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Temporal factorization of a nonstationary electromagnetic cavity field
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When an electromagnetic field is confined in a cavity of variable length, real photons may be generated from
vacuum fluctuations due to highly nonadiabatic boundary conditions. The corresponding effective Hamiltonian
is time-dependent and contains infinite intermode interactions. Considering one of the cavity mirrors fixed and
the other describing uniform motion (zero acceleration), we show that it is possible to factorize the entire
temporal dependency and write its formal solution, i.e., the Hamiltonian becomes a product of a time-dependent
function and a time-independent operator. With this factorization, we prove in detail that the photon production
is proportional to the Planck factor involving a velocity-dependent effective temperature. This temperature sig-
nificantly limits photon generation even for ultrarelativistic motion. The time-dependent unitary transformations
we introduce to obtain temporal factorization help establish connections with the shortcuts to adiabaticity of
quantum thermodynamics and with the quantum Arnold transformation.
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I. INTRODUCTION

Elucidating the dynamics of time-dependent quantum
systems is not easy, usually because the corresponding Hamil-
tonian does not commute with itself at different times. There
are perturbative solutions, but many are valid only for short
periods [1]. The adiabatic approximation is an option for the
long term, if the Hamiltonian is slowly time-dependent [2,3];
if not, one may still resort to the so-called shortcuts to adia-
baticity [4,5]. These shortcuts mimic the adiabatic dynamics
in a finite time [6–8], and they can be used to manipulate
quantum systems before decoherence and dissipation become
detrimental [9].

The quantum harmonic oscillator with time-dependent fre-
quency is the first physical system in which one would like to
test the solutions and approaches mentioned above [10]. For
instance, shortcuts to adiabaticity have been implemented dur-
ing the operation of harmonic quantum heat engines [11] and
refrigerators [12]. Furthermore, the time-dependent harmonic
oscillator also serves to study the interesting nonadiabatic
behavior of the electromagnetic field. We refer to this as the
so-called dynamical Casimir effect (DCE) [13,14], i.e., the
generation of real photons out of the vacuum fluctuations due
to nonadiabatic changes in the field’s boundary conditions
[15]. Contrary to the static Casimir effect or the Lamb shift,
the DCE is a direct manifestation of the existence of the
vacuum fluctuations of light.

The DCE, a name introduced by Schwinger [16], is a
relativistic effect of the second order and was predicted by
Moore in 1970 [17] and experimentally confirmed more than
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40 years later only within the platform of superconducting
quantum circuits [18,19]. Moore’s original quantum theory of
light within a variable-length cavity did not have a Hamil-
tonian description; however, significant theoretical progress
occurred in 1994 when Law derived an effective multimodal
Hamiltonian for the electromagnetic field that captures the
essential features of the DCE [20]. This effective Hamil-
tonian is one of the main subjects of study in the present
work and consists of quantum harmonic oscillators with
time-dependent frequencies and time-dependent intermode
interactions.

This work shows that under particular circumstances, it
is possible to factorize the intricate temporal dependence in
the Hamiltonian of an electromagnetic field confined in a
nonstationary resonant cavity; see Fig. 1. Specifically, when
we fix one of the cavity mirrors and the other moves with zero
acceleration, we find that a nontrivial time-dependent unitary
transformation permits what we dub temporal factorization,
i.e., the system’s Hamiltonian becomes a product of a time-
dependent function and a time-independent operator. This
factorization enables the resulting Hamiltonian to commute
with itself at different times, allowing us to write its for-
mal solution and diagonalize the time-independent part. Our
approach makes it easier to determine whether the electro-
magnetic field gains or loses energy when the cavity contracts
or expands, resembling a thermodynamic piston.

We also clarify that although the algebraic structure for
the simplest version of the DCE always permits two-photon
generation from the vacuum state at arbitrary frequency
driving, for the uniformly nonaccelerate motion, a Planck
factor emerges bounding the photon growth with an effec-
tive temperature depending on the mirror’s velocity. This
finding contrasts with the Unruh effect [21] and related
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FIG. 1. Two schematic representations of an ideal one-
dimensional nonstationary cavity of initial size q0 (thick horizontal
black line). The left mirror is permanently fixed, but the right can
move in a given trajectory x = q(t ). (a) The uniform motion with
v the constant mirror velocity, whereas (b) is for an oscillatory
trajectory (parametric resonance) with a small amplitude modulation
2ε. The thick gray lines represent the cavity at two different time
instants. In the single-mode approximation, the left scenario predicts
a minimal generation of photons from the quantum vacuum that is
proportional to the Planck factor involving a velocity-dependent ef-
fective temperature; see Eq. (15). The right one exhibits an expected
exponential photon growth; see Fig. 2.

phenomena [22], where their unbounded temperatures depend
on the proper acceleration [23].

