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Efficient numerical approach for the simulations of high-power dispersive readout
with time-dependent unitary transformation
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We develop an efficient numerical approach for simulating the high-power dispersive readout in circuit
quantum electrodynamics. In the numerical simulations of the high-power readout, a large-amplitude coherent
state induced in a cavity is an obstacle because many Fock states are required to describe such a state. We remove
the large-amplitude coherent state from the numerical simulations by simulating the dynamics in a frame where
the amplitude of the coherent state is almost absent. Using the developed method, we numerically simulate the
high-power dispersive readout of the two-level system and the transmon. Our proposed method succeeds in
producing reasonable behaviors of the high-power dispersive readout which can be deduced from the photon-
number dependence of the cavity frequency: The high-power dispersive readout works in the two-level-system
case while it does not work in the transmon case.
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I. INTRODUCTION

Technologies in circuit quantum electrodynamics (cQED)
are rapidly developing [1–6] to realize fault-tolerant quantum
computers. Among these technologies, readout techniques
are vital since the final procedure of quantum computations
is always the readout of qubit information. Moreover, the
midcircuit readout is also essential to execute quantum error
corrections [7–12]. A fast and reliable readout method is a cru-
cial building block to improving the performance of quantum
computers.

Dispersive readout [13,14] is a ubiquitous method in cQED
because this readout scheme is applicable to any type of qubit.
In the dispersive readout, the qubit-state-dependent frequency
shift of a cavity mode can be detected from the reflection or
transmission of coherent light input [15]. Simply, one can
increase the reflected or transmitted signal by using high-
power-input light and make the readout time shorter. However,
the working principle of the dispersive readout is based on
the perturbative theory [13,16] and the cavity photon number
can be regarded as the perturbation parameter effectively.
High-power light induces the large cavity photon number, and
the perturbation theory would break down. Furthermore, the
situation becomes more complicated when the qubit is imple-
mented with the transmon [2,3]. The transmon can be treated
as an anharmonic oscillator whose number of eigenstates is
not bounded. Within the eigenstates in the anharmonic oscilla-
tor, only the lowest two states compose computational space.
Previous studies [17–22] reported that input light can induce
transitions to the outer space of the computational basis. Con-
sequently, back action from high-power input is nontrivial in
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the dispersive readout. Toward faster readout, it is necessary
to analyze these nontrivial effects.

The high-power coherent light also makes the analysis
difficult. The analysis needs numerical treatment since large
cavity photon numbers spoil the perturbative treatment, as
already stated. In numerical approaches, large amplitude
coherent states induced by the high-power coherent light
disrupt the numerical simulations because many Fock states
are required to describe such coherent states. For instance,
Shillito et al. [21] tackled this difficulty by utilizing the
processing unit designed for large-scale dense linear-algebra
operations [23].

In this paper, we propose another approach to deal with the
difficulty. We find a way to obtain the displacement operator
which can significantly reduce errors coming from the trun-
cation of bosonic degrees of freedom compared to previously
adopted displacement operators [19,20,24]. The obstruction
for the numerical simulations is the large amplitude coherent
state in the cavity and the amplitude of the coherent state can
be displaced by the displacement operator. Since the displace-
ment operator is unitary, the displacement can be regarded as
the change of a frame. Consequently, one can numerically
simulate the high-power readout in a frame where the am-
plitude of the coherent state is always zero. Following this
idea, we develop a method to simulate the dispersive readout
in such a frame. Using the developed method, we simulate the
dispersive readout in the two-level-system and the transmon
cases. Compared to the displacement operators adopted in
previous studies [19,20,24], the developed displacement can
simulate the dispersive readout with less Fock states. The
numerical simulations also show that the dispersive readout
works even with high-power input in the two-level-system
case. On the contrary, the simulations suggest that the high-
power readout does not work in the transmon case. This
difference can be explained by the photon-number dependen-
cies of the cavity frequency in the two cases, and producing
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Qubit Cavity Waveguide

Input coherent light

FIG. 1. Schematic picture of the system we consider in this
study. The system is composed of a qubit, a linear cavity, and a
semi-infinite waveguide. In this system, the dynamics induced by a
coherent input light is considered.

the expected behaviors supports the effectiveness of the pro-
posed method in the simulations of the high-power readout.

The rest of the paper is organized as follows: In Sec. II,
we introduce the Hamiltonian and the time-dependent unitary
transformation. The derivation of the proposed method is also
given in this section. In Sec. III, the results of numerical
simulations of high-power dispersive readout in the two-level-
system and transmon cases are presented. The summary is
given in Sec. IV.

