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We analyze a set of models frequently appearing in quantum optical settings by expressing their Hamiltonians
in terms of Fock-state lattices (FSLs). The few degrees-of-freedom of such models, together with the system
symmetries, make the emerging FSLs relatively simple such that they can be linked to known lattice models
from the condensed-matter community. Thus, the FSLs may shed new light on known quantum optical systems.
While we provide a rather long list of models and their corresponding FSLs, we pick a few to demonstrate the
method’s strength. The three-mode boson model, for example, is shown to display a fractal spectrum and chiral
evolution in the FSL characterized by localized distributions traversing along symmetric trajectories. In a second
example, we consider the central spin model, which generates an FSL reminiscent of the Su-Schrieffer-Heeger
model hosting topological edge states. We further demonstrate how the phenomenon of flat bands in lattice
models can manifest in related FSLs, which can be linked to so-called dark states.
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I. INTRODUCTION

Lattice models often serve as a powerful tool for inves-
tigating condensed-matter systems [1]. They arise naturally
in many situations, most notably in crystal structures. At
the same time, they provide a direct link to computational
physics as all continuous models turn into lattice models
when discretized. In the realm of quantum simulators, lattice
models have come to play a central role, as, for example, in
the pioneering cold-atom experiments demonstrating the real-
ization of a Bose-Hubbard-model [2]. These are many-body
interacting models that often cannot be analytically solved
in contrast to quadratic models. Recently, it was shown that
quadratic bosonic models with only a few degrees-of-freedom
can be mapped to lattice spin models exhibiting interesting
topological features [3]. Going beyond quadratic models, the
aforementioned reference can be seen as proposing a direction
in which also unsolvable lattice models can be studied. Gen-
erally, properties of lattice models typically rely on the lattice
symmetries and their dimensions and not on the physical
realization, e.g., topological features may survive breaking of
translational symmetry. This motivates us to look for novel
ways to realize well-known and new lattice models, which, in
the long run, could potentially also pave the way to solving
computational hard problems.

Traditionally, the geometry of the lattice is rooted in
the system’s spatial dimensions, i.e., we consider lattices
in three or lower dimensions. There are no such limitations
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in mathematics. Synthetic lattice dimensions occur in vari-
ous proposals for quantum simulators as a route toward new
exotic models [4–7]. Examples of this are utilizing atomic
internal degrees-of-freedom [4], or vibrational states of the
harmonic trapping potential [5], which can be employed to
create synthetic dimensions for ultracold atoms loaded in
optical lattices. More generally, if we give up the idea of a
lattice living in real space, any Hamiltonian Ĥ , single-particle
or many-body, can be described as a single-particle system if
mapped into state space. In such a view, a latticelike struc-
ture emerges by identifying the different basis states with the
lattice sites. Then, Ĥ is a matrix in which the diagonal terms
serve as on-site energies in the lattice, and the off-diagonal el-
ements give the tunneling rates between these sites. Typically,
such a lattice will rapidly grow in complexity as the number
of degrees-of-freedom is increased, and it might be that not
much new insight is gained by such a viewpoint.

Furthermore, we will require that the chosen basis should
be physically relevant. Paradigmatic light-matter models in
quantum optics seem perfect; it is possible to isolate a few
appropriate degrees-of-freedom, and the natural basis com-
prises the bare Fock states. Hence, their Hamiltonians give rise
to manageable Fock-state lattices (FSLs). The FSL emerging
from the Jaynes-Cummings (JC) model was already intro-
duced in Ref. [8], and it was studied further in Ref. [9] to
explore a new type of topological matter formed by quantized
light. We note that, historically, similar lattice ideas have
been discussed in terms of so-called Glauber-Fock lattices in
waveguide systems of classical light [7].

In this work, we bring forward several light-matter type
models, although we focus on just a few of them. It turns
out that these capture the general ideas, at the same time as
the physics is extremely rich despite their simplicity. Taking
the multimode JC model as an example, in the high de-
tuned limit, the spin degree-of-freedom freezes out, and one
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reaches an effective quadratic Hamiltonian consisting only
of bosonic degrees-of-freedom. The Fock states provide a
natural basis to study such systems, and the sparseness of the
Hamiltonian makes the FSLs convenient for getting insight
into the models. For three bosonic modes, a triangular FSL
emerges, and by further imposing a synthetic magnetic flux,
the system’s spectrum becomes fractal, akin to the Hofstadter
butterfly spectrum of two-dimensional (2D) tight-binding lat-
tice models exposed to homogeneous perpendicular magnetic
fluxes [10]. However, the FSLs studied in this paper lack
translational invariance; hence, the fractal structure is not de-
rived from the same mechanism as for the Hofstadter models.
The properties of our fractal spectrum imply that initial Fock
states will follow symmetric curves within the FSL. As an-
other example, we consider the central spin model in which a
single spin-1/2 particle interacts identically with N other spin-
1/2 particles. By tuning the interaction, it is possible to create
an FSL similar to the Su-Schrieffer-Heeger (SSH) model. As
for the SSH model, one finds exponentially localized edge
states. Related to this, we also discuss a few models that sup-
port a large number of degenerate E = 0 eigenstates, which
serve as the counterpart of flat bands such as, for example,
Lieb lattices.

The structure of the paper is as follows. In the next sec-
tion, we systematically introduce the FSLs. First, they are
introduced for the resonant JC models, and from there, we
elaborate on how one may design interesting FSLs by looking
at related models. In Sec. III we discuss the role of underlying
symmetries. In Sec. IV, multimode JC models in the large
detuned limit are considered when a synthetic flux has been
included. For these systems, we see how a fractal-like struc-
ture of the energy spectrum appears for certain fluxes, which
motivates us to study in Sec. V how initially localized states
evolve within the FSL. Section VI discusses a connection
between the central spin model and the SSH model, namely
the appearance of exponentially localized edge states in the
FSL. Finally, in Sec. VIII we summarize our findings.

II. RESONANT JAYNES-CUMMINGS MODELS
AND THEIR FOCK-STATE LATTICES

A. Multimode Jaynes-Cummings models

In this section we introduce the JC model, which, as the
simplest example of a spin-boson model, will serve as a
starting point for building other models with interesting un-
derlying FSLs. The JC model, first introduced by Jaynes and
Cummings in 1963 [11], provides a fully quantum-mechanical
treatment of an atom interacting with an electromagnetic
field [12]. The original model consists of a two-level atom,
pseudo-spin-1/2 particle, interacting with a single bosonic
mode representing the electromagnetic field. The interaction
can be understood as an exchange of excitations between the
atom and the field; when the ground state is excited to the
excited state, the number of bosons is lowered by 1, and vice
versa for deexcitation to the ground state. This gives rise to a
Hamiltonian of the form

ĤJC = Ĥ0 + Ĥint, (1)

with the noninteracting, or bare, part of the Hamiltonian Ĥ0

comprising the free energies of the field and atom, i.e.,

Ĥ0 = ωn̂ + �

2
σ̂ z, (2)

where we have set h̄ = 1, ω is the photon frequency, and �

is the transition frequency for the two-level atom. Further, for
the boson number operator n̂|n〉 = n|n〉 for some Fock state
|n〉, and σ̂ z is the Pauli z-matrix, which upon acting on the
bare atomic states σ̂ z|g〉 = −|g〉 and σ̂ z|e〉 = |e〉, with |g〉 and
|e〉 the lower and upper atomic states, respectively. Following
the logic of bosonic states, we will also refer to the atomic
basis states, such as |g〉 and |e〉, as Fock states. Returning to
the interaction part Ĥint , both the atom and the bosonic mode
emit and absorb excitations, and we may write the interaction
Hamiltonian as [12]

