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Quantum and classical field scattered on a single two-level system

S. A. Gunin ,1,2,* A. Yu. Dmitriev,1,3 A. V. Vasenin ,1,2 K. S. Tikhonov ,1,4 G. P. Fedorov ,1,3,5 and O. V. Astafiev2,1

1Moscow Institute of Physics and Technology, Dolgoprudniy 141700, Russia
2Skolkovo Institute of Technology, Moscow 121205, Russia

3Russian Quantum Center, Skolkovo Village 143025, Russia
4Landau Institute for Theoretical Physics, Moscow 119334, Russia

5National University of Science and Technology, MISIS, Moscow 119049, Russia

(Received 28 February 2023; revised 6 June 2023; accepted 6 September 2023; published 28 September 2023)

In many problems, the scattering amplitudes of a weak coherent pulse are almost equivalent to the ones of a
single propagating photon. We thoroughly compare the scattering of (i) a short microwave coherent pulse from a
rf generator and (ii) a vacuum-photon coherent superposition from the two-level emitter, both directed to a single
two-level system—the probe. To do that, we use two superconducting qubits to implement emitter and probe,
both strongly coupled to the same waveguide. However, with the use of a magnetic circulator we couple the
field from the emitter to the probe without reverse backaction, thereby working with a cascaded atomic system
implemented in a waveguide-QED setup. By measuring the dynamics of the scattered field, we find a certain
discrepancy between two cases, confirmed by analytical and numerical study. Particularly, we find the optimal
amplitude �∗ of classical pulse mimicking the superposition from the emitter, for which the difference becomes
very small (but nonvanishing) and is almost unavailable to measure in practice.
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I. INTRODUCTION

An artificial superconducting atom is a promising platform
for studying fundamentals of light-matter interaction due to
the ability to achieve strong coupling with an open space or
single-mode fields [1,2]. Over the past two decades many
quantum optical experiments demonstrating various proper-
ties of light were conducted: Resonance fluorescence of the
single qubit [3], wave mixing [4], and single-photon rout-
ing [5]. Moreover, since the cavity quantum electrodynamics
(cQED) platform provides a highly efficient on-demand
single-photon source [6] it is possible to study scattering of
various light states on atoms strongly coupled to an open
one-dimensional (1D) space. Studying the interaction of light
having arbitrary statistics with the single atom has a long-term
theoretical interest [7–9]. However, previous works consider-
ing one-dimensional photon transport [10] focus mostly on
the law of scattering of field in pure Fock or coherent states
[11–16] and on the dynamics of population [17–19] after in-
teraction. Moreover, the properties of the fields scattered in the
superposed Fock state have not received sufficient coverage.

In the present work, we study both theoretically and ex-
perimentally scattering of the single-photon pulses being in
the zero-one superposed Fock state—hereinafter it is called
“quantum” pulse—on the superconducting transmon qubit,
and subsequently compare obtained results with the case
of scattering of an exponentially modulated coherent pulse;
henceforward it is called “classical.” The quantum pulse gen-
erated by the single-photon source lacks states |n〉 with n > 1.

*gunin.sa@phystech.edu

Therefore, the scattering of such a pulse would not result in
more than one atomic Rabi oscillation, which, in general, is
not the case for the coherent pulse, which, if strong enough,
may force to exhibit multiple atomic population oscillations.
Population oscillations are connected with the scattered field
envelope oscillations. Measuring the time-domain envelope
of the scattered field, we find that, in the limit of small
field amplitude of the coherent signal, the experiment shows
practically indistinguishable dynamics of the scattered fields,
compared to the scattering of antibunched light, due to the
relatively small impact of the higher-order Fock states present
in the coherent pulse [20,21].

However, we theoretically show that the scattered field
dynamics has non-negligible differences in the two cases for
arbitrary choice of coherent pulse parameters. Furthermore,
we estimate the coherent field amplitude yielding the closest
classical approximation of the scattered field dynamics com-
pared to the quantum case. Hence, in the low-signal limit,
one is able to consider single-photon approximation in a wide
range of problems, as in the single-photon microwave range
detector [22].

II. EXPERIMENTAL RESULTS

A. Device and measurement setup

To explore the stated scattering problem, we implement a
cascaded [9,23] system from two superconducting artificial
atoms—tunable transmon qubits [24]; see Fig. 1. The first
atom is coupled to a pair of semi-infinite waveguides, imple-
menting a single-photon source (which we will call emitter)
[6]. The emitter qubit is designed similarly to the emitter
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FIG. 1. (a) Schematic problem statement for the scattering of
the quantum signal being produced from the emitter qubit on the
probe qubit. (b) Schematic problem statement for the scattering of
the coherent signal on the probe qubit. (c) Schematic describing the
connection between sample holders. Blue lines denote the signal path
in scattering of the single-photon pulses; red lines denote the signal
path in scattering of the coherent pulses. An output amplification line
is common for both experiments. Optical images of the emitter qubit
and the probe qubit are presented. The yellow box on (c) contains a
scanning electron micrograph of the Josephson junctions.

in [25]. It may be excited by a driving pulse applied via
the weakly coupled control line, which prepares an arbitrary
single-photon superposed state; subsequently it radiates into
the strongly coupled emission line. The field emitted to the
output waveguide propagates through a circulator and then
interacts with the probe (quantum scatterer) qubit, which is
side coupled to the waveguide. We subsequently detect the
voltage in this waveguide Vq(t ); see Fig. 1(a). The circulator
prevents the backaction of the probe qubit on the emitter qubit
[7,26]. We estimate power loss between the output of the
emitter and the coupling point of the probe atom to be about
3 dB.