II. EQUATION OF MOTION WITH DISPLACEMENT

A. Transformation of Hamiltonian

We consider the dynamics under the Hamiltonian

Ĥ = Ĥq + Ĥg + h̄ωcĉ†ĉ

+
∫ ∞

0
dk(h̄vkb̂†

kb̂k + h̄ξk ĉ†b̂k + h̄ξ ∗
k b̂†

k ĉ), (1)

which is depicted in Fig. 1. Here, Ĥq denotes the Hamiltonian
for a component acting as a qubit, Ĥg denotes the interaction
between the qubit component and a cavity, ωc is the resonant
frequency of the cavity, ĉ (ĉ†) denotes the bosonic annihilation
(creation) operator for the cavity, v is the velocity of light in a
semi-infinite one-dimensional waveguide, b̂k (b̂†

k) denotes the
bosonic annihilation (creation) operator for a mode labeled
by a wave number k in the waveguide, and ξk is the coupling
between the cavity and the mode k. For the initial conditions,
we assume that the waveguide is not entangled with the other
components and that coherent light is injected. Consequently,
an initial state can be represented as

|ψ (0)〉 = exp

[∫ ∞

0
dk

(
f (k)b̂†

k − f ∗(k)b̂k
)] |ψini〉qc |0〉w ,

(2)

where f (k) is the amplitudes of the input coherent light in
the frequency representation, |ψini〉qc is an initial state of the
qubit-cavity system, and |0〉w denotes the vacuum state of the
waveguide. We also define the Hamiltonian for the qubit and
cavity components

Ĥqc = Ĥq + Ĥg + h̄ωcĉ†ĉ. (3)

For labeling the eigenstates of Ĥqc, we consider the product
states of the eigenstates of Ĥq, |p〉q, and the Fock states |i〉c

of the cavity component which satisfies ĉ†ĉ |i〉c = i |i〉c. At
the beginning, we label a state | p̃, 0̃〉qc which has the largest
overlap with a product state |p〉q |0〉c. This initial labeling
works in the dispersive regime |g/(ωc − ωq)| � 1, where ωq

is the resonant frequency of the qubit component. Starting
from | p̃, 0̃〉, states | p̃, ñ〉 are labeled recursively following the
method introduced in Ref. [21]: A state | p̃, ˜n + 1〉 is charac-
terized as a state which has the largest overlap with the state
ĉ† | p̃, ñ〉. The eigenenergy of the state | p̃, ñ〉 is denoted by εp,n.
The ground and the first excited states of Ĥq are denoted by
|g〉q and |e〉q, respectively.

To numerically simulate the dynamics, one has to truncate
the infinite Hilbert space of bosonic degrees of freedom to
some finite dimension. In the situation considered in this
paper, the input coherent light generates coherent states to
bosonic components. When the input light is strong, the am-
plitudes of the generated coherent states become large and the
dimensions of the truncated local Hilbert spaces should also
be large enough to describe these large-amplitude coherent
states. Thus, more computational resources are required for
the simulation of the dynamics as input coherent light is
stronger.

An approach to reduce the required computational re-
sources is decreasing the amplitudes of the coherent states by
the displacement operator

D̂(�) = exp(�ĉ† − �∗ĉ). (4)

We introduce the time-dependent unitary operator

Û (t ) = D̂†[α(t )] exp

[∫ ∞

0
dk

(−β(k, t )b̂†
k + β∗(k, t )b̂k

)]
,

(5)

and the transformed state

|ψ (t )〉U = Û (t ) |ψ (t )〉 . (6)

By setting β(k, 0) = f (k), the initial state of the waveguide
becomes the vacuum state in this frame. The time evolution of
the transformed state |ψ (t )〉U is governed by the transformed
time-dependent Hamiltonian

ĤU (t )

= Û (t )ĤÛ †(t ) + ih̄

(
dÛ (t )

dt

)
Û †(t )

= Ĥq + D̂†[α(t )]ĤgD̂[α(t )] + h̄ωcĉ†ĉ

+
∫ ∞

0
dk(h̄vkb̂†

kb̂k + h̄ξk ĉ†b̂k + h̄ξ ∗
k b̂†

k ĉ)

+ h̄

[
ĉ†

(
−i

dα(t )

dt
+ωcα(t )+

∫ ∞

0
dkξkβ(k, t )

)
+H.c.

]

+ h̄
∫ ∞

0
dk

[
b̂†

k

(
−i

∂β(k, t )

∂t
+ vkβ(k, t ) + ξ ∗

k α(t )

)

+ H.c.

