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Probing dressed states and quantum nonlinearities in a strongly coupled three-qubit
waveguide system under optical pumping
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We study a three-qubit waveguide system in the presence of optical pumping, when the side qubits act as
atomlike mirrors, manifesting in a strong light-matter coupling regime. The qubits are modeled as two-level
systems, where we account for important saturation effects and quantum nonlinearities. Optically pumping this
system into a nonlinear regime is shown to lead to a rich manifold of dressed states that can be seen in the emitted
spectrum, and we show two different theoretical solutions using a medium-dependent master-equation model
in the Markovian limit, as well as using matrix product states without invoking any Markov approximations.
We demonstrate how a rich nonlinear spectrum is obtained by varying the relative decay rates of the mirror
qubits as well as their spatial separation and show the limitations of using a Markovian master equation. Our
model allows one to directly model giant-atom phenomena, while including important retardation effects and
multiphoton nonlinearities. We also show how the excited three-qubit system, in a strong-coupling regime,
deviates significantly from a Jaynes-Cummings model when entering the nonlinear regime.
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I. INTRODUCTION

Waveguide quantum electrodynamics (QED) is important
in the study of light-matter interactions in quantum optical
circuits [1], allowing a controlled coupling between two-level
systems (TLSs) or quantum bits (qubits) and a continuum of
quantized modes [2,3]. Waveguide QED systems give rise
to new effects not observed in free-space quantum optics
or in traditional cavity QED [4]. In particular, the quasi-
one-dimensional confinement enhances the qubit coupling,
allowing one to manipulate light-matter interactions between
qubits and waveguide mode photons [5,6]. Moreover, an en-
semble of qubits in a waveguide generates strongly correlated
photon transport beyond the dipole-dipole interaction regime
[7], allowing one to study rich many-body dynamics.

Although waveguide QED systems are excellent systems
for confining photons to waveguide modes, they naturally dis-
sipate, which can make experimental demonstrations difficult,
e.g., for confining photons and realizing nonlinear resonances.
Different approaches have been used in order to overcome this
limitation, with the utilization of so-called giant atoms being
one of the most successful proposals [8–11]. A giant-atom
configuration can enable a decoherence-free interaction with
waveguide QED [12–14], by manipulating the phase between
different qubits in the waveguide. Various material systems
can realize waveguide QED implementations, including su-
perconducting circuits [13,15,16] and quantum dots [17–19].
Another unique feature of waveguide QED is the ability to
realize and exploit non-Markovian dynamics, which can be
realized with time-delayed coherent feedback and with suit-
ably long delay times between multiple qubits [20–31].
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One of the defining features of QED systems is for explor-
ing unique quantum nonlinearities, which have no classical
analog, an example of which is found in the anharmonicity
of a driven Jaynes-Cummings (JC) ladder system [32–35]. At
the linear-response level, vacuum Rabi oscillations can occur
[36], which can also be explained classically or semiclassi-
cally [37]. Nevertheless, vacuum Rabi splitting is an important
prerequisite for exploring unique quantum nonlinearities in
the strong-coupling regime.

Recently, it was experimentally demonstrated how atom-
like mirrors [38,39] can realize a strong light-matter coupling
regime similar to a JC system, using superconducting qubits
[15]. These works focused on the linear response with qubit
spatial separations that are in a Markovian regime, and it is
interesting to explore how such a system behaves in a non-
linear regime (which is precisely where one may find unique
quantum phenomena), which challenges many of the usual
quantum optics models. Specifically, how does such a finite-
size cavitylike system respond when optically pumped to a
nonlinear regime and does the system follow a (dissipative)
JC model or an extended system of three coupled qubits? In
this paper we directly address these questions by modeling an
optically pumped target qubit embedded in atomlike mirrors
(see Fig. 1). We explore both Markovian and non-Markovian
regimes and demonstrate a host of new resonances in the
nonlinear regime.