The emitter and probe are located on two different sili-
con chips and placed into two separate sample holders with
separate permalloy magnetic shield. Each sample holder has
its own magnetic coil, which allows one to change magnetic
fluxes and thereby to tune the working frequencies of the
devices. The output signal from the probe is then amplified
by cryogenic and room-temperature amplifiers. After amplifi-
cation, the signal is down-converted by a standard heterodyne
scheme with double balanced [27] quadrature mixers in the
single-sideband modulation regime. Typical incoming to the
mixer waveforms generated from fast AWG have 1 GSa/s
sampling rate and LO resolution is of the order of ∼1 Hz. Both
quadratures are digitized with fast ADCs at the 1.25 GSa/s
rate with the typical number of experimental trace averages
of 224 (approximately 107). Moreover, due to the possibility
of independent tuning of the qubit frequencies, it is possible
to detect the incoming pulse and output field separately. The
incoming pulse is independently recorded and subtracted from
the experimental traces to obtain what we call the “scattered”
field.

FIG. 2. (a) Single-tone spectroscopy of the bare emitter; the red
dashed line represents the sweet-spot location ωc. The emission line
of the probe is represented at (b); the red dashed line is located at
ω = ωc. When qubits are tuned into resonance the transmission dip
occurs at ω = ωc (c), the probe is tuned throughout the emitter’s
resonance, the emitter is located at sweet-spot frequency ωc, and
detuning �ω between scanning frequency ω and emitter sweet-spot
ωc is defined as �ω = ω − ωc. (d) The envelope of single-photon
superposition spontaneously radiated after the π/2 pulse from the
emitter (incident on the probe; the probe is far detuned) at a fre-
quency of ωc is digitized and plotted as blue triangles. Scattering
on the probe field after interaction with the incident quantum pulse
is plotted as a blue dashed curve. (e) The coherent pulse with the
exponential envelope excites the probe at ωc frequency. Incident
exponential pulse is plotted as a red dashed line. The envelope of
the scattered field on the probe is represented with red triangles.

The classical coherent signal may be applied directly to the
probe qubit via a directional coupler without disturbing the
emitter and we denote the field scattered in this experiment as
Vcl (t ); see Fig. 1(b). Therefore, the presented setup allows one
to study the scattering of an equal single-photon superposition
(|0〉 + |1〉/√2 state) pulse or classical pulses on the probe
qubit, since the output line is common; see Fig. 1(c). The full
experimental setup is presented in Appendix C.

B. Device characterization

First, we characterize the energy level structure of the
discussed devices. Hence we provide elastic scattering data
of continuous waves for emitter and probe qubits. Figure 2(a)
presents the spectrum of the emitter with the probe being far
detuned versus bias current in a coil, generating a magnetic
field, which penetrates a SQUID. The sweet-spot position of
the emitter is located at ωc/2π = 5.119 GHz; see the dashed
red line in Fig. 2(a). Hereinafter, ωc would be a carrier fre-
quency for the subsequent experiments.
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Similarly, we record the bare spectrum, see Fig. 2(b), of the
probe qubit, using a different excitation line as illustrated via
red arrows in Fig. 1(c). The probe’s sweet spot slightly differs
from the emitter’s one, ωp/2π = 5.153 GHz. Therefore, in
order to study resonant scattering we should fix the frequency
ωc and precisely tune the probe into resonance with ωc. As
soon as the output of the emitter at the frequency ωc passes
through the waveguide with the probe being tuned to the ωc,
one can observe the transmission dip caused by the probe on
the emission profile of the emitter and the emitter peak when
they are detuned; see Fig. 2(c).

Next we proceed to time-resolved measurements, in order
to characterize the relaxation rates of the qubits. We tune
consecutively the emitter and the probe into resonance with
the carrier frequency. The radiative linewidth of the probe
equals �/2π = 1.86 MHz and for the emitter it is γ /2π �
1.85 MHz.

Knowing the relaxation rates, we are able to study res-
onantly scattered fields either after interaction of the probe
with the antibunched light, generated by the emitter qubit,
or with the coherent pulse of the same width independently
scattered on the probe. We generate equal vacuum-photon
superposition (|0〉 + |1〉)/

√
2 by sending an 8-ns-long π/2

pulse in the control line of the emitter, which is calibrated
by measurement of Rabi oscillations on the emitter qubit via
sweeping the duration of the excitation pulse in the control
line. So, the averaged emitted field is the exponentially de-
caying wave packet; see blue triangles in Fig. 2(d). If we tune
the probe into the resonance with the emitter (and also with
the driving pulse), what we observe is the exponential pulse
interference with the field scattered by a probe qubit; scattered
field quadrature is presented in Fig. 2(d) as a blue dashed line.