Ĥint = g(σ̂+ + σ̂−)(â + â†), (3)

with g the light-matter interaction strength. It includes four
different contributions, two of which preserve the number of
excitations in the system and two corresponding to simulta-
neous excitation/deexcitation of the two degrees-of-freedom.
The latter do not conserve the bare energy of the system, and
for now, we shall drop them both. This approximation is what
is called the rotating-wave approximation (RWA), and it leads
to an interaction of the form [12]

Ĥint = g(â†σ̂− + σ̂+â). (4)

Moving to the interaction picture with respect to ωN̂ , with
N̂ = n̂ + 1

2 σ̂ z the excitation number operator, the number of
free parameters can be reduced from three to two. Defining
the atom-field detuning as � = � − ω, the Hamiltonian (in
this interaction picture) can be written as

ĤJC = �

2
σ̂ z + g(â†σ̂− + σ̂+â), (5)

which is the celebrated JC Hamiltonian.
The JC model can be expanded in numerous ways, of

which the most common ones are [12] multimodes, where
more than one boson mode is considered; a multilevel atom,
in which more than two electronic levels couple to the elec-
tromagnetic field; a multiatom, where N identical two-level
atoms couple to the boson mode (the so called Dicke model);
or pumped/driven models. Focusing on the first extension for
now (and returning to the other below), and labeling each
boson mode by an index i and assuming that the atom couples
to each bosonic mode with a corresponding coupling strength
gi, the multimode JC model takes the form

Ĥ = �

2
σ̂ z +

∑
i

ωin̂i +
∑

i

gi(σ̂
+âi + σ̂−â†

i ). (6)

As for the regular JC model, we could turn to an interaction
picture with respect to the total excitation number, which is es-
pecially convenient in the degenerate case when ωi ≡ ω, ∀ i.

B. Fock-state lattices for the resonant multimode
Jaynes-Cummings models

From the single-mode JC model, we first see how the
latticelike structure emerges in state space. As long as the
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FIG. 1. The FSL for the single-mode JC (a) and two-mode JC
(b) models, with red (blue) dots marking the atomic |e〉 (|g〉) states,
note that for two modes, the FSL is a fully connected triangular
chain. One finds an infinite series of two-site lattices in the former,
and in the latter one has a 1D chain. The black lines indicate the
nonzero tunnelings of the lattice in the resonant limit, whereas the
orange lines (in the two-mode model) are the same but in the large
detuned limit when the excited atomic level |e〉 has been adiabatically
eliminated. In both cases, the tunneling rates scale such that the
lattice is not translationally invariant (

√
ni in the resonant case, black

lines; and
√

nanb in the large detuning limit, orange lines).

coupling g �= 0, the Fock states are generally not the eigen-
states of the JC model; instead, they provide a natural basis
for analyzing the system’s dynamics. Consider first the Fock
states for the single-mode JC model, |n, e〉 and |n, g〉. Letting
the Hamiltonian in (5) act on these states, one finds that,
except for the vacuum state, they will couple pairwise as

|n, g〉 ←→ |n − 1, e〉 . (7)

Thus, the JC Hamiltonian is 2 × 2 block diagonal in the Fock
basis.

It is important to appreciate that the Fock states are coupled
by the interaction Hamiltonian (4) alone, while the bare part
Ĥ0 of the Hamiltonian acts only as on-site energy shifts in the
FSL. Throughout this paper, we break up the Hamiltonian of
the problem as Ĥ = Ĥ0 + Ĥint, where the first part only con-
tributes to on-site energy shifts but not any kinematics, which
instead is contained within the interacting part Ĥint. Indeed,
the lattice geometry and its tunneling rates are defined via
Ĥint, and we will thereby focus on the lattices deriving from
the interaction Hamiltonians without paying any attention to
the energy shifts. On some occasions, the bare part will only
contribute to an overall energy shift, while its role is more
complicated in others. In such cases, we imagine working in
an interaction picture.

Returning to the JC model, the Hamiltonian decouples into
blocks, and the related lattice structure becomes rather trivial,
as shown in Fig. 1(a). We find an infinite set of two-site
lattices; alternatively, we find a ladder lattice with zero tun-
neling rates along the legs. One should note that as â† |n〉 =√

n |n + 1〉, the tunneling rate scales with
√

n for the two-site
lattice n. This property is general for all our models, i.e., the
tunnelings are not constant throughout the lattices, hence the

FIG. 2. Same as for Fig. 1 but for the three-mode JC model. Here
we show it for the N = 3 excitation sector, which results in a finite
lattice comprising 16 sites (increasing N makes the lattice larger).
In the resonant case, the FSL forms a hexagonal structure in which
each site couples to three neighbors (envisioned by the solid black
lines). At the same time, in the detuned limit, one of the atomic states
(red or blue dotes) is adiabatically eliminated, and a triangular FSL
is derived, where every site couples to six neighboring sites instead
(shown by the solid orange lines).

lattices do not possess translational invariance. A consequence
is that Bloch’s theorem does not apply, and we typically find
a point spectrum rather than a band spectrum.

For the two-mode JC model, a similar, but still conceptu-
ally different, picture arises. The interaction Hamiltonian in
Eq. (6) reduces to

Ĥint = (gAσ̂+â + gBσ̂+b̂ + H.c.). (8)

As there are now two boson modes, the Fock states will take
the form |nA, nB, g〉 and |nA, nB, e〉. According to Eq. (8), the
states couple as

· · · |nA, nB − 1, e〉 ↔ |nA, nB, g〉 ↔ |nA − 1, nB, e〉 · · · . (9)

Hence, for the two-mode JC model, a latticelike structure of
two identical copies of 1D chains results; see Fig. 1(b). As for
the single-mode JC model, the couplings scale with

√
n. In the

two-mode JC model, the atom can mediate photon transfer be-
tween the two modes [12], which for the FSL implies moving
left or right along the 1D lattice.

Finally, we consider the FSL for the three-mode JC model,
which was first introduced in Ref. [8]. For a single mode, there
is only a single neighboring state to tunnel to [see Eq. (7)],
while for two modes there are two neighboring states, and we
then build up a 1D chain. For three modes, a, b, and c, we have
three neighboring sites, and as such, the resulting lattice will
be hexagonal, as shown in Fig. 2. The hexagonal lattice has a
sublattice triangular structure seen as the red and blue dots in
the figure, which further represent the different atomic states;
|g〉 (blue) and |e〉 (red). These triangular sublattices will be
those surviving in the large detuning limit, as shown in the
next section. The translationally invariant hexagonal lattice
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FIG. 3. Schematic representation of the zeroth- and first-order
couplings of Fock states. The order of the coupling refers to the
number of participating boson creation or annihilation operators in
each tunneling process.

has several interesting features [13], e.g., the presence of
Dirac cones at the corners of the Brillouin zone. Furthermore,
if tunneling beyond the nearest neighbor is considered (the
Haldane model), the model may host topological features,
which were analyzed for the FSL in [9]. One could gener-
alize this construction of the FSLs to the n-mode JC model,
resulting in a lattice in an (n − 1)-dimensional space.

C. Beyond the rotating-wave equation—
The quantum Rabi model

Returning to the Hamiltonian of Eq. (3), we are imme-
diately presented with another lattice model if we keep the
counter-rotating terms rather than dismiss them. This model
is called the quantum Rabi model [12,14]. More compactly,
the interaction Hamiltonian can be expressed as Ĥint = g(â† +
â)σ̂x, where σ̂x is the Pauli-x matrix; σ̂x|g(e)〉 = |e(g)〉. This
Hamiltonian does not preserve the number of excitations as
the JC Hamiltonian of Eq. (5). The counter-rotating terms
break down the continuous symmetry of the JC model to a
discrete Z2-parity symmetry [14]. We will discuss the role of
symmetries in more general terms below. For the FSL, these
terms change the number of excitations by 1, i.e., they connect
the 2 × 2 blocks of the JC Hamiltonian. In addition, each Fock
state now couples to two neighboring Fock states,

. . . |e,−2〉 ←→ |g, n − 1〉 ←→ |e, n〉 ←→ |g, n + 1〉 . . . .