We organize our work as follows: Sec. II introduces
the nontrivial time-dependent unitary transformations that
factorize the temporal dependence of a single quantum har-
monic oscillator with arbitrary time-dependent frequency. In
Sec. III A we apply such an operational approach to the
multimode effective Hamiltonian of the nonstationary elec-
tromagnetic cavity. Due to the uniform motion of one of the
cavity mirrors, temporal factorization is possible. Section III B
deals with the single-mode approximation and provides an
unreported analytical expression for the photon production.
This is proportional to the Planck factor involving a velocity-
dependent effective temperature, significantly limiting photon
generation even at ultrarelativistic velocities. In Sec. III C we
provide a diagonalization procedure to show how the interac-
tion (induced by the boundary conditions) between two modes
breaks the degeneracy of the cavity spectrum, but without sig-
nificant effects on the photon production. Finally, we present
our conclusions in Sec. IV.

II. TIME-DEPENDENT HARMONIC OSCILLATOR

Due to the significance of the harmonic oscillator in
quantum physics, and especially for the DCE, we start by
describing in detail how to solve its time-dependent version
using an operator approach. Besides being the preamble of a
more challenging problem in the next section, the purpose of
studying this model is to introduce the two time-dependent
unitary transformations and the corresponding algebraic pro-
cedure that factorizes the system’s temporal dependence.
In addition, we will show how these transformations help
establish connections with the shortcuts to adiabaticity of
quantum thermodynamics and with the quantum Arnold trans-
formation. For an arbitrary time-dependent frequency, ω(t ),
the oscillator’s Hamiltonian is (in this section h̄ = m = 1)
ĤHO(t ) = [ p̂2 + ω2(t )x̂2]/2, where x̂ and p̂ are the position
and momentum Hermitian operators, satisfying [x̂, p̂] = i.

This oscillator at t = t j has a frequency ω j ≡ ω(t j ) and en-
ergy 〈ĤHO(t j )〉. Typically, in a given process that starts at
t0 and ends at t f , one wants to know how the energies
〈ĤHO(t0)〉 and 〈ĤHO(t f )〉 can be related. This question is of ut-
most importance in quantum thermodynamics when using the
harmonic oscillator as a heat engine. For example, if the pro-
cess is slow enough, the adiabatic limit gives 〈ĤHO(t f )〉ad =
(ω f /ω0)〈ĤHO(t0)〉 [24,25]. The answer for an arbitrary driving
of ω(t ) is not straightforward; however, with the unitary trans-
formations we introduce to factorize the temporal dependence
in the Hamiltonian, this sort of relation appears again if the
driving process follows a friction-free trajectory. We define
the referred time-dependent transformations as [26,27]

D̂σ = exp

[
i

2

σ̇ (t )

σ (t )
x̂2

]
, (1a)

Ŝσ = exp

[
− i

2
ln σ (t )(x̂ p̂ + p̂x̂)

]
, (1b)

where σ (t ) is, for the moment, an arbitrary well-behaved
function which we later define and σ̇ (t ) = dσ (t )/dt . As we
see below the notation for D̂σ and Ŝσ alludes to the dis-
placement and squeezing operations. Using the Hadamard
lemma [28,29], it is not difficult to show the following four
transformations:

D̂†
σ p̂D̂σ = p̂ + σ̇ (t )

σ (t )
x̂, D̂†

σ x̂D̂σ = x̂, (2a)

Ŝ†
σ p̂Ŝσ = 1

σ (t )
p̂, Ŝ†

σ x̂Ŝσ = σ (t )x̂. (2b)

To make the time-dependent Schrödinger equa-
tion i∂|�(t )〉/∂t = ĤHO(t )|�(t )〉 invariant under (1a), the
oscillator’s Hamiltonian ĤHO(t ) must transform as [1]

ĤD(t ) = D̂†
σ ĤHO(t )D̂σ − iD̂†

σ

∂D̂σ

∂t
,

= p̂2

2
+ 1

2

[
ω2(t )+ σ̈ (t )

σ (t )

]
x̂2+ σ̇ (t )

2σ (t )
(x̂ p̂+ p̂x̂), (3)

where we have used (2a), and the state vector changes to
D̂†

σ |�(t )〉. Applying (1b) on ĤD(t ) we get

ĤS (t ) = Ŝ†
σ ĤD(t )Ŝσ − iŜ†

σ

∂Ŝσ

∂t
,

= 1

σ 2(t )

p̂2

2
+ 1

2
[ω2(t )σ 2(t ) + σ̈ (t )σ (t )]x̂2. (4)

For this step the state vector is Ŝ†
σ D̂†

σ |�(t )〉.
Now the question is, what differential equation should

σ (t ) satisfy to factorize the time dependence in Hamilto-
nian (4)? This question can be easily answered by recalling
that the time-dependent harmonic oscillator admits the Lewis
invariant Î (t ). This invariant is a time-dependent operator
which can be obtained from ∂ Î (t )/∂t = i[Î (t ), ĤHO(t )], and it
has the following structure [30] Î (t ) = 1

2 [ρ(t ) p̂ − ρ̇(t )x̂]2 +
ω2

0 x̂2/2ρ2(t ), where the dimensionless function ρ(t ) obeys
ρ̈(t ) + ω2(t )ρ(t ) = ω2

0/ρ
3(t ). This is known as the Ermakov

equation, and ω0 is an arbitrary real constant that we choose to
be ω(t0). Assuming the function σ (t ) as the one that satisfies
the Ermakov equation, i.e., σ (t ) = ρ(t ), then by extracting
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ρ̈(t )ρ(t ) from the Ermakov equation and substituting it in (4),
we get