In the case of coherent (classical) pulse scattering, we ap-
ply exponentially modulated pulses and measure the average
transmitted field with the probe being either in resonance with
the carrier or out of it. The original pulse transmitted through
the waveguide is recorded when the probe is far detuned; see
red triangles in Fig. 2(e). If the probe is in resonance with
the carrier, see the red dashed line Fig. 2(e), we obtain the
scattered pulse by subtracting the independently measured
incoming pulse (red triangles) from the experimental data.
The similarities and differences between resonantly scattered
fields in the two described experiments are analyzed below.

C. Single-photon pulse scattering

First, we experimentally study details of the single-photon
(quantum) scattering case. We record the field envelopes
Vq(t ), see Fig. 1(a), with respect to detuning � = ωc − ω

between single-photon carrier frequency ωc, which always
remains constant, and probe frequency ωp. The probe coil
current is tuned nonlinearly, using recorded earlier spectra, in
order to achieve linear slope in the probe frequency. Detected
field envelopes Vq(t ) with respect to detuning contain the
incoming single-photon pulse and the scattered part; they are
presented in the left column of Fig. 3. The number of photons
in the quantum pulse is not greater than one and, consequently,
if the probe is in exact resonance with the quantum pulse,
the envelope of the scattered signal does not behave in an
oscillatory manner, which is a certain signature of the photon

FIG. 3. Comparison of the detected (incoming + scattered) field
envelope Vq(t ) in real time t with respect to detuning � between
the photon carrier frequency ωc and probe qubit frequency ωp with
the analytical results, see Eq. (3), in the case of a scattering single-
photon pulse emitted from the emitter on the probe qubit. The color
bars for the experimental and theoretical quadratures are the same. A
complex scaling factor is used to fit the data.

statistics, since the contrary (Rabi oscillations in resonance)
would require more than one photon. Instead, one observes
a single extremum at around 200 ns after which the curve
decays to zero. Beatings of the envelope for nonzero detunings
are not connected with the multiphoton processes, but with
the Ramsey fringes. Also we see that the scattered field pat-
terns are symmetric (imaginary part) and antisymmetric (real
part) with respect to the detuning sign. So the antisymmetric
quadrature is exactly zero at zero detuning, and thus only the
symmetric one should be further analyzed.

Next, we analyze the problem analytically. The field Ve(t )
with the amplitude Ae emitted by the emitter into the waveg-
uide with impedance Ze at the frequency ωc is proportional
to the expectation value of lowering operator for the emitter
〈σ e

−〉:
Ve(t ) = Ae

√
γ 〈σ e

−(t )〉, (1)

where the constant Ae = i
√

h̄ωcZe is the same for any field
scattered by the probe, and further it will be omitted. For typ-
ical parameters, the field amplitude is approximately 10−8 V
before amplification. This field amplitude has no adjustable
parameters and the envelope shape is completely defined by
the state of the emitter. For the equal single-photon superpo-
sition we have 〈σ e

−〉(t ) = exp(−γ2t )
2 , where γ2 = γ

2 + γφ is the
dephasing rate of the emitter, γ is the radiative linewidth, and
γφ is the pure dephasing.

An approach to obtain an analytical expression for the
scattered field is to consider the isolated system of two atoms
interacting via a continuum of waveguide modes further uti-
lizing Weisskopf [28] approximation. Another approach is to
include the interaction as a dissipationlike exchange term in
the formalism of master equations [7,26]. Omitting the prop-
agation delay time, the detected field consists of expectation
values of lowering operators representing fields emitted by the
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emitter and the field scattered by the probe:

Vq(t ) = Ae
√

γ 〈σ e
−(t )〉 + Ap

√
�〈σ p

−(t )〉. (2)

Here Ap = Ae√
2
. After some calculations (see Appendix A),

one obtains a formula for the total (the sum of incident and
scattered) detected field:

Vq(t ) ∝ √
γ

e−γ2t

2
+

√
�

2

√
�γ (e−γ2t − e−�2t+i�t )

γ − � + 2i�
, (3)

where �2 = �
2 + �φ stands for the dephasing rate of the probe

and �φ is the pure dephasing. The first part of Eq. (3) is
the incident field, while the second is the scattered part. The
behavior of the analytically derived Vq(t ), see right column
of Fig. 3, agrees fairly well with the measurement data. We
clearly see that, in the resonant case, the envelope does not
oscillate, which is again a manifestation of not more than
a single photon within the incoming pulse. However, for
nonzero detunings the envelope oscillates with the detuning
frequency �, which is in agreement with our measurements.
The model used for fit accounts for the arbitrary complex
scaling prefactor. The phase of the prefactor is determined
using the resonance condition: One quadrature of the scattered
field should be trivial in the case of the resonant scattering.