(10)
With two neighbors, the FSL becomes a 1D chain (see
Fig. 4). The aforementioned Z2-symmetry implies two de-
coupled parity sectors, meaning that we actually get two
copies of the chain. If we consider the anisotropic quantum
Rabi model [15], we have that the counter-rotating terms
couple with a different coupling amplitude than the excitation-
preserving terms, i.e., the interaction Hamiltonian takes the
form

Ĥint = gjc(σ̂+â + â†σ̂−) + gajc(σ̂−â + â†σ̂+). (11)

This difference does not change the lattice geometry, but an
alternation between the tunneling rates of every second site
occurs. For a translationally invariant system, this would mean
that the lattice had a bipartite structure where every unit cell
would consist of two sites. This model is the well-known
Su-Schrieffer-Heeger (SSH) model [13,16], which has expo-
nentially localized topologically protected zero-energy edge

FIG. 4. Summary of FSLs for models consisting of only a single
boson and two-level atomic degree-of-freedom. In (a), the lattice of
the JC model (4) is shown. Here, the conservation of N̂ reduces the
dimension of the system such that an infinite set of two-site lattices
emerges. The second plot (b) gives the FSL for the quantum Rabi
model (11), with red lines marking the tunneling due to the counter-
rotating terms, and the black lines showing the JC interaction terms.
Note that these are two copies of 1D chains, even though they are
drawn in this zigzag way. The FSL of the driven JC model is shown
in (c). The blue lines mark the tunneling stemming from the driving,
i.e., by removing them, we return to the JC lattice (a). Finally, in (d),
we display the FSL of the driven quantum Rabi model [again, the
lattice in (b) is regained by omitting the blue lines]. This lattice is
similar to a Creutz lattice with known interesting properties (see the
main text). A drive of the spin instead of the boson would result in
vertical blue lines rather than horizontal ones.

states. Similar edge states are also found in the anisotropic
quantum Rabi model. However, an obstacle here is that the
FSL of the anisotropic quantum Rabi model has only one and
not two edges (the boson Fock space has no upper bound).
Furthermore, even though the edge state is localized to the
edge, it is not exponentially localized. However, one can in-
troduce another model supporting a finite FSL, which we do
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in Sec. VI, in which the edge states come out more natural and
are exponentially localized.

The above demonstrates how the different coupling terms
manifest as tunneling rates in the FSL. We shall explore this
systematically to construct other FLSs. In Fig. 3 the three
different couplings of a Fock state consisting of a single boson
mode and a spin half excitation are shown. We label the cou-
plings (I ) − (III ), and refer to them as first-order couplings
since they all consist of a single-boson creation or annihilation
operator and, therefore, all scale with

√
n. The last coupling

is shown in Fig. 3 and only comprises a coupling of the spin
mode—and no boson operator—and is, therefore, a zeroth-
order coupling. We do not consider the purely spin coupling
any further; higher-order couplings typically lead to couplings
beyond nearest neighbors and may lead to a new interesting
latticelike structure. The (I ) term is the JC coupling, and the
(II ) is the counter-rotating coupling, which we have already
discussed. The last couplings, marked by (III ), stem from
driving the boson mode. Including the drive term is discussed
for the JC model in the section below, and for the quantum
Rabi model it is discussed in Sec. II.

D. Driven Jaynes-Cummings-like systems

As mentioned above, the counter-rotating terms lower the
symmetry of the JC model, and the 2 × 2 block structure
of the Hamiltonian in the Fock basis is lost. Looking at the
JC FSL in Fig. 1(a), this implies additional coupling terms
such that we find two 1D chains, one for each parity. We can
break the continuous U (1) number conservation symmetry
in several ways. A natural way to break this symmetry is to
consider the driven JC model, where we include a field drive

Ĥfd = η(â + â†), (12)

or an atom drive

Ĥad = ησ̂x. (13)

The excitation number is no longer preserved for either of
these, while both still support a Z2-parity symmetry. More
precisely, the field drive causes nonzero horizontal tunneling
in the FSL of Fig. 1(a), and the atom drive results in diagonal
tunneling terms. As for the anisotropic quantum Rabi model,
which mimicked the SSH model with broken translational
invariance, the driven quantum Rabi model realizes a Creutz
ladder [17] with broken translational invariance; see Fig. 4(d).
The Creutz ladder has attracted attention as it may host dis-
persionless, i.e., flat bands. Naturally, such flat bands do not
occur in the driven quantum Rabi model since it is no longer
translationally invariant. However, remnants of these bands
are still present. For field driving, the interaction Hamiltonian
(after a rotation σ̂x → σ̂z) can be written as

Ĥint = (η + gσ̂z )(â + â†), (14)

which results in two energy branches for which one is flat
provided η = ±g. However, this is only true in the interaction
picture; the bare Hamiltonian Ĥ0 would lift this degeneracy
and cause the Hamiltonian to be bounded from below.

III. NOTE ON SYMMETRIES AND LATTICE DIMENSIONS

We have seen a couple of examples in which the structure,
especially the lattice’s dimensionality, changes if the system’s
symmetry is altered. Here we give some general rules for how
this comes about.

Returning to Fig. 3, we may also use it to prove a recipe
for how one may construct even more elaborate FSLs. First,
this figure considers a system of a single-boson mode and a
two-level atom. However, we could expand it to multilevel
atoms, several boson modes, or a combination of these. Sup-
pose we replace the spin-1/2 atom with an atom with spin
S. In that case, it will provide a pseudodimension of 2S + 1
sites depth, while including another boson mode adds an extra
dimension (infinitely deep). Generally, the bosonic modes,
constituting one continuous degree-of-freedom, give rise to
one lattice dimension, such that with each additional bosonic
mode, the dimension of the FSL grows with one. The atom,
which provides a discrete degree-of-freedom, causes an extra
lattice pseudodimension, i.e., the lattice is finite in the new
dimension.

A continuous U (1) symmetry reduces the lattice dimension
by unity, while a discrete Zn symmetry decouples the lattice
into sublattices. For example, as the JC model consists of one
continuous boson degree-of-freedom and a discrete atomic
degree-of-freedom, one might expect a ladder with two legs.
However, number conservation reduces the lattice dimension
by one, prohibiting tunneling along the ladder’s legs. On the
other hand, the quantum Rabi model does not support particle
conservation, and we allow tunneling along the legs. At the
same time, the parity symmetry causes the rung tunnelings to
be zero. Further, a continuous symmetry can make the size of
the lattice finite, apart from reducing the dimension. Examples
of these are given in Sec. IV.

Given some Hamiltonian, its FSL typically supports some
discrete point symmetries. Take for example the triangular
FSL of Fig. 2, which clearly has a 2π/3 rotational symme-
try around its center site, and three mirror reflections. These
lattice symmetries can be traced back to symmetries of the
Hamiltonian, e.g., the rotational symmetry translates to the
unitary transformation

â → b̂, b̂ → ĉ and ĉ → â. (15)

The lattice geometry, e.g., the number of neighbors, is
determined by the specific form of the interaction Hamilto-
nian. When expressed in terms of raising/lowering operators
(e.g., â and σ̂−), the number of terms in Ĥint gives the max-
imum number of possible neighbors. There are four terms
in the quantum Rabi model, but only two cause coupling to
other states since σ̂+ |e〉 = σ̂− |g〉 = 0. The interaction terms
may represent tunneling either between nearest neighbors in
the FSL or beyond, like for the Creutz ladder as shown in
Fig. 4(d).