ĤS (t ) = 1

ρ2(t )

(
p̂2

2
+ 1

2
ω2

0 x̂2

)
. (5)

Note that the time dependency has been factorized. Due to
this factorization, ĤS (t ) = ρ−2(t )ĤHO(t0) commutes with it-
self at different times [ĤS (t j ), ĤS (tk )] = 0. Therefore, the
corresponding time evolution operator can be written as
exp [ − iĤHO(t0)

∫ t
t0

ρ−2(t ′) dt ′]. To solve the Ermakov differ-
ential equation, we must specify the boundary conditions for
ρ(t ) and ρ̇(t ). In the context of shortcuts to adiabaticity with
applications in quantum thermodynamics, especially for the
expansion and compression of harmonic ion traps, one obtains
the boundary conditions by imposing Î (t0) = ĤHO(t0) and the
commutativity between the Lewis invariant and the oscillator
Hamiltonian at the final time t f , i.e., [Î (t f ), ĤHO(t f )] = 0. This
requirement can be achieved if ρ(t0) = 1, ρ̇(t0) = ρ̈(t0) = 0
and ρ(t f ) = (ω0/ω f )1/2, ρ̇(t f ) = ρ̈(t f ) = 0. Under such con-
ditions, also known as stationary conditions, Î (t ) and ĤHO(t )
have simultaneous eigenstates at the beginning and end of
a population-preserving evolution. From (5) we note that
〈ĤS (t f )〉 = (ω f /ω0)〈ĤHO(t0)〉, but in contrast with the adia-
batic evolution, t f − t0 is a finite time interval.

With the time evolution operator at hand and the time-
dependent unitary transformations, we write the solution
for the state vector in the original picture as [27] |�(t )〉=
D̂ρ Ŝρ exp [− iĤHO(t0)

∫ t
t0

ρ−2(t ′) dt ′]|�(t0)〉, where |�(t0)〉 is
the initial state. In obtaining |�(t )〉 we used the fact that
Ŝ†

ρ (t0) = D̂†
ρ (t0) = 1 due to the stationary boundary condi-

tions in the Ermakov equation. As a consequence, an initial
Fock state |n〉 will evolve into a squeezed number state
|�(t f )〉 = exp [ − iEn

∫ t f

t0
ρ−2(t ′) dt ′]Ŝρ (t f )|n〉 [31], where En

are the instantaneous eigenvalue of ĤHO(t ) at t0. Depending
on the ratio ω0/ω f , ρ(t f ) is less than or greater than one,
which determines the sign of lnρ(t f ) located in the exponent
of squeezed transformation (1b). Thus, whenever ω0 < ω f

(ω0 > ω f ) the state vector suffers a compression (expansion)
in the configuration space, typical of quantum heat engines
during the isentropic strokes [11,32,33]. In fact, the vari-
ance of the position operator is obtained from (2b) and gives
(�x̂)2 ∝ ρ2(t f ) = ω0/ω f .

We note that if instead of the Ermakov equation, σ satisfies
the classical harmonic oscillator equation, σ̈ + ω2(t )σ = 0
[34], the system Hamiltonian also displays temporal factor-
ization. Substituting this equation of motion in (4), we arrive
at the Hamiltonian of the free particle ĤS (t ) = p̂2/2σ 2(t ).
Interestingly, this implies that from a different procedure, we
were able to obtain the result given by the quantum Arnold
transformation [35,36]. Recall that the Arnold transformation
maps the states of the harmonic oscillator into the free particle
[37].

III. NONSTATIONARY ELECTROMAGNETIC
CAVITY FIELD

A. Temporal factorization

For many years, the studies of the DCE were performed
in the Heisenberg representation, where the quantum electric

field operator was built directly from the set of solutions
of the bidimensional Klein-Gordon wave equation and the
corresponding inner product [15]. However, in this article
we work with Law’s effective Hamiltonian of an electromag-
netic quantum field in a one-dimensional empty cavity with
two ideal (perfectly reflecting) mirrors; one of them is fixed
at the position x = 0, and the other can move in a given
trajectory x =q(t ). Figure 1 shows a schematic representa-
tion of such a nonstationary cavity with uniform [Fig. 1(a)]
and oscillatory [Fig. 1(b)] mirror trajectories. In the Lorentz
gauge, the classical vector potential, A(x, t ), satisfies the wave
equation ∂2

x A(x, t ) = c−2∂2
t A(x, t ) and the Dirichlet bound-

ary condition A(0, t ) = A(q(t ), t ) = 0 [38]. The procedure to
find Law’s Hamiltonian is to expand A(x, t ) in terms of the
“instantaneous” set of mode functions, substitute it in the
wave equation, and enforce the boundary condition. Consid-
ering the resulting equations of motion as the Euler-Lagrange
equations, one can construct a Lagrangian and, using the
Legendre transformation, the Hamiltonian; see [20,39] for
a detailed derivation. After a standard canonical quantiza-
tion, the corresponding multimodal effective Hamiltonian
is [20]