The rest of our paper is organized as follows. In Sec. II
we introduce the main theoretical approaches for model-
ing the three-qubit waveguide system. First we present a
Markovian master-equation solution and connect it to the
medium-dependent Green’s functions to explain the various
decay rates and photonic coupling effects in a self-consistent
way, using a macroscopic QED approach. For the main ob-
servable of interest, we use the waveguide-emitted spectrum,

2469-9926/2023/108(3)/033719(12) 033719-1 ©2023 American Physical Society

https://orcid.org/0000-0002-7295-604X
https://orcid.org/0000-0002-5486-2015
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.108.033719&domain=pdf&date_stamp=2023-09-27
https://doi.org/10.1103/PhysRevA.108.033719


SOFIA ARRANZ REGIDOR AND STEPHEN HUGHES PHYSICAL REVIEW A 108, 033719 (2023)

FIG. 1. Schematic of three qubits in a waveguide, with optical
pumping of the middle (probe) qubit.

which contains contributions from all qubits. Second we
present a matrix product state (MPS) approach, allowing us
to include multiple quantized waveguide photons and fully
describe non-Markovian effects, which is important when
optical delays are introduced (e.g., for qubits with larger sep-
arations, when a Markov approximation is no longer valid).
As a useful reference, we also show the solution for linear
response, previously studied in Ref. [40].

In Sec. III we study various excitation regimes of the two
theoretical models. We first highlight the linear regime, where
the system also gives an analog of vacuum Rabi splitting
(two polariton peaks), which can be modified further for finite
separations between the qubits (when the effects of retardation
become important [40]). We study the emitted spectrum as
a function of the different qubit decay rates and show how
various sharp resonances appear when the decay rates of the
mirrors (γm) are greater than those of the probe qubit (γp).
We explain the main spectral peaks, by studying the tran-
sitions between the quasienergy levels (dressed states) from
the system Hamiltonian, including the effect of the drive. We
subsequently explore how the spectrum changes as a function
of pump strength, and explain the resonance features in terms
of allowed transitions between dressed states. We compare
these findings with the solutions of a driven JC system and
demonstrate how the nonlinear features of the three qubits
emerge and survive even for large pump strengths, showing
features that are significantly different from the driven JC
model. Next we study the waveguide QED system using the
MPS approach and investigate the role of retardation, and
highlight new nonlinear resonance energies for larger qubit
separations. A summary and our conclusions are presented in
Sec. IV.

II. THEORY

In this section we describe two different approaches to
model the dynamics of the multiqubit waveguide system. First
we use a Markovian master-equation approach that is derived
from a macroscopic Green’s-function formalism [41–44]. For
a recent review of waveguide QED, including common theory
techniques, see Ref. [4]. As discussed in Ref. [40], these
macroscopic approaches fully recover model Hamiltonian for-
malisms for waveguide QED in the appropriate limit [20,38].
Second we use an MPS approach [45,46], which does not
rely on the Markov approximation and can model multipho-
ton states in the waveguide. The MPS approach also allows
us to model the effects of retardation, which is known to

be important for longer qubit separations and delay times.
Indeed, longer delay times are known to tune and improve
the strong-coupling regime [40] at the vacuum level, and
below we will investigate what happens in an optical pumping
regime beyond weak excitation. For reference, we also show
the frequency-dependent solution for linear response [40].

A. Markovian master equation using the waveguide
Green’s function

The photonic Green’s function for the waveguide medium
has the general analytic form [18,40]

G ≡ GW (ra, rb, ω)

= iA[fk (ra)f∗
k (rb)H (xa − xb)eik(xa−xb)

+ f∗
k (ra)fk (rb)H (xb − xa)eik(xb−xa )], (1)

where A is a constant, fk (r) is the waveguide mode of inter-
est, H is the Heaviside function, and the modes at the qubit
locations can be of arbitrary polarization, typically linearly
polarized or circularly polarized [47,48]. Note that G is a
dyad, formed by the outer product of two vectors, but in
general we can consider a single component of interest, where
the dipoles of the emitters are aligned with the mode polariza-
tion. Thus, if xa > xb, then GW (ra, rb, ω) = iAeiωτab (where
we choose the relative polarization component), and τab is the
delay time to propagate from point ra to point rb. Note that
the wave vector is dispersive in general, so k = k(ω).