]
+ C, (7)
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where C denotes c-numbers which are irrelevant to the
dynamics and we drop it. In the transformed frame, the ex-
pectation value of an operator Ô in the original frame can be
expressed as

〈ψ (t )|Ô|ψ (t )〉 = U 〈ψ (t )|Û (t )ÔÛ †(t )|ψ (t )〉U . (8)

We introduce the notation 〈Ô(t )〉U = U 〈ψ (t )|Ô|ψ (t )〉U for
later use.

The displacement β(k, t ) is chosen so that the condition

−i
∂β(k, t )

∂t
+ vkβ(k, t ) + ξ ∗

k α(t ) = 0 (9)

is fulfilled. By solving this linear differential equation with the
initial condition β(k, 0) = f (k), one can obtain

β(k, t ) = f (k)e−ivkt − iξ ∗
k

∫ t

0
dτα(τ )e−ivk(t−τ ). (10)

Here, we introduce a classical field

E (t ) =
∫ ∞

0
dkξk f (k)e−ivkt , (11)

which corresponds to an external field a cavity feels and the
memory function

K (t ) =
∫ ∞

0
dk|ξk|2e−ivkt . (12)

With the introduced quantities, the transformed Hamiltonian
can be expressed as

ĤU (t ) = Ĥq + D̂†[α(t )]ĤgD̂[α(t )] + h̄ωcĉ†ĉ

+
∫ ∞

0
dk(h̄vkb̂†

kb̂k + h̄ξk ĉ†b̂k + h̄ξ ∗
k b̂†

k ĉ)

+ h̄

[
ĉ†

(
− i

dα(t )

dt
+ ωcα(t ) + E (t )

− i
∫ t

0
dτK (t − τ )α(τ )

)
+ H.c.

]
. (13)

At this point, we introduce two approximations: the extension
of the lower limit of the integral for k in Eq. (13) from 0 to
−∞ and ignoring the k dependence of ξk , i.e., ξk is set to√

κv/(2π ). Here, κ represents the decay rate of the cavity.
Under these approximations, the memory function K (t ) is
approximated to the delta function, i.e.,

K (t ) � κv

2π

∫ ∞

−∞
dke−ivkt (14)

= κδ(t ), (15)

and ∫ t

0
dτK (t − τ )α(τ ) � κ

∫ t

0
dτα(τ )δ(t − τ ) (16)

= κ

2
α(t ). (17)

In other words, the introduced approximations are equivalent
to assuming the Markovian dynamics.

The coefficient of the operator ĉ† in Eq. (13) can be
removed by choosing α(t ) as the solution of the linear

differential equation

dα(t )

dt
= −iωcα(t ) − iE (t ) − κ

2
α(t ), (18)

with an initial condition α(0) = 0, and some previous studies
have adopted similar choices [19,20,24]. The solution of this
initial value problem is denoted by P (t ). For instance, the dis-
placement P (t ) for the monochromatic field E (t ) = Ee−iωd t is
given as

P (t ) = iE
{

κ
2 + i(ωd − ωc)

}
κ2

4 + (ωd − ωc)2
(e−(iωc+κ/2)t − e−iωd t ). (19)

With the choice, the direct driving of the cavity by the field
E (t ) is eliminated from the Hamiltonian

ĤU (t ) = Ĥq + D̂†[P (t )]ĤgD̂[P (t )] + h̄ωcĉ†ĉ

+
∫ ∞

−∞
dk(h̄vkb̂†

kb̂k + h̄ξk ĉ†b̂k + h̄ξ ∗
k b̂†

k ĉ). (20)

However, the transformed qubit-cavity interaction
D̂†[P (t )]ĤgD̂[P (t )] can induce a coherent state to the cavity
and such coherent states are not taken into considerations in
the displacement P (t ).

B. Equation of motion

To eliminate a coherent state generated in the cavity from
numerical simulations, we derive the Heisenberg equation of
motion for an operator acting on the qubit-cavity system
ŝ(t ) [25],

d

dt
ŝ(t ) = i

h̄
[Ĥq(t ) + D̂†[α(t )]Ĥg(t )D̂[α(t )], ŝ(t )]

+ iωc[ĉ†(t )ĉ(t ), ŝ(t )]

+ i

√
κv

2π

(
[ĉ†(t ), ŝ(t )]

∫ ∞

−∞
dkb̂k (t )

+
∫ ∞

−∞
dkb̂†

k (t )[ĉ(t ), ŝ(t )]

)
+ i[ĉ†(t ), ŝ(t )]

×
(

−i
dα(t )

dt
+ ωcα(t ) + E (t ) − i

κ

2
α(t )