Ĥeff(t ) =
∑

k

1

2

{
p̂2

k + ω2
k (t )x̂2

k

} + q̇(t )

q(t )

∑
j,k

j �=k

Gk j p̂k x̂ j, (6)

where ωk (t ) = ckπ/q(t ) is the instantaneous frequency of
the kth (k ∈ N) field mode, c the speed of light, and
q̇(t ) = dq(t )/dt . x̂ j and p̂k are generalized position and mo-
mentum operators of the electromagnetic field and satisfy
[x̂ j, p̂k] = ih̄ δ jk . Note that we will use the usual standard
units from now on. The first term in (6) represents a col-
lection of time-dependent harmonic oscillators, like the one
described in Sec. II. The second term describes the char-
acteristic intermode interaction of the DCE with Gk j =
(−1)k+ j2k j/( j2 − k2)=−Gjk , determining the antisymmet-
ric coupling coefficient. For arbitrary mirror trajectories,
Ĥeff (t ) likely does not commute with itself at different times.
We are particularly interested in a simple but not trivial trajec-
tory with zero acceleration [40]. This trajectory is the uniform
motion q(t ) = q0 + vt , where v is a constant and q0 is the
right mirror’s initial position; see Fig. 1(a). Depending on the
sign of v, q(t ) causes an expansion or compression of the
cavity length. Such a uniform trajectory was realized in the
early experiments on laser cavities with moving mirrors at
constant velocities [41–43].

Based on the result generated by the time-dependent uni-
tary transformations introduced in the previous section, below
we show that the effective Hamiltonian (6) also displays tem-
poral factorization. Fortunately, due to the parametrization
of q(t ), we need only to apply the squeezed transforma-
tion for each mode. Defining Ŝ(t ) = ∏

j Ŝ
( j)
σ , with Ŝ ( j)

σ =
exp[−i ln σ (t )(x̂ j p̂ j + p̂ j x̂ j )/2h̄], and σ (t ) = √

q(t )/q0 is a

dimensionless variable such that Ŝ ( j)
σ |t=0 = 1, since ln σ (0) =

0. The system Hamiltonian (6) transforms as ĤS (t ) =
Ŝ†(t )Ĥeff(t )Ŝ(t ) − ih̄Ŝ†(t )∂ ˆS(t )/∂t . Using (2b) we write the
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first term as

Ŝ†(t )Ĥeff(t )Ŝ(t ) = 1

2

∑
k

{
q0

q(t )
p̂2

k +
[

ckπ

q(t )

]2 q(t )

q0

x̂2
k

}

+ q̇(t )

q(t )

∑
j,k

j �=k

Gk j p̂k x̂ j . (7)

The second term is

ih̄Ŝ†(t )
∂ Ŝ(t )

∂t
= 1

4

q̇(t )

q(t )

∑
j

(x̂ j p̂ j + p̂ j x̂ j ). (8)

Since q̇(t ) = v, the new Hamiltonian simplifies to

ĤS (t ) = q0

q(t )

(
1

2

∑
k

[
p̂2

k + ω2
k (0)x̂2

k − v

2q0

(x̂k p̂k + p̂k x̂k )

]

+ v

q0

∑
j,k

j �=k

Gk j p̂k x̂ j

)
, (9a)

≡ q0

q(t )
[ĤS], (9b)

where ĤS is a time-independent operator, q(t ) = q0 + vt , and
ωk (0) = ckπ/q0. Note that as in the previous section, the
entire time dependence of ĤS (t ) has been factorized, and now
this commutes with itself at different times. Such temporal
factorization allows us to see that the energy of the system,
i.e., 〈ĤS (t )〉 = 〈ĤS〉q0/q(t ), decreases (increases) when the
cavity experiences an expansion (compression) determined by
the sign of v, resembling a thermodynamic piston.

On the other hand, it is convenient to define
the variable τ ≡ v−1q0 ln(1 + vt/q0) such that the
Schrödinger equation reads i∂|ψ (τ )〉/∂τ = ĤS|ψ (τ )〉;
its formal solution is |ψ (t )〉 = ÛS (t )|ψ (0)〉, where
ÛS (t ) = exp [−iq0 v−1ln(1 + vt/q0)ĤS/h̄].

B. Single-mode case

The above temporal factorization holds for any number of
interacting field modes. However, it is known that significant
features of the DCE can be obtained assuming that the cavity
supports only a single mode. Actually, a three-dimensional
nonstationary cavity has a not equidistant spectrum, and its
dynamics can be formally reduced to a single one-dimensional
parametric oscillator [44,45]. In the following, we concentrate
on such a situation; for instance, considering the principal
(lowest) field mode (9a) approximates to

ĤS (t ) = q0

q(t )

[
p̂2

1

2
+ 1

2
ω2

1(0)x̂2
1 − v

4q0

(x̂1 p̂1 + p̂1x̂1)

]
. (10)

This Hamiltonian represents the simplest version of the DCE,
and its set of operators generates the su(1, 1) Lie algebra [46]:[

x̂2
1, p̂2

1

] = 2ih̄(x̂1 p̂1 + p̂1x̂1),[
x̂1 p̂1 + p̂1x̂1, p̂2

1

] = 4ih̄ p̂2
1,[

x̂1 p̂1 + p̂1x̂1, x̂2
1

] = −4ih̄ x̂2
1 . (11)

