported by Grants No.
408/19 and No. 2965/19 from the Israel Science Foundation.

[1] L. Gavassino and M. M. Disconzi, Phys. Rev. A 107, 032209
(2023).

[2] R. S. Dumont, T. Rivlin, and E. Pollak, New J. Phys. 22, 093060
(2020).

[3] T. Rivlin, E. Pollak, and R. S. Dumont, Phys. Rev. A 103, 012225
(2021).

[4] E. Wigner, Phys. Rev. 98, 145 (1955).
[5] B. Thaller, The Dirac Equation (Springer, Berlin, 1992).
[6] R. S. Dumont and T. Rivlin, Phys. Rev. A 107, 052212

(2023).

036201-3

https://doi.org/10.1103/PhysRevA.107.032209
https://doi.org/10.1088/1367-2630/abb515
https://doi.org/10.1103/PhysRevA.103.012225
https://doi.org/10.1103/PhysRev.98.145
https://doi.org/10.1103/PhysRevA.107.052212