)

+ i[ĉ(t ), ŝ(t )]

(
i
dα∗(t )

dt
+ ωcα

∗(t )

+ E∗(t ) + i
κ

2
α∗(t )

)
. (21)

Since the equation of motion for the operator b̂k (t ) is given as

d

dt
b̂k (t ) = −ivkb̂k (t ) − i

√
κv

2π
ĉ(t ), (22)

b̂k (t ) is obtained as

b̂k (t ) = b̂k (0)e−ivkt − i

√
κv

2π

∫ t

0
dτ ĉ(τ )eivk(τ−t ). (23)
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FIG. 2. Time evolution of the cavity photon number under a
monochromatic drive Ee−iωct . The displacement P (t ) is determined
by the condition (18), and Q(t ) is determined by our proposed
condition (27). Nmax is the maximum occupation number of the
cavity we set in the simulations. Initially, |ψini〉qc is set to |g̃, 0̃〉. The
parameters used in the simulation are (ωq/ωc, g/ωc, κ/ωc, E/ωc ) =
(0.75, 3.0×10−2, 7.2×10−3, 1.5×10−2).

Consequently, one can evaluate the integral

1√
2π

∫ ∞

−∞
dkb̂k (t )

= 1√
2π

∫ ∞

−∞
dkb̂k (0)e−ivkt

− i

√
κv

2π

∫ ∞

−∞
dk

∫ t

0
dτ ĉ(τ )eivk(τ−t )

= 1√
2π

∫ ∞

−∞
dkb̂k (0)e−ivkt − i

√
κ

v

∫ t

0
dτ ĉ(τ )δ(τ − t )

= 1√
2π

∫ ∞

−∞
dkb̂k (0)e−ivkt − i

2

√
κ

v
ĉ(t ). (24)

It should be noted that the first term is the Fourier transform
of the operator b̂k (0). Since the waveguide is a vacuum at the
initial time in the frame we consider, this term vanishes when
one evaluates expectation values in the transformed frame.
Therefore, the equation of motion for the expectation value
〈ŝ(t )〉U is given as

d

dt
〈ŝ(t )〉U = i

h̄
〈[Ĥq(t ) + D̂†[α(t )]Ĥg(t )D̂[α(t )], ŝ(t )]〉U

+ iωc〈[ĉ†(t )ĉ(t ), ŝ(t )]〉U +κ

2
(〈[ĉ†(t ), ŝ(t )]ĉ(t )〉U

−〈ĉ†(t )[ĉ(t ), ŝ(t )]〉U ) + i〈[ĉ†(t ), ŝ(t )]〉U

×
(

−i
dα(t )

dt
+ ωcα(t ) + E (t ) − i

κ

2
α(t )

)
+ i〈[ĉ(t ), ŝ(t )]〉U

×
(

i
dα∗(t )

dt
+ ωcα

∗(t ) + E∗(t ) + i
κ

2
α∗(t )

)
.

(25)

From this equation of motion, we determine α(t ) to fulfill
the condition d

dt 〈ĉ(t )〉U = 0. By substituting ĉ(t ) for ŝ(t ), the

FIG. 3. Time evolution of the absolute amplitude of the coherent
state generated in the cavity in the transformed frame. The displace-
ment α(t ) is set to Q(t ). The parameters and the initial state are the
same with those in Fig. 2.

equation of motion for 〈ĉ(t )〉U is given as

d

dt
〈ĉ(t )〉U = i

h̄
〈[D̂†[α(t )]Ĥg(t )D̂[α(t )], ĉ(t )]〉U

−
(

iωc + κ

2

)
(〈ĉ(t )〉U + α(t )) − iE (t )

− dα(t )

dt
. (26)

Therefore, the amplitude of the coherent state in the cavity re-
mains its initial value by choosing α(t ) to satisfy the condition

dα(t )

dt
= i

h̄
〈[D̂†[α(t )]Ĥg(t )D̂[α(t )], ĉ(t )]〉U

−
(

iωc + κ

2

)
[〈ĉ(t )〉U + α(t )] − iE (t ). (27)

We note that an initial value 〈ĉ(0)〉U can be always set to zero
by choosing suitable α(0). Consequently, one can simulate the
dynamics in the frame where the amplitude of the coherent
state 〈ĉ(t )〉U is always zero. Since the condition (27) contains
time-dependent expectation values, one has to solve Eqs. (25)
and (27) simultaneously.