We show below that (10) still contains unreported nontrivial
physics concerning the generation of photons from the

vacuum state. We can diagonalize it using D̂v =
exp (ivx̂2

1/4h̄q0) and the identities (2a). Such a transformation,
D̂†

vĤS (t )D̂v = Ĥdiag(t ), straightforwardly yields

Ĥdiag(t ) = 1

1 + vt/q0

[
p̂2

1

2
+ 1

2
2(v)x̂2

1

]
, (12)

where (v) ≡ ω1(0)
√

1 − (v/2πc)2 is the time-independent
eigenfrequency of the system; when v → 0, (v) → ω1(0).
The time-evolution operator of (10) is ÛS (t ) = D̂vÛdiag(t )D̂†

v ,
where Ûdiag(t ) = exp [−i f (t )( p̂2

1 + 2(v)x̂2
1 )/2h̄] and f (t ) =

(q0/v) ln(1 + vt/q0).
To obtain the average photon number, which is one of

the most attractive quantities to be studied in the DCE, we
need the generalized position and momentum operators in
the Heisenberg picture. The Heisenberg picture of an arbi-
trary time-independent operator, Ô, is Ô(t ) = Û †

S (t )Ô ÛS (t ).
Applying the transformations D̂v and Ûdiag(t ), with the
help of (11) we get x̂1(t ) = τ11(t )x̂1 + τ12(t ) p̂1 and p̂1(t ) =
τ21(t )x̂1 + τ22(t ) p̂1, where

τ11(t ) = cos [(v) f (t )] − v sin [(v) f (t )]/2q0(v),

τ12(t ) = sin [(v) f (t )]/(v),

τ21(t ) = −
[
(v) + v2

4q2
0(v)

]
sin [(v) f (t )],

τ22(t ) = cos [(v) f (t )] + v sin [(v) f (t )]/2q0(v). (13)

For the principal mode (k = 1), we can unambiguously
define the annihilation and creation operators at t = 0
as â = [ω1(0)x̂1 + i p̂1]/

√
2h̄ω1(0) and â† = [ω1(0)x̂1 − i p̂1]/√

2h̄ω1(0), such that [â, â†] = 1; here â|0〉 = 0 defines the
vacuum state. The number operator, â†â, can be extracted
[2] from â†â = Ĥ (1)

HO (0)/h̄ω1(0) − 1/2, where Ĥ (1)
HO (0) = [ p̂2

1 +
ω2

1(0)x̂2
1]/2 is the Hamiltonian of the principal mode at t = 0,

i.e., when the right mirror is in its initial position at x = q0.
Using x̂2

1 (t ) and p̂2
1(t ), we write â†â in the Heisenberg repre-

sentation. This gives the average number of photons with re-
spect to the vacuum state 〈â†â〉0 ≡ 〈0|â†(t )â(t )|0〉 = 1

4 [τ 2
11 +

τ 2
21/ω

2
1(0)] + 1

4 [τ 2
22 + τ 2

12ω
2
1(0)] + (τ12τ21 − τ11τ22)/2, where

we have omitted the temporal dependence in the notation of
the τ jk variables. Finally, substituting the explicit values (13)
we obtain

〈â†â〉0 = 1(
2πc
v

)2−1
sin2

⎡
⎣1

2
ln

(
1+ vt

q0

)√(
2πc

v

)2

−1

⎤
⎦.

(14)

This is the average number of photons from the quantum
vacuum of a single electromagnetic field mode within a non-
stationary cavity when one of the cavity mirrors performs
a uniform (zero acceleration) motion. As far as we know,
(14) is an unreported useful analytical expression. Refer-
ences [47–49] obtained comparable formulas for parametric
quasiresonant conditions that drastically deviates from the
above result. As a function of time, the trigonometric function
in (14) displays oscillations with values restricted between 0
and 1. That means it is enough to analyze the amplitude term
[(2πc/v)2−1]−1 to find out how much 〈â†â〉0 may grow. The
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FIG. 2. Average number of photons from the vacuum state,
〈â†â〉0, as a function of the scaled time, ct/q0, in a single-mode non-
stationary electromagnetic cavity. Dashed lines are for the uniform
motion [Eq. (14)], while the black solid line is for the cavity under
parametric resonant conditions, where 〈â†â〉0 = sinh2(επct/2q0).
Photon production for the former is bounded and extremely small
for nonrelativistic mirror trajectories v/c 
 1. The latter shows the
well-known exponential photon growth with ε = 0.15. Dots, trian-
gles, and stars represent a purely numerical solution using QuTiP
[50].

amplitude vanishes when v → 0, producing no photons, as
it should be when the cavity has a fixed length q(t ) → q0.
Remarkably, even for ultrarelativistic mirror velocities, v ∼ c,
photon generation may not be possible since the amplitude
term remains very small; its maximum value approximates
1/40 = 0.025.