Agreement of the experimentally obtained patterns and
theoretical models [Eq. (3)] allows one to extrapolate from
the experimental data to the wider range of the scattering
parameters, namely, radiative linewidths and detunings. We
utilize this fact for future discussions. Moreover, since we
used a typical open-system approach assuming Markovian
bath, the result obtained is quite general and could potentially
be extrapolated to other types of TLS disregarding their na-
ture.

D. Coherent pulse scattering

For the quantum pulse, the scattered field part is fully
defined [see Eq. (3)] via radiative linewidths of the probe and
emitter. Therefore, it is possible to experimentally compare
quantum case scattering with the classical analog using only
the classical incident pulse of exponential shape with a known
decay rate. We choose the case of resonant scattering as it is
the most convenient, since we avoid field oscillations, which
are not connected with the differences in photon statistics of
the pulse. Hence we fix the frequency and obtain the scattered
field Vcl (t ), with respect to amplitude �0 of the coherent
exponentially modulated pulse.

The pulse is applied to the probe atom and its amplitude
can be described by the effective Rabi frequency �(t ) =
�0e−γ2t [29]. The amplitude �0 of the classical pulse is a free
parameter setting up the mean number of photons in the pulse.
Experimentally measured field traces and theoretical as well
with respect to �0 are presented in the upper panel of Fig. 4.
The incoming exponential pulse is digitally removed. Since
measurements are performed in the resonance condition, the
only quadrature is plotted, since the other quadrature is trivial.
We are interested in the case of single envelope oscillation,
which is the closest classical analog of single-photon scatter-
ing. The scattered field depends on the ratio between �0 and
�. If �0 	 �, then the probe undergoes Rabi oscillations (for

FIG. 4. Comparison of scattered (incoming subtracted) field en-
velopes Vcl (t ) (in resonance condition between the carrier frequency
of the incoming exponentially modulated pulse and the probe) in the
time domain t with respect to the strength �0 of the driving pulse
with theoretical results in the case of classical field scattering. The
color bars of the experimental and theoretical quadratures are the
same. Red dashed lines on the color maps are the cuts for different
�0. Corresponding traces are plotted in the bottom panels: Dashed
red line is the theoretical fit; blue dots are the experimental traces.

instance, see the bottom right panel of Fig. 4). We measure the
scattered field for different values of �0; for future analysis we
limit ourselves to the case of the �0/2π 
 10 MHz, which
is the limit of � ∼ �0. In the regime of �0 ∼ � the average
number of photons in classical pulse may be less than one and
the scattering is more similar to the quantum case.

As in the previous section, we proceed to describe the scat-
tered coherent pulse with an analytical model. To describe the
scattering of the coherent pulse with the exponential envelope,
we look for the solution of the master equation in Lindblad
form for the Hamiltonian H = �0/2e−γ2tσx. In the resonance
case, the equations are

∂t 〈σy〉 = −�0〈σz〉e−γ2t − �

2
〈σy〉,

∂t 〈σz〉 = −�(1 + 〈σz〉) + �0e−γ2t 〈σy〉. (4)

The solution could be found as a series expansion in pow-
ers of �0; see Appendix B for a detailed procedure. In the first
order, we get the linear in �0 part of the answer:

V (1)
cl (t ) =

√
�

2

�0(e−γ2t − e−�2t )

γ − �
. (5)

Even orders have zero contribution, but odd corrections are
nonzero and decrease polynomially with respect to �0. The
analytical solution is presented in the bottom panel of Fig. 4.
One can find a good correspondence of the experimental result
with the analytical expressions. The scattered field envelope
continuously transforms to the case of two atomic oscillations
as the amplitude of the exciting signal increases. Additional
oscillations on top of the general envelope are caused by
digital filtering of the down-converted signal. The only fit
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FIG. 5. Calculated scattered fields in both quantum and classical
cases (the incoming exponential pulse is omitted in all cases). Red
dashed line: the numerical solution (matches the full analytical solu-
tion) of the master equation with classical input pulse with �0/2π =√

γ�/2π = 0.3 MHz. Black solid lines: the same for �0/2π (0.31,
0.32, 0.33, 0.34, 0.35, 0.6, 0.7, and 0.8) MHz. Blue dashed line: the
solution of the master equation with quantum input pulse, which fully
matches the (omitted for clarity) linear in �0 part of the solution
for the incoming exponential classical pulse with �0 = √

γ�. Green
dashed line: sum of two first nonzero contributions to the classical
case solution with �0/2π = 0.3 MHz. Pink dashed line: the second
nonzero (third order in �0) contribution of the classical solution,
�0/2π = 0.3 MHz.

parameter is the complex prefactor, so the color bars are the
same.

Moreover, it is worth mentioning that leading order V (1)
cl

fully matches the case when the only photon is reemitted by
the probe qubit; however, that point is not the subject of the
current discussion, since it requires generally more complex
analytical treatment.

III. COMPARISON OF CLASSICAL
AND QUANTUM SCATTERING

Now we are ready to thoroughly compare both scattering
cases and extrapolate theoretically some results to the wider
range of radiative linewidths, since experimentally we are
limited in the accessible range of parameters. Since the only
oscillation is present in the quantum case, one can potentially
distinguish a nonclassical state in the field which constitutes
an input for the probe, if the scattered field is measured.
However, we note that for a very weak Rabi amplitude, the
behavior of the emitted field is also nonoscillating. Thus we
ask another, more complex question: Whether one is able to
distinguish between the classical and quantum cases when the
number of photons in the classical pulse approaches one, that
is, the single oscillation case.