With the condition (27), the equation of motion (25) is
rewritten as

d

dt
〈ŝ(t )〉U = i

h̄
〈[Ĥq(t ) + D̂†[α(t )]Ĥg(t )D̂[α(t )], ŝ(t )]〉U

+iωc〈[ĉ†(t )ĉ(t ), ŝ(t )]〉U +κ

2
(〈[ĉ†(t ), ŝ(t )]ĉ(t )〉U

− 〈ĉ†(t )[ĉ(t ), ŝ(t )]〉U ) + 〈[ĉ†(t ), ŝ(t )]〉U

×
{

i

h̄
〈[D̂†[α(t )]Ĥg(t )D̂[α(t )], ĉ(t )]〉U

−
(

iωc + κ

2

)
〈ĉ(t )〉U

}
− 〈[ĉ(t ), ŝ(t )]〉U
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FIG. 4. (a), (d) Time evolution of the cavity photon number for different input-field amplitudes. Here, nc is the critical photon number
given by (ωq − ωc )2/4g2. The resonant frequency ωq and the coupling g are the same as those in Fig. 2. (b), (e) Time evolution of the real part
of the cavity amplitude in the rotating frame at the drive frequency starting. (c), (f) Time evolution of the absolute amplitude of the coherent
state in the transformed frame. Initial states are (a)–(c) |g̃, 0̃〉 and (d)–(f) |ẽ, 0̃〉. The highest occupation number Nmax is set to 30 in the cases
with E/ωc = 7.0×10−3 and 2.5×10−2. For the cases with E/ωc = 6.0×10−2, we set Nmax to 50.

×
{

i

h̄
〈[D̂†[α(t )]Ĥg(t )D̂[α(t )], ĉ†(t )]〉U

+
(

iωc − κ

2

)
〈ĉ†(t )〉U

}
. (28)

In this form, Eqs. (27) and (28) can be regarded as simulta-
neous ordinary differential equations. It should be noted that
the equation of motion (28) becomes nonlinear by introduc-
ing the condition (27). As far as we investigate, an explicit
method like the Runge-Kutta method is sufficient to numer-
ically integrate the equations and thus the nonlinearity does
not introduce a significant extra cost. The displacement α(t )
determined from these simultaneous differential equations is
denoted by Q(t ).

Specifically, we numerically obtain the dynamics of the
expectation values of operators ŝ = |m〉q |i〉c 〈n|q 〈 j|c in the
transformed frame. Here, |m〉q and |n〉q are the basis states
of the qubit component and |i〉c and | j〉c are the Fock states
of the cavity. For the numerical solver of the simultaneous
differential equations, we adopt the Dormand-Prince method
[26], which is the fifth-order Runge-Kutta method with an
adaptive step size.

III. APPLICATION TO DISPERSIVE READOUT

A. Two-level system

We first demonstrate the performance of our proposed
scheme in the two-level-system case, i.e.,

Ĥq = h̄ωq

2
Ẑ, (29)

and

Ĥg = h̄gX̂ (ĉ† + ĉ). (30)

Here, X̂ and Ẑ are the Pauli-X and Z operators acting onto
the two-level system, respectively, and g denotes the coupling
between the two-level system and the cavity. In this section,
ωq/ωc and g/ωc is set to 0.75 and 3.0×10−2, respectively.
In the parameter region |g

√
〈ĉ†ĉ〉/(ωc − ωq)| � 1 where the

perturbative treatment can be justified, the cavity frequency
behaves as ωc − χ Ẑ . Here χ is the dispersive shift given by
g2/(ωc − ωq) [13,27]. The decay rate of the cavity κ is set to
2χ . The highest Fock state of the cavity used in numerical
simulations is denoted by |Nmax〉.

To show that our proposed displacement Q(t ) can describe
the dynamics with less Nmax compared to the case with P (t ),
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FIG. 5. Photon number dependence of the cavity frequency in the
two-level-system case. The resonant frequency ωq and the coupling
g are the same as those in Fig. 2.

we evaluate the time evolution of the cavity photon num-
ber 〈ĉ†ĉ〉 with the monochromatic input field E (t ) = Ee−iωct .
Figure 2 represents the time evolution of the cavity photon
number under the monochromatic drive. The amplitude of
the input field E is set to 1.5×10−2ωc which induces the
cavity photon number 〈ĉ†(t )ĉ(t )〉 ∼ 10 in this setting. An
initial state |ψini〉qc is set to |g̃, 0̃〉. With the displacement
P (t ), the cavity photon number calculated with Nmax = 5 is
considerably different from that obtained with Nmax = 20 for
κt � 5.0. Setting the highest occupation number to 5 is insuf-
ficient for this dynamics with P (t ). In contrast, the calculation
with the displacement Q(t ) and Nmax = 5 gives almost the
identical cavity photon numbers to those obtained with P (t )
and Nmax = 20. It should be noted that the dynamics with Q(t )
can correctly describe the dynamics where the cavity photon
number exceeds the highest occupation number Nmax. These
results demonstrate the advantage of our proposed displace-
ment Q(t ) over the displacement P (t ).