IV. THE LARGE DETUNING LIMIT—QUADRATIC
BOSONIC MODELS

A. Effective bosonic models

Quadratic spin-boson models are intrinsically nonlinear
due to the finite spin Hilbert spaces. However, there is a
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natural regime in which the models become approximately
linear, namely in the large detuning limit. Here we assume
|�| 
 g

√
n. The fast timescale is set by �, and we face the

situation where the atomic degree-of-freedom follows that of
the boson. Hence, it is enough to consider the evolution of the
bosons. The effective Hamiltonian that dictates the bosonic
dynamics can be derived by adiabatic elimination [18]. Here
one first writes down the Heisenberg equations for both the
boson and spin operators, which for the JC model read

∂t â = −i[â, ĤJC] = −igσ̂−,

∂t σ̂
− = −i�σ̂− + igâσ̂z,

∂t σ̂z = 2ig(â†σ̂−). (16)

As the fast timescale is set by �−1, the spin operators can be
replaced by their steady-state solutions, i.e., σ̂− = g

�
âσ̂z, and

after inserting this into the first equation above, the effective
dynamical equation for â becomes

∂t â = −g2

�
âσ̂ z ≡ −i[â, Ĥeff ], (17)

where in the second step we define the effective bosonic
Hamiltonian Ĥeff . Solving this operator equation gives

Ĥeff = 2g2

�
n̂σ̂ z. (18)

In the case of more than one boson mode, the adiabatic elim-
ination is straightforward to generalize. With the summation
over an index i on the bosonic operator, the effective Hamil-
tonian stays the same such that

∂t âi = −igiσ̂
−,

∂t σ̂
− = −i�σ̂− + i

∑
i

giâiσ̂z,

∂t σ̂z = 2i
∑

i

giâ
†
i σ̂

−. (19)

Hence, with ∂t σ̂
− = 0 we obtain σ̂− = ∑

i
gi âi σ̂z

�
such that

Ĥeff =
∑
i �= j

2gig j

�
â†

i â j σ̂
z. (20)

From a perturbative perspective, the effective Hamiltonians
describe the virtual processes of absorbing and emitting a
photon—the Stark shift. In the multimode case, such two-
photon processes act as beam-splitters among the involved
modes such that bosons will tunnel from one mode to another.
This manifests as nonvanishing tunneling rates in the corre-
sponding FSLs.

B. Fock state lattices for multimode JC models
in the large detuning limit

We set out to study their properties with the effective
Hamiltonian in Eq. (20). Noting that in the detuned limit
no population is transferred between the atomic states, the
spin part of the Fock state becomes trivial, and we can
leave it out for now. Generally, the interaction Hamiltonian
for the detuned multimode case can be written in the form

FIG. 5. The triangular FSL derived from the three-mode boson
model (21). A synthetic magnetic flux ±φ penetrates each plaquette
in a staggered manner. The corner states are represented by the
Fock states with two modes in vacuum. Along the straight lines, two
diagonal and one horizontal, the boson number is fixed in one of the
modes, e.g., for the horizontal lines the third c-mode keeps a fixed
particle number. These observations hold for higher-dimensional lat-
tices as well—in the four-mode model, one finds a tetrahedral lattice.

Ĥint = ∑
i �= j τi j â

†
i â j . This Hamiltonian describes noninteract-

ing bosons living on a lattice defined by the subscripts i and
j, e.g., for two and three modes we get a bosonic “dimer”
or “trimer,” respectively. However, we are interested in their
respective FSLs. A priori, the tunneling strengths τi j depend
on the system details. For degenerate modes and appropriate
polarizations, it is natural to assume that they all have the
same amplitudes, i.e., τi j = τeiφi j . The phases φi j can, in
principle, be experimentally controlled [9]. We include these
phases since we will see that their presence leads to many
interesting phenomena. Taking this into account, we reach the
final Hamiltonian

Ĥint = τ
∑
i �= j

eiφi j â†
i â j . (21)

Note that hermiticity implies that φi j = −φ ji, and since
the tunneling rate only sets the timescale, we pick τ = 1
throughout. For two modes (label them with a and b) this
Hamiltonian reduces to Ĥint = (eiφ â†b̂ + e−iφ b̂†â) in which
the phase can be trivially omitted by a gauge transformation.
However, this will not be true in general [19] for three or more
modes. The phases will result in complex tunneling rates in
the FSLs. According to the idea of the Peierls substitution,
these phases mimic a synthetic magnetic flux penetrating the
lattice perpendicularly [13]. If a loop in the lattice is formed,
the (gauge-invariant) magnetic flux φ through the loop equals
the sum of the phases of the corresponding tunneling rates.
Typically we are interested in the smallest such loop, a lattice
plaquette, and its corresponding flux; see Fig. 5. Consider,
for example, three boson modes a, b, and c. From Eq. (21)
we have the three phases φab, φbc, and φca. Each of these
can be changed via a gauge transformation, but the sum φ =
φab + φbc + φca remains constant under such transformations.
The corresponding FSL is a triangular lattice with a staggered
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magnetic flux, i.e., alternating ±φ fluxes through each trian-
gular plaquette; see Fig. 5. If we choose that φi j = φ for any
i < j, then for all higher-dimensional multimode FSLs, the
same pattern will emerge, i.e., any 2D plane/cut of the FSL
will display a triangular lattice with a staggered ±φ field. We
may note in passing that it is possible to also have a homo-
geneous field in the FSL. However, it turns out that this is
only possible for nonquadratic boson models, i.e., interacting
many-body systems [20].

As the Hamiltonian in Eq. (21) preserves the number of
particles, there is a corresponding U (1)-symmetry. This sym-
metry lowers the lattice dimension by 1, e.g., the three-mode
model generates a 2D FSL, and so on. Generally, for any num-
ber of modes, the unit cell has the form of a d-simplex, where
d indicates the number of dimensions, e.g., in 2D it is a trian-
gle, in 3D it is a tetrahedron, and so on. However, it should be
stressed that in a strict sense, we do not have unit cells since
the lattice is not translationally invariant, but here we think
only of the lattice geometry. Furthermore, the lattice is finite
for a given particle number N , with the corners represented
by the Fock states with all N bosons occupying a single mode
and the remaining ones in a vacuum. For example, for three
modes with N bosons, the number of sites of the FSL becomes
S = (N + 1)(N + 2)/2. Finally, we note that introducing a
synthetic field breaks time-reversal symmetry. However, for
φ = π/2 the spectrum becomes symmetric around E = 0,
which is a manifestation of a chiral symmetry given by the
unitary ÛC = K̂ exp(iπ n̂c), where K̂ stands for complex con-
jugation, which anticommutes with the Hamiltonian.