Analyzing the results of calculations, we observe the dif-
ference between classical and quantum cases. In Fig. 5, we
present the full analytical solution for classical and quantum
pulses together with successive approximations of the first and
third order. As stated before, the single-photon superposition
radiated from the emitter has the fixed amplitude defined by

FIG. 6. Comparison of the experimentally obtained scattered
fields in the resonance case in both quantum and classical cases
omitting the incoming pulse. Scattering of the classical coherent
pulse is provided with respect to the amplitude of the incoming pulse;
corresponding �0/2π frequencies are (0.27, 0.54, 0.81, 1.08, and
1.36) MHz. The quantum case is fitted with Eq. (3) (cyan solid line).

Eq. (3). Consequently, there is an optimal Rabi frequency
�∗ of classical pulse, for which the effect of this pulse on
the probe is the most similar to the effect of the quantum
superposition pulse. In other words, we could say that �∗
is the effective “classical” amplitude of the quantum pulse.
Comparing Eq. (3) and Eq. (5) we find that �0 = �∗ ≡ √

γ�.
Therefore, the quantum case solution Eq. (3) fully matches the
first-order approximation of the classical case for �0 = �∗.
Importantly, �∗ underestimates the value of the amplitude
closely matching the quantum case.

In the limit of small �0 
 �, one should expect a vanish-
ing, but finite, difference between classical and quantum cases
for any ratio between γ and �. For �0 � �, γ the waveform
changes and starts to behave in an oscillatory manner, which
is a readily detectable difference of behavior (the calculation
is made for γ /2π = 0.09 MHz and �/2π = 1 MHz, giving
the most prominent picture). Maxima positions in two cases
are shifted, see Fig. 5, but the shift is relatively small and
it is an open question whether it could be measured with
existing technical limitations of a waveguide-QED setup since
impedance mismatches and low signal-to-noise ratio could
potentially overshadow the effect.

We also demonstrate comparison of the experimentally
measured field envelopes for both classical and quantum cases
in Fig. 6. It is impossible here to clearly distinguish the
difference in envelopes. However, the closest classical signal
could be determined in terms of Rabi amplitudes. �∗/2π =
1.02 MHz results in the best approximation of the quantum
answer to the classical one, which is slightly lower than√

�γ /2π � 1.855 MHz. The answer why the theoretically
expected value is almost always smaller lies in the behavior of
the other expansion terms. As it is shown in Fig. 5, consequent
expansion terms pull down the signal level. Also, we have
several sources of errors in the real experiment. First of all,
the initial state of the probe qubit is not a pure ground state,
though the temperature is still low. The second source is the
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FIG. 7. Normalized dependence of the integral distance ε

between calculated scattered fields in the quantum and classical
case on the relaxation decay rates of emitter and probe qubits. The
amplitude of the classical signal is chosen to be �0/2π = 1 MHz.
The green line represents the harmonic mean of the relaxation rates
of atoms; the red line is the mean line in the �, γ coordinates.

emission during the drive of the emitter (when preparing the
superposed state), which also alters the initial state of the
probe. It is hard to experimentally reduce such an effect, but
it is small enough. The π/2 pulse is very short, but the pulse
emitted is quite long, so we do not look at the short part (8 ns
at the beginning can be neglected). Moreover, in some sense,
we try to approximate the α coefficient in the corresponding
coherent state, giving the closest behavior of the mean-field
quadrature. But if the first two coefficients of the coherent-
state expansion are close to coefficients of the superposed
single-photon state, then there are always the higher states in-
volved, so we need to reduce amplitude below the theoretical
prediction, which was derived considering only 0 and 1 Fock
states. So, finding the best leading-order correspondence we
always overestimate higher-order terms of the coherent-state
expansion, namely, Fock states with n > 1. Still, further we
imply that there is a regime where theoretical value converges
to the optimal one.

Next, in order to compare results of different calculations
we use the following integral distance norm between two
functions:

ε =
√∫ ∞

0
dt

(Vcl − Vq)2

(Vcl + Vq)2
, (6)

which is a positive-valued function of decay constants and
classical amplitudes. Since ε is nothing more than the dis-
tance between two curves in the Euclidian space, it is a good
measure to compare theories, since it is positively defined and
becomes trivial only when two curves coincide. Therefore,
if we see trivial value, we state that scattering processes are
the same. The normalized value of ε/εmax, where εmax =
max�,γ ε, is plotted in Fig. 7 for a fixed value of �0 as a
function of � and γ . The dark area in Fig. 7 is the region
where the quantum case has the closest correspondence with
the classical case. We see that for γ = � the discrepancy is
maximal and the optimal �0 is slightly less than

√
γ�. Also

we see pure maximum, which is the manifestation of Rabi-
like oscillations in the classical case in the limit of � 	 γ