We design Q(t ) to eliminate 〈ĉ(t )〉U from numerical sim-
ulations. Figure 3 shows the time evolution of the absolute
value of 〈ĉ(t )〉U in the same dynamics presented in Fig. 2.

FIG. 6. Photon number dependence of the cavity
frequency in the transmon case. For parameters, we use
(EC/h̄ωc, EJ/h̄ωc, g/ωc, Ng) = (5.0×10−2, 1.6, 3.0×10−2, 0.0).

With Nmax = 5, the absolute values of 〈ĉ(t )〉U are on the order
of 10−5. Although the displacement Q(t ) works as expected,
small but finite values remain. Since these values decrease
with increasing Nmax up to 20, the small discrepancies from
zero would be the results of the truncation of infinite Hilbert
space. From the observation, one can use |〈ĉ(t )〉U | as a mea-
sure of the numerical error due to finite Nmax.

When the drive frequency is tuned to the bare cavity fre-
quency ωc, the sign of detuning between the drive frequency
and the shifted cavity frequency depends on the qubit state.
The expectation value of one quadrature of a field inside the
cavity (the real amplitude 〈ĉ†(t ) + ĉ(t )〉 in this setting) in
the frame rotating at the drive frequency inherits this sign
dependence. In the dispersive readout, the qubit state can be
judged from the sign of the quadrature which can be de-
tected with homodyne detection [13,15]. Figure 4 represents
the cavity photon numbers and the real amplitudes of the
cavity obtained by the numerical simulations with the dis-
placement Q(t ). We consider three cases. The cavity photon
number is much smaller than the critical photon number nc =
(ωq − ωc)2/4g2 � 17.36 (E/ωc = 6.0×10−3), comparable to
nc (E/ωc = 2.5×10−2), and much larger than nc (E/ωc =
7.0×10−2). The perturbative treatment is not applicable when
the cavity photon number is comparable to or larger than
nc. Nevertheless, the sign of the real amplitude depends on
initial states in all cases. The dispersive readout works with
〈ĉ†ĉ〉 /nc ∼ O(10) in the two-level system.

This behavior can be understood from the photon-number
dependence of the cavity frequency which is given by εp,n+1 −
εp,n. As shown in Fig. 5, the sign of detuning between the
drive frequency ωc and the shifted cavity frequency does
not change even in the high occupancy region. The working
principle of the dispersive readout still holds.

B. Transmon

Next, we apply our proposed scheme to the transmon case
[2,27,28], i.e.,

Ĥq = 4EC

∞∑
n=−∞

(n − Ng)2 |n〉q 〈n|q

− EJ

2

∞∑
n=−∞

(|n〉q 〈n + 1|q + |n + 1〉q 〈n|q), (31)

and

Ĥg = ih̄g(ĉ† − ĉ)
∞∑

n=−∞
(n − Ng) |n〉q 〈n|q . (32)

Here, EC is the charging energy, |n〉q denotes the charge basis,
Ng is the offset charge and EJ is the Josephson energy. In
numerical simulations, we use (EC/h̄ωc, EJ/h̄ωc, g/ωc, Ng) =
(5.0×10−2, 1.6, 3.0×10−2, 0.0) so that the energy difference
between |g〉q and |e〉q is close to that of the two-level-system
case. For the charge basis, we consider states from |−10〉
to |10〉. Thus, the dimension of the local Hilbert space for
the transmon component is truncated to 21. The low-lying
eigenstates of Ĥq can be correctly described within the limited
Hilbert space. Specifically, the occupations of |−10〉 and |10〉
in the eighth excited state are only on the order of 10−12. Un-
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FIG. 7. Time evolution of the cavity photon number of the
cavity under a monochromatic drive Ee−iωd t in the transmon
case. Initially, |ψini〉qc is set to |g̃, 0̃〉. The parameters used
in the simulation are (EC/h̄ωc, EJ/h̄ωc, g/ωc, κ/ωc, Ng, ωd/ωc ) =
(5.0×10−2, 1.6, 3.0×10−2, 1.619×10−3, 0.0, 1.0015). The ampli-
tude of input field E is set to 3.0×10−3ωc.

der these settings, the obtained energy difference between |g〉q
and |e〉q is approximately 0.7462h̄ωc. The energy difference

between |e〉q and | f 〉q is approximately 0.6867h̄ωc, where
| f 〉q is the second excited state of Ĥq. Consequently, the anhar-
monicity of this transmon is estimated to be −5.95×10−2 h̄ωc.