C. Closer look at the three-mode model—A fractal spectrum

In this section, we limit ourselves to the three-mode model
with a varying flux. Later we comment also on higher-
dimensional models. In particular, we are interested in the
energy spectrum for the Hamiltonian given in Eq. (21) as a
function of the flux φ. The translationally invariant case of
a 2D lattice exposed to a constant perpendicular magnetic
field results in a fractal spectrum known as the Hofstadter
butterfly [10]. It is relevant to analyze similar situations for
the FSLs. For this objective we use that the Hamiltonian is
quadratic and can be written as Ĥint = â†hâ, where

h =

⎡
⎢⎣

0 eiφ eiφ

e−iφ 0 eiφ

e−iφ e−iφ 0

⎤
⎥⎦ (22)

and â† = (â†, b̂†, ĉ†). If we diagonalize h, i.e., d = UhU −1,
the full Hamiltonian is diagonalized as Ĥint = γ0α̂

†
0 α̂0 +

γ1α̂
†
1 α̂1 + γ2α̂

†
2 α̂2, with α̂k (k = 0, 1, 2) the transformed boson

operators, and γk the eigenvalues of h. Thus, the spectrum
for a single boson is simply the eigenvalues of h, while the
full spectrum, given N bosons, can be found combinatorically
from these single-boson energies γk . We may note that the
structure of h in Eq. (22) remains for higher dimensions.
Numerically its eigenvalues can be found for large mode
numbers, but analytical solutions are only found for the three-
and four-mode cases. For the three-mode model, finding the
single-boson energies reduces to solving the characteristic
polynomial γ 3 − 3γ − 2 cos φ = 0, which leads to the three

energies

γk = 2 cos

(
φ − 2 × π × k

3

)
, k ∈ {0, 1, 2}. (23)

Hence, the full spectrum for a general boson number is
written as

En = n0γ0 + n1γ1 + n2γ2, (24)

where n = (n0, n1, n2) subject to the constraint n0 + n1 +
n2 = N . To gain further insight into the spectral structure,
we consider the energy differences between any two energy
levels,

δEn = En − Eñ = (γ1 − γ0)(n1 − ñ1) + (γ2 − γ0)(n2 − ñ2),
(25)

where we have used the fact that we may rewrite En =
Nγ0 + (γ1 − γ0)n1 + (γ2 − γ0)n2. In three dimensions there
exist certain fluxes φ for which the spectrum becomes equidis-
tant or quasiequidistant, i.e., there then exist a few energies
characterizing the involved timescales. This is opposed to
some general φ which reproduces a whole range of different
timescales.

From the expression (25) we see that the energy spectrum
becomes quasiequidistant whenever

γ0 − γ1

γ1 − γ2
= q, q ∈ Q. (26)

Writing q = j
j′ with j, j′ ∈ N, we find that given the solutions

for γk in (23), Eq. (26) can be written as

j′
[√

3 cos

(
φ

3

)
− sin

(
φ

3

)]

= j

[√
3 cos

(
φ

3

)
+ sin

(
φ

3

)]
. (27)

As all three single-boson energies are continuous functions
of φ, so are (γ0 − γ1) and (γ1 − γ2), and furthermore, except
for the singularity when γ1 = γ2, which happens at φ = 0,
also the fraction (26) is a continuous function of φ. Disre-
garding this singularity, as N → ∞ there will be infinitely
many φ j’s that fulfill the condition above; see Figs. 6(a)
and 6(b). The spectrum at these “quasiequidistant points”
becomes highly degenerate, but it is only perfectly equidistant
for one of them, φ1 = π/2. This is the reason why for the
other of these points we call the spectrum quasiequidistant,
since here there exists more than a single energy difference.
For a given φ j , the energy differences between the nearby
energies can be ordered � j , 2� j , 3� j, . . . , j� j . Note that
the basic energy difference � j is different for the various
equidistant points. Solving (26) for φ j leads to the following
condition:

tan

(
φ j

3

)
=

√
3

2 j + 1
, j ∈ N, (28)

which we have reached using (27), and introducing a new pair
n, n′ ∈ N where j + j′ = n′ and j′ − j = n. As this holds for
any q, we may choose n = 1, which implies that n′ = 2 j + 1
and it leads to the expression above.

The equidistant points given by Eq. (28) become denser as
the values of j increase, which manifests as a fractal structure
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FIG. 6. The upper two plots, (a) and (b), show the spectra and the
distances between nearby energies as a function of the flux φ, for the
three-mode model with N = 25 bosons, while the lower two plots,
(c) and (d), give the same for the four-mode case with N = 16. The
fractal structure of the three-mode case is evident, while the four-
mode spectrum does not display the same fractal properties.

of the spectrum; see Fig. 6, showing both the spectrum (a)
and its nearby energy differences δEn (b). The results of the
energy differences demonstrate the concept of the equidistant
points. As we will demonstrate in the next section, picking φ

according to one of these points will result in novel dynamics.

D. The four-mode and higher-mode models

To fractal structure of the spectrum is rooted in the exis-
tence of special fluxes fulfilling the condition (26). The 3 × 3
matrix h gives three energies, and hence two energy differ-
ences, and the single condition derived from comparing these
two. For the four-mode model (21) we find four eigenvalues γk

(with k = 1, 2, 3, 4) of the corresponding matrix h. Following
the same argument that led to the condition (26), for the
four-mode model we are left with three conditions,

γ3 − γ0

γ2 − γ0
= q1,

γ3 − γ0

γ1 − γ0
= q2,

γ2 − γ0

γ1 − γ0
= q3, (29)

where q1, q2, and q3 are all rational numbers. We can general-
ize this to a K-mode model in which the number of conditions
becomes (K − 1)(K − 2)/2. It should be clear that it becomes

harder and harder, the larger K is, to find fluxes φ j fulfilling all
conditions simultaneously. As long as the conditions cannot
be met for single fluxes, the spectrum cannot be fractal as for
the three-mode model. We demonstrate this by displaying the
spectrum and energy difference δEn for the four-mode model
in Figs. 6(c) and 6(d). It is possible, however, to find fractal
spectra also for higher-mode models (four and six modes), as
discussed next.

1. Ring models

The models defined via Eq. (21) are “fully connected,” i.e.,
each mode can exchange excitations with every other mode.
It is, in principle, possible to introduce selections among the
various tunneling processes, and hence block some of them.
This motivates us to consider bosonic chains with periodic
boundary conditions,

Ĥ =
K∑

i=1

â†
i âi+1eiφ/K + H.c., (30)

where âK+1 = â1. Since we impose periodic boundary con-
ditions, and the lattice has a ring structure, the phase φ

becomes nontrivial because we cannot gauge it away. In the
boson chain, it mimics a magnetic flux through the lattice
ring. The FSL takes the form of a tetrahedron lattice for the
fully connected four-mode case. When we consider instead
the four-mode ring model, some of the links between sites in
the tetrahedron lattice are cut; the number of sites each site
couples to goes from twelve to eight. The resulting FSL has
a rhombic structure, i.e., any 2D lattice plane forms a rhom-
bic lattice. The characteristic equation for the corresponding
matrix h becomes γ 4 − 4γ 2 + 4 sin2( φ

2 ) = 0, and the four
eigenvalues (roots) can be expressed as

γk± = ± cos

(
φ + π × k

2

)
, k ∈ {0, 1}. (31)

This leads to the following condition for the flux: φ =
2 arctan(q) with q ∈ Q. Similarly, for the six-mode ring model
we find the eigenvalues

γk = ±2 cos

(
φ + 2π × k

6

)
k ∈ {0, 1, 2}, (32)

giving the following condition for the quasiequidistant points:
φ = 6 arctan( q√

3
). In Fig. 7 we present the spectra and en-

ergy differences for the two ring models. Clearly, the two
models’ spectra display a similar fractal structure to that for
the three-mode model of Figs. 6(a) and 6(b). Interestingly,
the three-mode model is also a ring model, just like those of
Fig. 7. However, we have numerically verified that the five-
and eight-mode models do not reproduce fractal spectra, i.e.,
they are not a property of ring-type coupling. We have noticed,
though, that the spectrum En(φ) is symmetric around E = 0
for all fluxes φ whenever one considers an even number of
boson modes. This suggest an additional chiral symmetry that
holds only for ring models with an even number of modes.