Using a photonic Green’s-function approach for the waveg-
uide system, a Lindblad master equation can be derived within
a Markov approximation [41,42]

ρ̇(t ) = − i

h̄
[HS, ρ(t )] − i

n �=n′∑
n,n′

δnn′ [σ+
n σ−

n′ , ρ(t )]

+
∑
n,n′

�nn′

2
[2σ+

n′ ρ(t )σ−
n − ρ(t )σ−

n σ+
n′ − σ−

n σ+
n′ ρ(t )],

(2)

where the various coupling rates are defined below. In this ap-
proach, the waveguide is treated as a reservoir, so waveguide
photons are assumed to be uncorrelated with the qubits, and
σ±

n are the usual Pauli operators for the qubits treated as TLSs,
each with a dipole moment dn.

To solve the Markovian master equation, we first define the
incoherent scattering rates used in the Lindbladian, which are
obtained from the medium Green’s function,

�ab|a �=b = 2da · ImG(ra, rb, ωb) · db

ε0 h̄
, (3)

γa ≡ �aa = 2da · ImG(ra, ra, ωa) · da

ε0h̄
, (4)

where the latter term is the usual spontaneous emission rate
from a single emitter and the former term accounts for
interqubit photon transfer. Using the waveguide Green’s func-
tions and considering three qubits (1-mirror, 2-probe, and
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3-mirror), we have

�12 = �21 = √
γmγp Re(eiφm1 ,p ),

�13 = �31 = γmRe(eiφm1 ,m2 ),

�23 = �32 = √
γmγp Re(eiφm2 ,p ), (5)

where φm1,p, φm2,p, and φm1,m2 represent the phases between
the qubits in the waveguide. Explicitly, φn,n′ = k(xn − xn′ ),
which is also frequency dependent. The coherent coupling
rates are obtained from the real part of the Green’s functions,

δab|a �=b = −2da · ReG(ra, rb, ωb) · db

2ε0h̄
, (6)

which, for the waveguide system, simplifies to

δ12 = δ21 = √
γmγp Im(eiφm1 ,p ),

δ13 = δ31 = γmIm(eiφm1 ,m2 ),

δ23 = g32 = √
γmγp Im(eiφm2 ,p ). (7)

The effective system Hamiltonian, including qubit-qubit cou-
pling mediated by the waveguide, is then

H eff
S =

√
γmγp

2
Im(eiφm1 ,p )

(
σ+

m1
σ−

p + σ+
p σ−

m1

)

+
√

γmγp

2
Im(eiφm2 ,p )

(
σ+

m2
σ−

p + σ+
p σ−

m2

)

+ γm

2
Im(eiφm1 ,m2 )

(
σ+

m1
σ−

m2
+ σ+

m2
σ−

m1

)
+ �(σ−

p + σ+
p ) + �n

(
σ+

m1
σ−

m1
+ σ+

p σ−
p + σ+

m2
σ−

m2

)
,

(8)

with a possible pump Rabi field � exciting the probe qubit,
and we also introduced a laser-qubit detuning �n = ωn − ωL,
where ωn = ω0 (same for all qubits) and ωL is the frequency
of the pump. Thus, we can write the Markovian master equa-
tion as

ρ̇(t ) = − i

h̄
[H eff

S , ρ(t )]

+
∑
n,n′

�nn′

2
[2σ+

n′ ρ(t )σ−
n − ρ(t )σ−

n σ+
n′ − σ−

n σ+
n′ ρ(t )].

(9)

The detected spectrum at rD can be obtained from the
the first-order quantum correlation function G(1)(rD, τ ) =
〈Ê−(rD, t )Ê+(rD, t + τ )〉. In the rotating frame at the laser
frequency, the total spectrum is

ST
D (ω) = lim

T →∞
1

T

∫ T

0
dt

×
∫ T

0
dt ′〈Ê−(rD, t )Ê+(rD, t ′)〉ei(ωL−ω)(t−t ′ ). (10)

Inserting the formal solution for the electric-field operator,
obtained from Heisenberg’s equation of motion [42], then

〈Ê−(rD, ω)Ê+(rD, ω)〉 =
∑
n,n′

gn,n′ (ω)〈σ+
n (ω)σ−

n′ (ω)〉, (11)

where the emitter coupling term is

gn,n′ (ω) = 1

ε2
0

dn · G∗(rn, rD, ω) · G(rD, rn′ , ω) · dn′ (12)

and gn′,n = g∗
n,n′ .