FIG. 8. Numerically optimized value of �0 giving a minimum of
the integral distance ε between the calculated scattered fields in both
quantum and classical cases with respect to the ratio of decay times.
The optimized value is compared with the harmonic mean of radia-
tion rates divided by the relaxation rate of the probe qubit. An inset
picture describes the dependence of ε on the ratio of decay times.
Each point corresponds to a minimum of the difference between
classical and quantum answers. All values except ε are calculated
in units of �.

or, symmetrically, �. Still, one can note that the difference
between the two answers still does not equal zero and never
equals zero assuming any nonzero choice of radiative rates,
since higher-order photon scattering processes are still present
in the coherent signal. Therefore, we proceed with optimizing
the ε numerically optimizing different values of �0. In Fig. 8
we show minimal value of normalized ε obtained as a function
of �

�
for different γ

�
ratios. One can see that the optimal

distance between classical and quantum curves has a distinct
maximum. That result closely relates to the case of equal
decay rates (inset figure), where we see that optimized � is
close to the half of mean harmonic. Another noticeable feature
is that in the limit of γ 	 � the difference approaches zero,
since the probe is almost not excited by the incoming pulse.
The spectral width of the pulse would be so great compared
to the linewidth of the probe qubit that the incoming pulse
does not really identify the scattering potential. Another case
is γ 
 �, where the qubit rapidly reemits incoming photons
so that they almost do not excite it. Therefore, even though
there are many photons in the field, the second system relaxes
too quickly and the behavior is not very different from the
single-photon case.

IV. CONCLUSION

We compared experimentally and theoretically the scat-
tering of the quantum single-photon superposition pulse and
classical exponentially decaying pulse on the probe supercon-
ducting artificial atom. Experimentally, we show that there
is an optimal amplitude for the classical pulse, with which
the behavior of the envelope of the scattered field is most
similar to the quantum case. Also, we experimentally show
the presence of the single field envelope oscillation in the
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quantum case scattering. We show that there is a nonvanishing
difference between the envelopes of the scattered fields in
the wide range of decay rates, which could be potentially
observed in the experiments with the greater SNR. The results
of the work could be potentially extrapolated to the scattering
of pulses with other nonclassical photon statistics or scattering
on other systems, e.g., an equidistant three-level system.
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APPENDIX A: SOLUTION FOR THE QUANTUM CASE

The cascaded setup being considered could be typically
assumed as a closed type system (two TLS and bosonic
bath), while neglecting external drive nondiagonal drive
terms. Therefore, one could expand pure vectors of state in
a single-photon basis, due to the presence of an integral of
motion, namely, k〈a+

k ak〉 + i=1,2〈σ i
+σ i

−〉. Thus the problem
of quantum scattering could be reviewed in terms of pure
states’ formalism, expanded into a single-photon basis, allow-
ing one to solve the system of ordinary differential equations,
which can be modeled by means of Runge-Kutta methods or
exactly solved proposing Markovian type approximations. On
the other hand, we cannot omit drive terms in the case of
classical signal scattering, due to continuous filling of Fock
states in a coherent signal; thus the problem is more complex
due to direct time dependence of coefficients in the equations.
The system is described by the following Hamiltonian:

H = HTLS + HB + HI1 + HI2, (A1)

where two-level systems have different energy splittings,

HTLS = ωeσ̂1+σ̂1 + ωσ̂2+σ̂2, (A2)

and the bosonic bath consists of left- and right-moving modes,

HB =
∫ +∞

0
(dk)ω(k)â†

R(k)âR(k) +
∫ 0

−∞
(dk)ω(k)â†

L(k)âL(k),

(A3)

HI1 =
∫ +∞

0
(dk)g1[â†

L(k)σ̂1− + âL(k)σ̂1+]. (A4)

The first system interacts only with right-moving modes
and the second system interacts with both left- and right-
moving modes:

HI2 =
∫ +∞

0
(dk)g2[e−ikr â†

R(k)σ̂2− + eikr âR(k)σ̂ †
2+]

+
∫ 0

−∞
(dk)g2[e−ikr â†

L(k)σ̂2− + eikr âL(k)σ̂ †
2+]. (A5)

The system is prepared at t = 0 in the state

|�〉 = 1√
2

(|↑〉 + eiφ|↓〉)|↓〉|0〉. (A6)

Note that this setup makes sense only for r < 0 (the first sys-
tem, which is excited, interacts only with modes propagating
to the left).