V. EVOLUTION OF INITIALLY LOCALIZED STATES
IN THE THREE-MODE BOSON MODEL

To further study manifestations of the fractal spectrum,
we turn to study the evolution over time. While our focus
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FIG. 7. The same as Fig. 6, but for the four-mode [upper two
plots (a) and (b)] and six-mode [lower two plots (c) and (d)] ring
models. The number of bosons is N = 20 and 10 for the two
cases, respectively. By disregarding some of the terms in the Hamil-
tonian (21) to obtain the ring Hamiltonian (30), the number of
conditions for having a quasiequidistant spectrum is reduced and it is
possible to fulfill them simultaneously, leading to the reappearance
of fractal spectra for these two models.

is on the three-mode case, let us start with a remark on the
two-mode model, which produces a 1D FSL with tunneling
rates t

√
(n + 1)(N − n). While a Bogoliubov transformation

easily diagonalizes the Hamiltonian, we use the Schwinger
spin-boson mapping instead. Here we identify a spin operator
Ŝx = 1

2 (â†b̂ + b̂†â), such that the Hamiltonian is Ĥint = 2Ŝx,
with the total spin S = N/2. The spectrum is equidistant,
and any state returns to its initial state after the revival time
TR = 2π . This model was studied by Christandl et al. in terms
of perfect state transfer in 1D chains with spatially varying
tunneling rates [21], e.g., after half the revival time TR/2 any
initial state at one end of the chain will have traversed the
chain to populate the other end. Recently, the model was
experimentally explored with the particular Hamiltonian real-
ized by coupling two photonic modes via a beam splitter [3].
To see the effect of the flux φ, we need to go up by one
dimension.

As a demonstrating example, we consider a system of N =
15 bosons. Hence, the Fock states have a form |na, nb, nc〉,
where ni ∈ N and na + nb + nc = 15. N = 15 results in S =

FIG. 8. The IPR for two different initial states and two different
fluxes corresponding to equidistant points. The states display perfect
revivals for both fluxes, even though the revival times differ between
the fluxes (but not between the states). As a comparison, we also give
the minimum possible IPR (yellow line). How the IPR is defined
makes it easy to get fooled that a small value implies an extended
distribution. The distributions remain fairly localized throughout; see
Fig. 10.

136 different Fock states that make up the corresponding FSL.
We shall look at the evolution of the two different initial states,
taken to be |15, 0, 0〉 and |11, 4, 0〉, which are both initially
completely localized on a single site somewhere in the FSL.
To characterize the extent of the states, we consider the inverse
partition ratio

IPR(t ) =
∑

n

|〈n|ψ (t )〉|4, (33)

which gives the degree of localization in the FSL. For a fully
localized state IPR = 1, while for a maximally delocalized
one IPR = 1/S , where S is, as before, the number of sites
of the FSL. When it comes to the choice of fluxes, we shall
consider the time-evolution for the fluxes φ1 and φ2 according
to Eq. (28). In addition, we pick a phase that does not coincide
with any equidistant point, namely φ̃ = π/100.

The numerically extracted IPRs are depicted in Fig. 8.
When the flux is one of the φ j values, we see perfect recur-
rences of the IPR to its initial value IPR = 1. However, the
state has not necessarily returned to its initial state in these
instances, but it might have completely localized on another
lattice site, as seen below. The state is spread over several
lattice sites in between being completely localized. However,
the IPR never drops close to its minimum value (a small
IPR can still represent a localized distribution since it scales
as 1/occupied sites). Hence, even in-between the maximum
localization, the distribution remains fairly localized in the
lattice; see Fig. 10. For φ̃ (not shown in the figure), when the
spectrum is not quasiequidistant, we see no clear indicators of
localization, even though the state is far from populating the
whole lattice.

Recall that the constraint stemming from particle
conservation removes one degree-of-freedom, which en-
sures, for example, that the participation vector �n(φ, t ) =
(na(φ, t ), nb(φ, t ), nc(φ, t )), with ni(φ, t ) = 〈n̂i〉, lives in a 2D
plane, i.e., the FSL. Thus, the trajectory gives us an idea of
how the full distributions move around in the lattice, even
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FIG. 9. Examples of the evolution of the occupation vector
�n(t ) = (na(t ), nb(t ), nc(t )), with ni(t ) = 〈n̂i〉 in the FSL for the three-
mode model. The initial states are |0, 0, 15〉 (blue curves) and
|0, 4, 11〉 (red curves), and the fluxes for the different curves are
given in the inset. Note how the trajectories close whenever the
flux is chosen as one of the equidistant points (signaling perfect
revivals), while this is no longer true for a general flux (thin curves).
In addition, the trajectories are found to be “shape invariant,” by
which we mean that the two different initial states result in the same
type of trajectories only rotated and scaled in size.

though it only captures the mean occupation but no higher
moments of the distribution. In Fig. 9 we show examples of
such trajectories for the same initial states and parameters
as those used for Fig. 8. The first thing to notice is how the
trajectory �n(φ1, t ) sets an outer boundary for all the other
trajectories.

As pointed out, when φ j agrees with one of the equidistant
points, we encounter perfect revivals at times

Tj = 2π

� j
, (34)

where � j is the aforementioned smallest energy splitting for
a given φ j . The revivals manifest as closed trajectories of
�n(t ) in the FSL. These loops form a symmetric pattern in
the FSL, and the number of full 360◦ turns it makes before
closing upon itself is found to be 2 j − 1. Thus, for j = 1 (i.e.,
φ1 = π/2), the distribution makes a single loop around the
lattice, which is found to follow the lattice edges closely, i.e.,
there always remains a large population imbalance among the
three modes. For φ2, the distribution makes three loops before
returning to its initial states. For a flux away from any φ j ,
we do not encounter such revivals, hence no closing of the
trajectories. For the closed loops, there are “clustering points”
in which many trajectories cross, the lattice origin being the
most noticeable. A closer look reveals that for any initial Fock
state, the resulting trajectories pass the origin [i.e., na(t ) =
nb(t ) = nc(t ) = N/3] for all φ j with j = 2, 3, 5, 6, 8, 9, . . .

. Upon comparing the trajectories originating from the two
different initial Fock states, |0, 0, 15〉 versus |0, 4, 11〉, we find
that the shape and structure remain intact, however they are
rotated and contracted. In Appendix we derive semiclassical
equations of motion that exactly reproduce the trajectories.

The trajectories of Fig. 9 give the mean positions of the
Fock-state distribution

P(n, t ) = |〈n|ψ (t )〉|2. (35)

However, they say nothing about its actual shape. In Fig. 10,
by plotting the distribution P(n, t ) at different times for the
case of φ1 = π/2, it is seen that it remains fairly localized
along the edges of the FSL. Furthermore, it propagates coun-
terclockwise around the lattice, reflecting the breaking of time
inversion as soon as the flux is nonzero (a zero flux does not
produce a favored direction for the propagating distribution).
The propagation is reminiscent of a Hall current; a perpen-
dicular magnetic field applied to a 2D electronic gas implies
a current living on the edge of the system. We consider a
staggered magnetic field and notice that the direction of the
current can be reversed by flipping the sign of the fluxes.

VI. TOWARDS THE SSH MODEL—
AND THE APPEARANCE OF EDGE STATES

Speculating whether an underlying topological structure
causes the edge currents seen in Fig. 10 is intriguing. A more
thorough discussion regarding this topic for the FSLs can be
found in Refs. [3,9]. Since translational invariance is absent,
we encounter discrete energies rather than bands. However, it
is interesting to note that for the chiral case with φ1 = π/2,
we find Z = N/2 + 1 or Z = N/2 + 1/2 degenerate E = 0
energies for even and odd particle numbers N , respectively.
These are not unique for the FSL but also appear for the
translationally invariant lattice with a staggered field. In other
words, the degenerate E = 0 energies in the FSL are the
counterpart of a flat band.