The incoherent spectrum can be separated into direct con-
tributions and interference terms so that (rD is implicit)

SD(ω) =
∑

n

∣∣∣∣G(rD, rn, ω) · dn

ε0

∣∣∣∣
2

Re
(
S0

n,n(ω)
)

+
n �=n′∑
n,n′

Re
(
gn,n′ (ω)S0

n,n′ (ω)
)
, (13)

with

S0
n,n′ (ω) = lim

t→∞

∫ ∞

0
dt ′[〈σ+

n (t + t ′)σ−
n′ (t )〉

− 〈σ+
n (t )〉〈σ−

n′ (t )〉]e−i(ω−ωL )t ′
, (14)

where the latter contribution subtracts the coherent spectrum,
which is simply a Dirac delta function for continuous-wave
pumping. Full derivations of the master equation and spectra
are presented in Refs. [41,42].

We recognize that the total spectrum contains terms cor-
responding to the spectrum emitted from the single qubits
(n = n′), as well as interference terms (n �= n′). Finally, to be
consistent with the Markov approximation used in the master
equations, we replace G(rD, rn, ω) by G(rD, rn, ωL ), though
this is not a model requirement.

B. Matrix product states

For the MPS approach, we can write our state as

|ψ〉 =
∑

isi1···iN
Ais

a1
Ai1

a1,a2
· · · AiN−1

aN−1,aN
AiN

aN
|is, i1, . . . , iN 〉 , (15)

where is represents the system bin containing the three TLSs
and the remaining i1, . . . , iN terms represent the discretized
waveguide. Here each of the A terms is a tensor where the
subscripts a1, . . . , aN−1 are the auxiliary dimensions of each
element and the superscripts i1, . . . , iN represent the physical
dimensions of the system [45].

Setting the units such that h̄ = 1 for convenience, we con-
sider the total Hamiltonian

H = Hsys + HB + Hint, (16)

where

Hsys =
∑

n=m1,p,m2

[
ωnσ

+
n σ−

n − 1

2
(�nσ

−
n eiωLt + H.c.)

]
, (17)

HB =
∑

i=L,R

∫
B

dω ωb†
i (ω)bi(ω), (18)

Hint = i
∑
i,n

∫
B

dω[κi(ω)b†
i (ω)σ−

n e−iωxi/vi − H.c.]. (19)

Switching to the interaction picture with respect to the bath
Hamiltonian and into a rotating frame with the frequency ωL,
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then

Hsys =
∑

n=m1,p,m2

[
�nσ

+
n σ−

n − 1

2
(�nσ

−
n + H.c.)

]
. (20)

Next, choosing κi → √
γi/2π , then

Hint = i√
2π

∑
i,n

∫
B

dω[
√

γib
†
i (ω)σ−

n e−iωxi/vi ei(ω−ωL )t − H.c.].

(21)

If we choose x = 0 for the middle dot, then we can define x1 =
−x, x2 = 0, and x3 = x. The group velocity of the waveguide
mode is considered constant (over the bandwidth of interest),
with vL = −v and vR = v.

The delay time between the probe dot and the mirror dot
(τpm for our symmetric system) is redefined as τpm ≡ τm and
τm = x/v. The boson operators in the time domain are

b†
i (t ) = 1√

2π

∫
dω b†

i (ω)ei(ω−ωL )t ,

b†
i (t − τm) = 1√

2π

∫
dω b†

i (ω)ei(ω−ωL )(t−τm ),

b†
i (t + τm) = 1√

2π

∫
dω b†

i (ω)ei(ω−ωL )(t+τm ), (22)

with corresponding equations for bi(t ), bi(t − τm), and bi(t +
τm). Thus, we can write