The number of photons never exceeds 1 and, at later times,
the wave function can be written as follows:

|�〉 = ζ (t )|↓〉|↓〉|0〉 + α1(t )e−iωet |↑〉|↓〉|0〉
+ α2(t )e−iωt |↓〉|↑〉|0〉 +

∑
k

βk (t )e−iωkt |↓〉|↓〉|k〉,

(A7)

ζ̇ (t ) = 0, α̇1 = −ig1

∫
k<0

(dk)e−i(ωk−ωe )tβk,

α̇2 = −ig2

∫
(dk)e−i(ωk−ω)t eikrβk (A8)

and the equation for the field’s amplitudes:

β̇k = −ig1�(−k)ei(ωk−ωe )tα1 − ig2ei(ωk−ω)t e−ikrα2. (A9)

As expected, nothing happens with the |↓〉|↓〉|0〉 amplitude:

ζ (t ) ≡ 1√
2
. (A10)

The electric field’s amplitudes can be found as follows:

βk (t ) =
∫ t

0
dτ [−ig1�(−k)ei(ωk−ωe )τ α1(τ )

− ig2ei(ωk−ω)τ e−ikrα2(τ )]. (A11)

We can now substitute this expression to Eq. (A8) to get
coupled integro-differential equations for 2LS amplitudes:

α̇1 = −
∫

k<0
(dk)e−i(ωk−ωe ) t

∫ t

0
dτ

[
g2

1�(−k)

× ei(ωk−ωe )τ α1(τ ) + g1g2ei(ωk−ω)τ e−ikrα2(τ )
]

(A12)

and

α̇2 = −
∫

(dk)e−i(ωk−ω)t eikr
∫ t

0
dτ

[
g1g2�(−k)

× ei(ωk−ωe )τ α1(τ ) + g2
2ei(ωk−ω)τ e−ikrα2(τ )

]
. (A13)

Equations (A12) and (A13) can be further simplified by
changing the integration variable over each chiral branch:∫

k>0
(dk) →

∫ ∞

0

dω

2π

1

|dω/dk| . (A14)

Next, we neglect momentum dependence of the group
velocity, dω/dk → c, and extend frequency integrations to
infinity. This allows one to derive the following equations,
which are local in time (using Weisskopf approximation of the

integral over frequency) (with γ

2 = g2
1

c and �
2 = 2g2

2
c ; we also

neglect the time delay, r/c → 0):

α̇1(t ) = −γ

2
α1(t ),

α̇2(t ) = −�

2
α2(t ) − 1

2

√
�γ

2
e−i(ωe−ω)tα1(t ). (A15)
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The electric field can be found as follows:

V (x, t ) ∝ i
∫

(dk)eikx−iωktβk (t ), (A16)

which gives for the wave propagating to the left (we also put
r → 0)

V (x, τ = t − |x|/c) ∝ eiφ[e−iωeτ α1(τ ) + e−iωτα2(τ )].

(A17)

From there the scattered part of the field in the quantum case
is given by

Vq(t ) = a eiφ

√
�

2

√
γ�

(
e− γ t

2 − e− �t
2 +i�t

)
γ − � + 2i�

, (A18)

where � = ωe − ω is detuning between qubits, γ is the ra-
diative relaxation rate of SPS, and � is the rate for the probe
qubit. φ denotes delay of the wave package due to the finite
optical length, which can be experimentally fully removed.
All signals have their own affine transformation, which mixes
field quadratures, a eiφ altering the detected signal due to the
presence of the experimental environment. Therefore, solu-
tions on the quadratures of field should be odd and even with
respect to detuning between qubits; calibration of the delay
could be provided assuming the resonance condition—one
of the scattered field quadratures should be equal to zero.
Therefore, we have only one free parameter for the subsequent
analysis, namely, scaling factor, which accounts for overall
attenuation and amplification in the experimental tract.

Assuming a closed bath-TLS system allows one to obtain
the solution in a much more simple way using only vectors of
state, which is not the case when modes of field are factorized
inevitably leading to the density-matrix approach.

However, an analytical solution could be determined using
an equivalent master equation [26]. Using the input-output
relation for the cascaded system and assuming Markovian
approximation one is able to determine density-matrix dy-
namics:

∂tρ = − i

[
ρ,

ω

2
σz + ωe

2
σ e

z + i
√

γ�

2
(σ e

+σ− − σ+σ e
−)

]

+ (
√

γ σ e
+ +

√
�σ+)ρ(

√
γ σ e

− +
√

�σ+)

− 1

2
(
√

γ σ e
+ +

√
�σ+)(

√
γ σ e

− +
√

�σ+)ρ

− 1

2
ρ(

√
γ σ e

+ +
√

�σ+)(
√

γ σ e
− +

√
�σ+), (A19)

with ρ(0) = ( |0〉+|1〉√
2

)( 〈0|+〈1|√
2

) ⊗ (|0〉〈0|). In the Heisenberg
representation such a system gives the closed system of ODEs
where cross correlations between two Hilbert spaces could not
be simply reduced like in effective mean field theories [30]
or similar Langevin equation systems [8]. Nevertheless it is
possible to find a full analytical solution for the field in the
resonance case.

APPENDIX B: DERIVATION OF CLASSICAL
CASE FORMULAS

The very natural approach to compare results obtained
after quantum scattering is to scatter the classical field with

the same waveform in time domain. One has to exponen-
tially modulate the classical pulse by means of an arbitrary
waveform generator. Due to the difference in photon statistics
it is proposed that the scattered field can possess different
features. But, in the limit of infinitely small drive amplitude it
is expected to obtain similar behavior, since α in the coherent
state would be excessively small.