Figure 2 shows, as function of the scaled time ct/q0, the
behavior of 〈â†â〉0 for three different values of the ratio v/c
(dashed lines). As discussed in the previous paragraph, the
number of created photons is bounded and immeasurably
small for nonrelativistic mirror trajectories. The dots, trian-
gles, and stars represent a purely numerical solution of ĤS (t )
in (10) using QuTiP (Quantum Toolbox in Python) [50]. For
comparison, the black solid line is for the same nonstationary
cavity, but under parametric resonant conditions, i.e., the right
moving mirror performs an oscillating trajectory with a small
modulation amplitude, ε; see Fig. 1(b). Under these resonant
conditions, it is known that the average number of photons
grows exponentially as 〈â†â〉0 = sinh2(επct/2q0) [13–15].

The amplitude term [(2πc/v)2−1]−1 can be written as
ω2

1(0)/2(v)−1. However, (v) almost does not change over
a large range of v/c values; see Fig. 3. Thus, ω1(0)/(v) is
near one, making the amplitude close to zero; actually, when
v ∼ c, (v) ≈ 0.98 ω1(0). Since the system eigenfrequency
(v) does not change significantly, the field will follow
approximately an adiabatic dynamic as long as the mirror
performs a uniform motion. Therefore, the adiabatic evolu-
tion implies an invariant state population without induced
transitions and no photon production. Interestingly, we can

FIG. 3. Ratio between the eigenfrequecy k (v) and the fre-
quency of the static (t = 0) k th cavity mode ωk (0). Black
(green) dashed (solid) line is for k = 1 (2) and k (v)/ωk (0) =√

1 − (v/2kπc)2.

rewrite (14) as 〈â†â〉0 = n̄v sin2 [ 1
2 ln(1 + vt/q0) n̄

− 1
2

v ], where
n̄v = {exp[h̄ ω1(0)/kBTv] − 1}−1 is the Planck factor involving
a velocity-dependent effective temperature

Tv = 1

2

h̄ ω1(0)

kBln(2πc/v)
. (15)

It is clear that for nonrelativistic motion Tv 
 1, consequently,
n̄v and the photon production vanish. Identifying this tem-
perature from the Planck factor specifically for the uniform
motion, which allows temporal factorization, is one of the
main contributions of our work. Tv differs substantially from
the Unruh temperature, TU = h̄a/(2πkBc), a well-known re-
sult of quantum field theory [21,23]. The latter is the effective
temperature experienced by a noninertial observer undergoing
constant proper acceleration a in the vacuum state. Note that
TU diverges as a [15]; in contrast, c significantly limits v and
Tv .

Our results align with previous work showing that uni-
formly accelerated (including zero acceleration) mirrors do
not radiate [51]. However, surprisingly, our benefit is getting
them using only the single-mode version of ĤS (t ), accom-
panied by a well-known Lie algebra and simple physical
explanations. In contrast, [51] needs the energy-momentum
tensor and a regularization procedure to give finite results.
Furthermore, for any frequency driving, Hamiltonian (10)
written in terms of â and â† is ĤS (t )= h̄ω1(t )â†â+iω̇1(t )(â†2−
â2)/4ω1(t ) [20]. Since it contains an explicit squeezing term
(â†2 − â2), this naively suggests a constantly growing photon
production, regardless of the mirror trajectory. Here we con-
tribute to clarifying and demonstrating that such an intuition
fails, representing a clear advance over the Law’s work [20].

If instead of the principal cavity mode (k = 1), we analyze
another mode but still within the single-mode approxima-
tion, i.e., an uncoupled system, the previous analysis will be
the same. The time-independent eigenfrequency of the kth
mode now is k (v) = ωk (0)

√
1 − (v/2kπc) and the temper-

ature Tv (k) = h̄ωk (0)/[2kB ln(2kπc/v)], meaning that while
increasing k, k (v) will change less; see Fig. 3 where k = 2.
Therefore, for the uniform motion, any possible photon pro-
duction will be much smaller in higher modes than for the
principal one.
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FIG. 4. Lowest ten eigenvalues Emn of a nonstationary cavity
supporting two modes [see Eq. (16)]. As a function of v/c, the uncou-
pled system (black dashed lines) exhibits eight degenerate states. The
intermode interaction induced by the boundary conditions breaks
the intrinsic symmetry of the system and, therefore, the degeneracy
(green solid lines).

C. Two-mode case

In this subsection we focus on the case where the nonsta-
tionary cavity may support two modes. This situation is of
particular interest because it is the first that one encounters if
one wants to go beyond the single-field mode approximation
[49] and deal with the intermode interaction, Gk j , induced by
the boundary conditions [52]. The time-independent version
of ĤS [see (9a)] for the two lowest modes is

ĤS =
2∑

k=1

1

2

[
p̂2

k + ω2
k (0)x̂2

k − v

2q0

(x̂k p̂k + p̂k x̂k )

]

+ 4v(x̂2 p̂1 − x̂1 p̂2)/3q0. (16)