We evaluate the renormalized cavity frequency and the
dispersive shift before the simulation of dynamics. For
the evaluation, we put the energy difference εg,1 − εg,0

(εe,1 − εe,0) as h̄ω′
c + h̄χ (h̄ω′

c − h̄χ ). By numerically diag-
onalizing Ĥqc with the above parameters, this procedure gives
the estimations ω′

c/ωc � 1.001975 and χ/ωc � 8.096×10−4.
These values are of the same order of magnitude with the
expressions given by the perturbation theory [2,27]

ω′
c,p − ωc = g2

ωc − ωq + EC/h̄

= 3.0×10−3ωc, (33)

and

χp = g2EC/h̄

(ωc − ωq)(ωc − ωq + EC/h̄)

= 6.0×10−4ωc, (34)

Here, ω′
c,p and χp are the renormalized cavity frequency

and the dispersive shift given by the perturbation theory,

FIG. 8. (a), (d) Time evolution of the cavity photon number for different input-field amplitudes in the transmon cases. (b), (e) Time
evolution of the real part of the cavity amplitude in the rotating frame at the drive frequency. (c), (f) Time evolution of the absolute amplitude
of the coherent state in the transformed frame starting. Initial states are (a)–(c) |g̃, 0̃〉 and (d)–(f) |ẽ, 0̃〉. The parameters of the system are the
same with those in Fig. 7. The highest occupation number Nmax is set to 20 in the cases with E/ωc = 1.4×10−2 and 2.0×10−2, 30 in the case
with E/ωc = 6.0×10−3, 60 in the case with E/ωc = 7.0×10−3, and 100 in the cases with E/ωc = 1.5×10−2 and 2.4×10−2.
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respectively. Hence, one can adopt the critical photon number
based on the perturbation theory [27]

nc = 1

3

( |ωc − ωq + EC/h̄|2
4g2

− 1

)

= 8.0 (35)

since only its order of magnitude is relevant. The decay rate
of the cavity κ is set to 2χ in the following simulations.

To determine the drive frequency ωd , we investigate the
photon number dependence of the cavity frequency εp,n+1 −
εp,n which is represented in Fig. 6. The photon number de-
pendence in the transmon case is complicated compared with
the two-level-system case, and the change of the detuning sign
is inevitable with increasing the cavity photon number. From
this photon number dependence, we set the drive frequency ωd

to 1.0015ωc. With the choice, the detuning sign is preserved
up to around n/nc ∼ 20.

The advantage of the proposed displacement Q(t ) can be
confirmed in the transmon case as well. Figure 7 gives the
comparison between the displacements P (t ) and Q(t ). Like
the two-level-system case, the simulation with the displace-
ment Q(t ) requires less cavity states compared to the case
with the displacement P (t ) in the transmon case.

Figure 8 shows the time evolution of the cavity pho-
ton numbers and the real amplitudes of the cavity obtained
by the numerical simulations with the displacement Q(t )
in the transmon case. Like the two-level-system case, we con-
sider the three cases: The cavity photon number is much less
than nc (E/ωc = 1.4×10−3 and 2.0×10−3), comparable to
nc (E/ωc = 6.0×10−3 and 7.0×10−3), and much larger than
nc (E/ωc = 1.5×10−2 and 2.4×10−2). For the cases where
the cavity photon number is much less than and comparable
to nc, the signs of the real amplitudes reflect whether the
initial states are |g̃, 0̃〉 or |ẽ, 0̃〉. However, in the case where
the cavity photon number is much larger than nc, the real
amplitude changes its sign around κt ∼ 3 when the initial
state is |g̃, 0̃〉. The readout based on the sign of the real am-
plitude does not work in this case. The cavity photon number
is 〈ĉ†(t )ĉ(t )〉 /nc ∼ 20 around κt ∼ 3 as shown in Fig. 8(a).
Therefore, the observed break down of the readout scheme
in the numerical simulation is consistent with the estimation
from the photon-number dependence of the cavity frequency
in Fig. 6. This consistency supports the availability of the
proposed method in the numerical simulations of high-power
readout.