Instead of exploring the properties of these E = 0 states
for the three-mode model, let us introduce another model also
supporting E = 0 eigenstates which are found to be living on
the edge of the FSL. To construct a finite 1D FSL, we do
not use a boson mode, but rather a spin-S subsystem via the
mapping

(â† + â) → Ŝx,

i(â† − â) → Ŝy, (36)

â†â → Ŝz,

where the Ŝα’s are the SU(2) spin operators for a spin-S
particle. Contrary to the case of a boson mode, this introduces
both an upper and a lower bound/edge for the lattice. When
this is applied to the JC model, one obtains a so-called central
spin model—which is a model in which a central spin-1/2
particle interacts identically with N noninteracting spin-1/2
particles which form the large spin-S (i.e., S = N/2). The
central spin model has served as a toy model for studying
quantum criticality, as well as for analyzing non-Markovian
decay of a qubit [22]. To achieve the desired FSL, we consider
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FIG. 10. The upper light blue triangles display snapshots of the Fock-state distributions (35) for the initial state A = |0, 0, 15〉 and for the
flux φ1 = π/2. Initially the distribution occupies a single corner site, and after TR/3 it has been transferred to another corner site. In between
it stays well localized and traverses along the lower edge of the lattice. The lower plot gives the corresponding IPR (33), with the vertical lines
indicating the time instances used for the distribution snapshots. Note that for the center distribution at T1/6 we have IPR � 1, but still the
distribution is well localized according to the upper figure.

the central spin model of the form

Ĥ cs
int = gxσ̂

xŜx + gxσ̂
yŜy

= g+(σ̂+Ŝ− + σ̂−Ŝ+) + g−(σ̂+Ŝ+ + σ̂−Ŝ−), (37)

where g± = gx ± gy. This is the spin analog of the anisotropic
quantum Rabi model (11), i.e., the two types of interaction
terms couple with different strengths; for gx = gy we regain a
JC-type interaction, and for gy = 0 we instead get a quantum
Rabi-type interaction. As for the quantum Rabi model, the
central spin model supports a Z2-parity symmetry for general
couplings gx and gy. This results in two decoupled 1D chains,
one for each parity. Furthermore, the chains have lengths
2S + 1, and provided g+ �= g− and g+, g− �= 0, the tunneling
rates will alternate between neighboring sites [see Fig. 11(a)],
similar to that of the SSH model [16]. As for the SSH model,
one finds for the central spin model two E = 0 eigenstates
that become exponentially localized at either of the edges.
More precisely, the probability to populate site i for such a
state scales as Pi ∝ ( g+

g−
)S−i. Each localized state belongs to

either of the two parity sectors, and in Fig. 11(b) we show
one of them for g+ = 0.9g−. For the two-mode JC model on
resonance, one also find localized edge states [9], but unlike
those of the central spin model, these are not exponentially
localized.

VII. EXAMPLES OF FOCK-STATE LATTICES

In quantum optics, one encounters a range of models, com-
prising a few degrees-of-freedom, that describe the interaction
between quantized light and matter. Many of these are exten-
sions and generalizations of the JC model toward multimode

and multilevel atoms [12]. They often generate interesting
FSLs with known, translationally invariant counterparts in
condensed-matter physics. In Table I, several models are
listed, along with their respective interaction Hamiltonians,
and with information about how the relevant FSL looks. Be-
low, we discuss a few of these models.

FIG. 11. The FSL (a) emerging from the central spin model (37)
with anisotropic coupling amplitudes g±. The red (green) dots mark
Fock states with spin-1/2 in the |g〉 (|e〉) states, respectively. The
parity symmetry of the model implies a similar FSL but belonging to
the other parity sector with the green (red) dots swapped. In (b) we
show the exponentially localized E = 0 energy eigenstate |ψ0〉 in a
101-site lattice with g+/g− = 0.9. In the other parity sector, there is
an equivalent edge state localized to the right edge instead.
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TABLE I. A collection of atom-light interaction Hamiltonians and their corresponding FSLs. Many of these appear frequently in the
quantum optics community. Some of them we have discussed in some detail in the main text, e.g., the two-mode and three-mode JC models.
σ̂i j = |i〉〈 j| + | j〉〈i|.

Model Interaction Hamiltonian Lattice type

Jaynes-Cummings Ĥint = g(â†σ̂− + âσ̂+) Double-well, Fig. 4(a)
Quantum Rabi Ĥint = g(â† + â)σ̂x 1D chain, Fig. 4(b)
Anisotropic quantum Rabi Ĥint = gjc(σ̂+â + â†σ̂−) + gajc(σ̂−â + â†σ̂+) Infinite SSH chain
N-atom Dicke Ĥint = g(â† + â)Ŝx Square lattice
N atom Tavis-Cummings Ĥint = g(â†Ŝ− + âŜ+) N potential-well
Central spin model Ĥint = gxσ̂xŜx + gyσ̂yŜy Finite SSH chain, Fig. 11(a)
Driven quantum Rabi Ĥint = g(â† + â)σ̂x + η(â† + â) Creutz ladder, Fig. 4(d)
Single mode � Ĥint = g(â† + â)(λ̂(1) + λ̂(6) ) Lieb ladder
Two-mode JC Ĥint = ga(â†σ̂− + âσ̂+) + gb(b̂†σ̂− + b̂σ̂+) SSH chain
Two-mode detuned JC Ĥint = t (â†b̂ + b̂†â) CDEL chain
Two-mode quantum Rabi Ĥint = g[(â† + â) + (b̂† + b̂)]σ̂x (Layered) square lattice
Two mode � Ĥint = ga(â† + â)σ̂12 + gb(b̂† + b̂)σ̂23 2D Lieb lattice
Three-mode JC Ĥint = ga(â†σ̂− + âσ̂+) + gb(b̂†σ̂− + b̂σ̂+) + gc(ĉ†σ̂− + ĉσ̂+) Hexagonal lattice
Three-mode detuned JC Ĥint = t (â†b̂ eiϕ + b̂†ĉ + â†ĉ + H.c.) Triangular lattice, Fig. 5
Three-mode tripod Ĥint = ga(â† + â)σ̂12 + gb(b̂† + b̂)σ̂13 + gc(ĉ† + ĉ)σ̂14 Perovskite lattice
Three-mode quantum Rabi Ĥint = g[(â† + â) + (b̂† + b̂) + (ĉ† + ĉ)]σ̂x Cubic lattice
Four-mode detuned JC1 Ĥint = t

∑4
j,i=1 eiφi j â†

i â j Tetrahedral lattice
Four-mode detuned JC2 Ĥint = t

∑4
i=1 eiφi â†

i âi+1 + H.c. Rhombic 3D lattice

(i) Driven quantum Rabi model. The FSL belonging to
the quantum Rabi model was shown in Fig. 4(b), where the
Z2-parity symmetry splits the lattice into two 1D chains, one
for each parity. We may break this parity by including a
driving term, which induces tunneling along the legs of the
FSL ladder, as depicted in Fig. 4(d). This lattice is a special
type of a Creutz ladder [17]. The more standard Creutz ladder
appears if we also include an atomic driving term that results
in nonzero tunneling terms along the rungs of the ladder. In the
Creutz ladder, we have competing nearest- and next-nearest-
neighboring tunneling terms. A property of the Creutz ladder
lattice is the presence of a dispersionless flat band when the
tunneling rates are properly tuned. For our model, if we rotate
the spin, σ̂x → σ̂z, the Hamiltonian takes the simple form
Ĥint = (η ± g)(â† + â). For g = η, i.e., the same amplitude of
the tunneling rates, we find an infinite number of degenerate
E = 0 eigenstates. These are the corresponding flat band of
the Creutz ladder, now manifested in the FSL.