The last term of (16) is the interaction between the field
modes 1 and 2. By deliberately ignoring this term and us-
ing the results of Sec. III B, we quickly obtain the energy
eigenvalues of the uncoupled Hamiltonian; these are Emn =
h̄ 1(v)(m + 1/2) + h̄ 2(v)(n + 1/2), where m and n are
nonnegative integer numbers. Figure 4 shows the lowest ten
eigenvalues, see black dashed lines. As a function of v/c,
we observe only six dashed lines since there are eight de-
generate states. Taking the coupling term into account, in the
Appendix we describe in detail how (16) can be diagonalized
using three nontrivial unitary transformations; these are R̂1,
R̂2, and R̂3 defined in (A1). The corresponding eigenvalues
of ĤS are Emn = 2h̄

√
μ1ν1(m + 1/2) + 2h̄

√
μ2ν2(n + 1/2),

where μ j , ν j can be found in (A5). Figure 4 displays the first
ten eigenvalues of (16); in this case, the intermode interaction
breaks the intrinsic symmetry of the system and, therefore,
the degeneracy as well (green solid lines). This situation is
notorious at ultrarelativistic velocities.

Diagonalization of ĤS in the Appendix also permits us
rewrite ÛS (t ) in the diagonal basis as

ÛS (t ) = exp

⎡
⎣− i

h̄
q0v

−1ln

(
1 + vt

q0

) 2∑
j=1

(
μ j p̂2

j + ν j x̂
2
j

)⎤⎦,

(17)

while the total time-evolution operator in the original frame is
Û (t ) = Ŝ(t )R̂1R̂2R̂3 ÛS (t )R̂†

3R̂†
2R̂†

1Ŝ†(0). With the knowledge
of the evolution operator, one can repeat the procedure out-
lined in Sec. III B to compute the generation of photons
from the vacuum for the two interacting cavity modes. The
nine unitary transformations forming Û (t ) make the algebraic
approach unwieldy, but the task is doable. It is clear from
Fig. 4 that for v 
 c, the energy spectrum coincides with the
decoupled system, which, as we discussed in Sec. III B, has
a small photon generation. We performed a purely numerical
calculation and confirmed that for v ∼ c, the photon produc-
tion from the quantum vacuum in the two-mode interacting
case is also minimal.

To certify the correctness of our results, we did two
verifications: (1) Using the evolution operator, Û (t ), we cal-
culate the operators x̂1, x̂2, p̂1, and p̂2 in the Heisenberg
picture, and we confirm they satisfy their corresponding
Heisenberg equation. (2) We build a standard linear quantum
invariant, Â, which in the Heisenberg picture reads Â(t ) =
f1(t )x̂1 + f2(t )x̂2 + f3(t ) p̂1 + f4(t ) p̂2, where f j (t ) are time-
dependent functions, too cumbersome to be shown here, that
satisfy the classical Hamilton equations of motion. We prove
that Â(t ) satisfies dÂ(t )/dt = i[ĤS (t ), Â(t )] + ∂Â(t )/∂t = 0;
thus, Â(t ) is indeed invariant when using our solution Û (t ).

IV. CONCLUSIONS

Using an operator approach, we factorized the explicit
time dependence of the paradigmatic harmonic oscillator
with time-dependent frequency and the multimode effec-
tive Hamiltonian of a nonstationary cavity field. We dub
this result temporal factorization, i.e., the system’s Hamil-
tonian becomes a product of a time-dependent function and
a time-independent operator. For the harmonic oscillator,
temporal factorization occurs for any given frequency drive
[see Eq. (5)], while for the effective Hamiltonian, this is possi-
ble when the moving mirror performs a uniform motion (zero
acceleration) [see Eq. (9b)].

Achieving temporal factorization was helpful as it allowed
their associate Hamiltonian to commute with itself at different
times; thus, we obtained the corresponding evolution operator.
It also lets us discern effortlessly how the system gained
or lost energy when undergoing an expansion or compres-
sion process, resembling the situation of a thermodynamic
piston, especially for the cavity with variable length. Using
the oscillator’s Lewis invariant, we got typical results from a
quantum thermodynamic cycle’s adiabatic (isentropic) stroke.
Also, with the time-dependent unitary transformations we use
to get factorization, we map the oscillator Hamiltonian into
the free particle, making a clear connection with the quantum
Arnold transformation.
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For the nonstationary electromagnetic cavity having uni-
form mirror trajectories, we found that the generation of
photons from the vacuum state is proportional to the Planck
factor involving a velocity-dependent effective temperature
[see Eq. (15)]. This temperature, which differs from the Un-
ruh temperature, strongly limits the photon production in the
principal mode, even in the ultrarelativistic limit; the former
is much smaller for higher modes. We interpret the low pho-
ton growth as a result of an approximate adiabatic dynamic
followed by the cavity field’s eigenfrequency, mainly for non-
relativistic motion. We went beyond the standard single-mode
approximation, and for the two-mode case, we show how the
intermode interaction (induced by the boundary conditions)
breaks the system degeneracy in the energy levels but with
little impact on the photon production. Our results validate the
possibility of using the Hamiltonian of the simplest version of
the DCE in other related scenarios. For instance, it may serve
to evaluate the excitations of an atom near a uniformly moving
mirror [22,53–55].