The leakage from the computational space during the read-
out is an important phenomenon when the qubit component
has more than two levels. To see the leakage in the dynamics
simulated in Fig. 8, we introduce the transmon occupation
operator

N̂t =
∑
l=1

l |l〉q 〈l|q , (36)

and evaluate the transmon occupation number 〈N̂t 〉 [21]. Here,
|l〉q is the lth excited state of the transmon Hamiltonian (31).
The transmon occupation number gradually increases in the
labeled eigenstates | p̃, ñ〉 with n. Consequently, a noticeably
higher transmon occupation number compared to that from

FIG. 9. Parametric plot of the transmon occupation number
versus the cavity photon number during the dynamics shown in
Fig. 8. Initial states are (a) |g̃, 0̃〉 and (b) |ẽ, 0̃〉. Red dotted lines
represent the transmon occupation numbers as a function of the
cavity photon number obtained from the labeled eigenstates |g̃, ñ〉
and |ẽ, ñ〉.

the labeled eigenstates can be treated as the sign of the
leakage.

Figure 9 represents the parametric plot of the transmon
occupation number versus the cavity photon number during
the readout dynamics shown in Fig. 8. The figure also gives
the transmon occupation number as a function of the cavity
photon number in the labeled eigenstates for comparison. For
the most part of the dynamics, the parametric plot shows good
agreement with the transmon occupation number obtained
from the labeled eigenstates. In contrast, the dynamics start-
ing from |g̃, 0̃〉 state with E/ωc = 7.0×10−3 and 1.5×10−2

clearly show higher transmon occupation numbers compared
to that of the labeled eigenstates. This behavior can be consid-
ered as the sign of the leakage.

The leakage in the case with E/ωc = 7.0×10−3 is trig-
gered by the resonance between |g̃, ñ〉 and the higher excited
state around n/nc ∼ 4. Figure 10 gives the parametric plots
of the transmon occupation number versus the cavity photon
number with some input-field amplitudes close to E/ωc =
7.0×10−3. The bump around 〈ĉ†ĉ〉 /nc ∼ 4 in the transmon
occupation number of the labeled eigenstates comes from
the resonance with the higher excited state (the fifth excited
state of the transmon Hamiltonian). When the cavity photon
number stays near the resonant point, the transmon occupation
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FIG. 10. Parametric plot of the transmon occupation number
versus the cavity photon number during the dynamics with input-
field amplitudes E/ωc = 6.0×10−3, 7.0×10−3, and 8.0×10−3. Red
dotted line represents the transmon occupation number as a function
of the cavity photon number obtained from the labeled eigenstates
|g̃, ñ〉. An initial state is |g̃, 0̃〉. The highest occupation number Nmax

is set to 40 in the cases with E/ωc = 6.0×10−3 and 8.0×10−3 and
60 in the case with E/ωc = 7.0×10−3. The other parameters are the
same as those in Fig. 8.

number differs from that of the labeled eigenstates as shown
in the case with E/ωc = 7.0×10−3. On the other hand, the
case with the larger input-field amplitude E/ωc = 8.0×10−3

does not show the noticeable difference because the resonant
point is quickly passed in this case. Consequently, the leakage
in the case with E/ωc = 7.0×10−3 can be considered as the
result from the resonance. Similar dynamics was observed
in Ref. [21]. The proposed method can describe the leakage
dynamics during the readout.

IV. SUMMARY

In this study, we developed an efficient approach to nu-
merically simulate dynamics with a high-power input field.

Our proposed scheme is based on eliminating large-amplitude
coherent states from the simulation by the time-dependent
displacement operation. The displacement introduced in this
study outperforms that designed to eliminate the direct driving
of a cavity in the sense that the dynamics can be reproduced
in smaller Hilbert space.

We also applied our proposed scheme for the simulations
of the dispersive readout in the two-level-system and trans-
mon cases. The proposed scheme enables one to access the
dispersive readout where the cavity photon number is much
larger than the critical photon number with moderate numer-
ical resources. The obtained numerical results showed that
the readout works in the two-level-system case even though
the cavity photon number considerably exceeds the critical
photon number. In contrast, the dispersive readout fails in the
transmon case when the cavity photon number is much larger
than the critical photon number. This failure can be explained
by the photon-number dependence of the cavity frequency and
the numerical results reproduced the the estimation obtained
from the cavity frequency. The numerical simulations also
succeeded in describing leakage dynamics.

Although only the two cases, namely, the two-level system
and transmon, were considered in this study, our proposed
displacement can be applied to other devices as long as their
Hamiltonian representations are available. For input fields,
we considered only the monochromatic light. The proposed
scheme can treat other input fields, e.g., bichromatic light or
short pulses. Our proposed scheme has a potential impact
on evaluating the performance of newly designed quantum
devices and optimizing of the shape of input pulses.
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