(ii) Two-mode � model. The Lieb lattice is another
paradigm model hosting a flat band. In 2D, it is a “punc-
tured” squared lattice where every fourth lattice point has
been excluded. The unit cell now contains three sites, with
two having nonzero tunneling elements to two neighbors and
the third site couples to four neighbors. The lattice geome-
try provides a destructive interference mechanism that may
completely hinder mobility, resulting in an E = 0 flat band in
the tight-binding limit [23]. The remaining two bands touch
in a Dirac cone in the center of the Brillouin zone. We can
achieve this lattice type in a system of a three-level � atom
(two lower states and one excited), with the transition of each
arm of the atom coupled to different boson modes. One finds
that the destructive interference also survives in the FSL, and
one thereby derives an infinite number of degenerate E = 0
eigenstates.

(iii) Three-mode tripod model. The generalization of the
three-level � atom to four levels consists in adding one more
arm, which is called the tripod atom. We can then couple each
arm of the tripod to an individual mode such that we have a
three-mode model. The resulting 3D lattice bears similarities
with the Lieb lattice, i.e., it is a punctured cubic lattice with a
unit cell containing four points. The translationally invariant
version is called a perovskite-type lattice, and as for the Lieb
lattice, it supports bands with nontrivial topology, i.e., their
Chern numbers are nonzero [24]. The flat bands in the two-
mode � and three-mode tripod systems are related to dark
states in these models, i.e., E = 0 eigenstates.

The list of Table I is by no means complete. As one sees in
Ref. [9], many topological features of translationally invariant
lattices survive in FSLs with the same geometry. Topological
invariants, like the Chern number, are not directly applicable
for FSLs, and instead, alternative topological numbers are
studied [9]. Hence, given one favorite lattice with some in-
teresting properties, e.g., nontrivial topology, one can work
backward and ask for some interaction Hamiltonian that gen-
erates the corresponding FSL. For example, bilayered lattices
may possess novel properties, such as bilayered Lieb lattices
that can produce high Chern numbers. It is often straight-
forward to introduce more layers in the FSL by including
additional internal atomic levels.

VIII. CONCLUDING REMARKS

In this work, we have taken an alternative approach to ana-
lyze various spin-boson models known from quantum optics.
This idea of relying on FSLs was first brought up in [8] and
later extended in [9]. In these works, the focus was on the
multimode JC model. Part of the present work explores the
same models, and we find a set of new properties. The spectra
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for the three-mode boson model, when a synthetic magnetic
flux has been added, are found to be fractal, akin to the Hof-
stadter butterfly. The flux of the FSL is, however, staggered
rather than uniform (a uniform flux would not render a fractal
spectrum for the triangular FSL). The fractal structure cannot
be explained by the same arguments used for the Hofstadter
butterfly, as this relies on varying sizes of the lattice’s unit cell.
Instead, the emergence of our fractal structure is understood in
terms of specific fluxes φ j that cause a high degeneracy in the
spectrum. The fractal structure is generally lost for a higher
number of boson modes, but it can be restored for the four-
and six-mode cases provided one adds some selection among
the tunneling terms between the modes.

The system’s evolution depends very much on the flux, and
at the quasiequidistant points φ j , the system shows perfect
revivals. In the FSL, given that we start in a Fock state, for
these fluxes the distribution P(n, t ) remains well localized
and follows closed loops. Since the flux breaks time-reversal
symmetry, the loops are traversed either clockwise or anti-
clockwise depending on the sign of φ j . One also finds that
these closed trajectories have mirror symmetry with respect
to the axis intersecting the lattice origin and the site where
the state is initialized. Furthermore, the index j determines
how many twists the distribution makes before it returns to
the initial site. There is also an inherent scale invariance of
these trajectories; for a given φ j , the trajectories are identical
in structure irrespective of the specific initial Fock state, i.e.,
they only differ in orientation and size.

We also demonstrated how fractal spectra appear in a four-
and six-mode boson model. The FSL of the three-mode model
is two-dimensional, and the occupation vector �n(t ) evolves in
a plane defined by a fixed total boson number N . Likewise,
we have a four-component occupation vector �n(t ) for the
four-mode model, but the conserved particle number implies
that it is projected into a 3D FSL. The properties of the
corresponding trajectories, i.e., how the state evolves within
the FSLs, were not considered, but we expect similar behavior
to that for the three-mode model.

A boson degree-of-freedom results in infinite FSLs, un-
less some symmetry restricts it, e.g., particle conservation.
Spin degrees-of-freedom have finite-size Hilbert spaces and
thereby finite-size FSLs. We considered one such example,
the anisotropic central spin model, and we showed how this
model has a topological property manifested in E = 0 states
exponentially localized to the edges of the lattice. Without
going into any details, we listed other models and mentioned
which type of FSLs they generate. One exciting example is
systems with “flat bands” being a huge E = 0 degeneracy.
Of course, one can consider other models beyond those men-
tioned in this paper. Note also that we use the Fock states, i.e.,
bare states, in order to construct the FSL. In short, the total
Hamiltonian has the form Ĥ = Ĥ0 + Ĥint, where the Fock
states are the eigenstates of Ĥ0, and Ĥint constitute the FSL.
We could generalize this to a situation in which Ĥ0 is not
diagonal in the Fock basis but instead in another (dressed)
basis, such as the driven JC model, Ĥ = ĤJC + η(â† + â),
and we could consider the JC dressed states rather than the
bare Fock states. The drive term will then constitute a new
state-space lattice (dressed state lattice), which becomes a 1D
chain in this example. As another example, the quantum Rabi

model could be written as ĤR = ĤJC + g(â†σ̂+ + âσ̂−), such
that it is expressed as a JC Hamiltonian plus the counter-
rotating terms [12]. In the JC dressed state basis, the resulting
state space lattice formed by the counter-rotating terms will be
two decoupled 1D parity chains. Naturally, experimentally the
bare Fock states are typically more relevant from a perspective
of detection. However, we mention this to stress the greater
flexibility of the method by allowing for other bases.
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APPENDIX: EQUATIONS OF MOTION FOR THE MEAN
VALUES OF THE THREE-MODE BOSON MODEL

The multimode bosonic model (21) is quadratic and
thereby solvable via a Bogoliubov transformation. Moreover,
as a quadratic model it follows that an initial Gaussian state,
e.g., any coherent or squeezed states, remains Gaussian at
all times. Thus, a Gaussian quantum phase space distribution
remains localized and follows the classical phase-space tra-
jectories. It is convenient to work with the classical canonical
variables for position

x̂ = (â† + â)√
2

(A1)

and momentum

p̂x = (â† − â)√
2

. (A2)

Using the fact that the Heisenberg and Hamilton equa-
tions have the same structure for a quadratic bosonic
Hamiltonian, for the three-mode case we get the equations of
motion

ẋa = −pb − pc,

ẋb = −pa − cos(ϕ)pc − sin(ϕ)xc, (A3)

ẋc = −pa − cos(ϕ)pb + sin(ϕ)xb,

and

ṗa = xb + xc,

ṗb = xa + cos(ϕ)xc − sin(ϕ)pc, (A4)

ṗc = xa + cos(ϕ)xb + sin(ϕ)pb,

such that 〈n̂α〉t = [p2
α (t ) + x2

α (t )]/2. Since a Gaussian state
(apart from the vacuum) does not contain a fixed number
of bosons N , this means for the FSLs that it will populate
different triangular FSLs—one for each boson number N .
However, the shape and structure of the trajectories in the
FSLs are invariant for different N-values; the particle number
only provides a scaling of the trajectories as demonstrated in
Fig. 9.

For the above equations to reproduce the correct trajecto-
ries of Fig. 9, where the initial state is a Fock state |N, 0, 0〉,

033721-13



PIL SAUGMANN AND JONAS LARSON PHYSICAL REVIEW A 108, 033721 (2023)

one should use the initial conditions (xa, xb, xc, pa, pb, pc) =
(
√

2N, 0, 0, 0, 0, 0). We have numerically confirmed that
these trajectories agree with those obtained from diagonaliz-
ing the full N-boson Hamiltonian.
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