In principle, temporal factorization would lead us to obtain
the spectral response of these nondissipative time-dependent
quantum systems. For instance, we could compute the neces-
sary two-time autocorrelation function of the time-dependent
physical spectrum [56] with the resulting evolution operator;
for some recent physical examples, see [57–59]. Finally, since
a free field in curved spacetime is mathematically analogous
to a harmonic oscillator with time-dependent frequency [60],
it would be interesting to explore the implications of our
results in the context of quantum field theory in curved space-
times, including the interaction with an environment [61,62].
These deserved tasks are far from trivial, and we leave them
for further work.

ACKNOWLEDGMENTS

The authors thank the anonymous referees for their help-
ful comments and suggestions that significantly improved
the paper’s content. J.R. acknowledges partial support from
DGAPA-UNAM through Project No. PAPIIT IN109822.

APPENDIX A: DIAGONALIZATION
OF THE SYSTEM HAMILTONIAN

Here we describe in detail how to diagonalize the Hamil-
tonian ĤS in Eq. (16). Note that this Hamiltonian has a
squeezing term in each mode plus the intermode interaction
∝ v(x̂2 p̂1 − x̂1 p̂2) that we must figure out how to get rid of. To
diagonalize ĤS we introduce three time-independent unitary
operators:

R̂1 = exp
[
iv

(
x̂2

1 + x̂2
2

)/
4h̄q0

]
,

R̂2 = exp (−iχ x̂1x̂2/h̄),

R̂3 = exp (−iξ p̂1 p̂2/h̄), (A1)

where χ and ξ are two arbitrary real parameters that can be
later defined. Using the Hadamard lemma [28,29] we can
write the following six transformations:

R̂†
1 p̂1R̂1 = p̂1 + v

2q0
x̂1,

R̂†
2 p̂1R̂2 = p̂1 − χ x̂2,

R̂†
3 x̂1R̂3 = x̂1 + ξ p̂2, R̂†

1 p̂2R̂1 = p̂2 + v

2q0
x̂2,

R̂†
2 p̂2R̂2 = p̂2 − χ x̂1,

R̂†
3 x̂2R̂3 = x̂2 + ξ p̂1. (A2)

We now move to a scenario determined by (A1), i.e.,
R̂†

3R̂†
2R̂†

1ĤSR̂1R̂2R̂3 ≡ Ĥ3. Evidently, ĤS and Ĥ3 have the
same eigenvalues because R̂ j are unitary operators [2]. By
taking into account (A2) we get Ĥ3 = ∑2

j=1(μ j p̂2
j + νk x̂2

j ) +
η12x̂1 p̂2 + η21x̂2 p̂1, where the coefficients νi, μ j , and ηi j are

μ1 = χ2ξ 2

2
− 4χvξ 2

3q0
− χξ − v2ξ 2

8q2
0

+ 4vξ

3q0
+ 2π2c2ξ 2

q2
0

+ 1

2
,

μ2 = χ2ξ 2

2
+ 4χvξ 2

3q0
− χξ − v2ξ 2

8q2
0

− 4vξ

3q0
+ π2c2ξ 2

2q2
0

+ 1

2
,

ν1 = χ2

2
+ 4χv

3q0
− v2

8q2
0

+ π2c2

2q2
0

,

ν2 = χ2

2
− 4χv

3q0
− v2

8q2
0

+ 2π2c2

q2
0

,

η12 = χ2ξ + 8χvξ

3q0
− χ − v2ξ

4q2
0

− 4v

3q0
+ π2c2ξ

q2
0

,

η21 = χ2ξ − 8χvξ

3q0
− χ − v2ξ

4q2
0

+ 4v

3q0
+ 4π2c2ξ

q2
0

. (A3)

The Hamiltonian Ĥ3 reduces to its diagonal form whenever
η12 and η21 vanish. This condition can be achieved by choos-
ing χ and ξ such that they satisfy

χ± = 9π2c2 ± √
�

16q0v
, ξ± = ±8q0v√

�
, (A4)

with � = (8v2 + π2c2)(81π2c2 − 8v2). However, since χ

and ξ appear in the definition of R̂ j in (A1), it is imperative
that � � 0 for R̂ j to remain as an unitary operator. This means
that v must satisfy the inequality − 9π

2
√

2
� v � 9π

2
√

2
. There-

fore, Ĥ3 in its diagonal form is Ĥ3 = ∑2
j=1(μ j p̂2

j + ν j x̂2
j ),

where the coefficients νi and μ j have been simplified to

μ1 = +9π2c2

4
√

�
− 16v2

3
√

�
+ 1

4
,

μ2 = +9π2c2

4
√

�
+ 16v2

3
√

�
+ 1

4
,

ν1 = −
√

�

12q2
0

+ �

256v2q2
0

−9c2π2
√

�

256v2q2
0

,

ν2 = +
√

�

12q2
0

+ �

256v2q2
0

−9π2c2
√

�

256v2q2
0

. (A5)

The Hamiltonian Ĥ3 represents, in its diagonal form, two un-
coupled quantum harmonic oscillators, and its eigenvalues are
well known; we write them below Eq. (16). The above results
correspond to the plus sign in (A4), and similar expressions
occur for the minus sign. We want to emphasize that this
diagonalization procedure is original and nontrivial.
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