We will discuss a solution of the closed system of equa-
tions of motion originating from the master equation in
Linblad form. In terms of detuning � between the classical
signal and the probe’s qubit frequency and driving field force
� one is able to formulate the task in the rotating wave
approximation:

H = �

2
σz + �

2
e− γ t

2 σx. (B1)

With radiative relaxation rate � of the probe (pure �r
1) one

is able to write the following equations of motion using the
Heisenberg picture in resonance case:

∂t 〈σx〉 = −�

2
〈σx〉,

∂t 〈σy〉 = −�〈σz〉e− γ t
2 − �

2
〈σy〉, (B2)

∂t 〈σz〉 = −�(1 + 〈σz〉) + � e− γ t
2 〈σy〉.

The answer for 〈σ−〉 contains only 〈σy〉 terms, which are
nothing, but the solution of the second-order differential equa-
tion with exponential terms,

4�� + e
γ t
2 [4y′′(t ) + 2(γ + 3�)y′(t ) + �(γ + 2�)y(t )]

+ 4�2e− γ t
2 y(t ) = 0, (B3)

where 〈σy〉(t ) ≡ y(t ), y(0) = 0, and y′(0) = −�. The closed
system of the first-order differential equations contains time-
dependent terms; however, a full analytical solution exists
and fully matches numerical simulations given in the main
text. We are interested in solutions depending only on �,
where

� ∼ γ ∼ �,

and we can try to provide perturbative analysis for 〈σ−〉
dynamics in the time domain. Solutions for � = 0 are
pure exponents. Taking into account initial conditions one
could write simple perturbation theory in order to find
an asymptotic solution in terms of the functional series
[higher-order terms for each order of partial sums should
be O(�n+1)]:

〈σy〉 = σ (0)
y + e− �t

2

+∞∑
n=1

�nσ (n)
y ,

〈σz〉 = σ (0)
z +

+∞∑
n=1

�nσ (n)
z ,

(B4)

where 〈σy〉(0) = 0 and 〈σz〉(0) = −1, which leads to
〈σ (n)

y 〉(0) = 0 and 〈σ (n)
z 〉(0) = −1 for each order of n, where
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FIG. 9. Experimental setup used for time domain and frequency domain measurements. Both parts are presented: room temperature and
cryogenic. Commercially available microwave devices are denoted.

n = 0 denotes the unperturbed solution (� = 0). For n = 0
chains start from 〈σ (0)

z 〉 = −1 and 〈σ (0)
y 〉 = 0. Recurrence

relations for the given set of series are, provided the condition
of n > 0,

∂t
〈
σ (n)

y

〉
�n = −� e− �t

2 − γ t
2
(
�n−1

〈
σ (n−1)

z

〉)
,

∂t
〈
σ (n)

z

〉
�n = −�n�

〈
σ (n)

z

〉 + � e
�t
2 − γ t

2
(
�n−1

〈
σ (n−1)

y

〉)
. (B5)

Any possible correction could be determined. The first
leading correction to the answer linear in � is

V (1)
cl (t ) =

√
�

2

〈σy〉
2

=
√

�

2

�
(
e− γ t

2 − e− �t
2
)

γ − �
. (B6)

It is worth mentioning that such a formula fully matches the
answer for the leading order in � for the scattered field in
the case of reemitting not more than one photon. It could be
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easily derived utilizing Moller [29] scattering amplitudes with
a non-Hermitian Hamiltonian.

The second-order correction in � is

V (2)
cl (t ) =

√
�

2

2�3e−t
(

3γ

2 +�

)(
(γ − �)2e

1
2 t (3γ+�) + (−3γ 2 − 2γ� + �2)e

1
2 t (γ+�) + γ (3γ − �)eγ t + γ (γ + �)e�t

)
γ (γ − �)2(3γ − �)(γ + �)

. (B7)

Other corrections are too complex to reflect them explicitly,
but nonzero and polynomially decreasing.

APPENDIX C: DETAILS OF THE EXPERIMENTAL SETUP

In our work, we utilize both the frequency domain and
time domain measurements. Time domain measurements are
performed by means of a heterodyne-type detection scheme
with fast DACs (1 GSa/s sampling) and ADCs (1.25 GSa/s)
with the typical number of experimental traces average of
224 (approximately 107). Preliminary measurements include
double callibration of the phases and amplitudes of in-
put signals using a spectrum analyzer and double-balanced
four ports mixers in the single-sideband modulation regime
[27]. After the calibration of the up-converted signal to the

GHz-range frequency, we proceed with the down-conversion
calibration in order to avoid parasitic harmonics and phase
accumulation. The typical IF frequency is 100 MHz. Our
experimental setup consists of two main parts: The room
part and cryogenic. Since the signal path includes both
stages, it is properly attenuated and filtered; see Fig. 9.
Amplification also has two stages: Cryogenic HEMT ampli-
fier and room-part amplifiers for both quadratures. Qubits
are located on two separate silicon chips and placed into
two separate sample holders connected via cryogenic cir-
culator. The output line of the probe qubit is followed by
two cryogenic isolators. Frequency domain measurements
(all spectroscopic measurements) are provided via network
analyzer. Devices used have a common 10 MHz reference
signal.
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