−iHint = √
γLb†

L(t − τm)σ−
m1

eiωLτm + √
γRb†

R(t + τm)σ−
m1

e−iωLτm

− √
γLbL(t − τm)σ+

m1
e−iωLτm + √

γRbR(t + τm)σ+
m1

eiωLτm

+ √
γLb†

L(t )σ−
p + √

γRb†
R(t )σ−

p − √
γLbL(t )σ+

p + √
γRbR(t )σ+

p

+ √
γLb†

L(t + τm)σ−
m2

e−iωLτm + √
γRb†

R(t − τm)σ−
m2

eiωLτm

− √
γLbL(t + τm)σ+

m2
eiωLτm + √

γRbR(t − τm)σ+
m2

e−iωLτm . (23)

Finally, we can redefine the boson operators, choosing t + τm → t ′, and define the phases between dots as in Sec. II A (i.e.,
ωLτm = φm1,p = φm1,p = φm,p phases between a mirror qubit and the probe qubit and ωLτm = φm1,m2 phases between mirrors).
Using these in Eq. (23), we get to the final equation for the interaction Hamiltonian (and we drop the prime superscript in t ′),

Hint/i = √
γLb†

L(t − 2τm)σ−
m1

+ √
γRb†

R(t )σ−
m1

e−iφm1,m2

− √
γLbL(t − 2τm)σ+

m1
+ √

γRbR(t )σ+
m1

eiφm1,m2

+ √
γLb†

L(t − τm)σ−
p e−iφm,p + √

γRb†
R(t − τm)σ−

p e−iφm,p

− √
γLbL(t − τm)σ+

p eiφm,p + √
γRbR(t − τm)σ+

p eiφm,p

+ √
γLb†

L(t )σ−
m2

e−iφm1,m2 + √
γRb†

R(t − 2τm)σ−
m2

− √
γLbL(t )σ+

m2
eiφm1,m2 + √

γRbR(t − 2τm)σ+
m2

. (24)

The spectrum of the output field, just after the right mirror
dot, in steady state, is obtained from

S(ω) → 2R
∫ ∞

0
dt ′〈b†(t )b(t − t ′)〉ei(ω−ωL )t ′

, (25)

which can be written in the discrete-time bin scheme [45] as

Si, j (ω) → 2R 1

�t

M−1∑
p=0

〈�B†(tq)�B(tq−p)〉ei(ω−ωL )p�t , (26)

where q = kmax − l − 1 (with l = τ/�t and kmax the last time
bin) and p ∈ {0, M − 1} with M large enough to resolve the
spectrum. This value will vary for each specific simulation
case, depending on the required �t and the necessary time to
resolve the photon correlation signal. In general, we will need
a smaller �t for a small retardation and a large pump, and a
longer correlation time tcor for a large retardation. Note that
M = 1600 is a typical value used in our calculations for an
intermediate case where �t = 0.025γp and tcor = 40γp. All
results are carefully checked for numerical convergence.

C. Exact solution for the probe-qubit electric field
under linear response

For reference, here we briefly discuss the linear regime
solution [40]. Defining the distance between the mirror dots
as L, it is possible to derive an exact solution for the scattered
electric field at the probe qubit in a weak-excitation approxi-
mation (namely, under linear response)

Ẽs(rp, ω) = iωpγ̃p

ω2
p − ω2 − iωγ̃p

, (27)

where all qubits are on-resonance and the modified decay rate
is defined from [40]

γ̃p = γp

(
1 + eikLr1(ω) + [eikL/2 + eikL/2eikLr1(ω)]

× r1(ω)(eikL/2 + r1(ω)eikL/2eikL )

1 − r2
1 (ω)e2ikL

)
, (28)
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FIG. 2. Complex poles of the two main polariton states calcu-
lated using Eq. (27), with τ = 2τm the delay time between mirror
qubits and γm = 10γp. The dashed lines show the nonretarded solu-
tion (Markov limit).

and we use the single-qubit reflection coefficient

r1(ω) = Er (r; x → −∞)

Eh(r; x → −∞)
= iω0γ eiφ(xd )

ω2
0 − ω2 − iω0γ

, (29)

where φ(xd ) is a positional-dependent phase. Using the mirror
qubits, then γ = γm. Clearly this solution contains multi-
ple resonances. With an appropriate choice for the decay
rates, one can achieve an analog of vacuum Rabi splitting
for the main two polariton peaks, when g > γm, where g =√

2γmγp/2. However, this limit is only achieved in the Marko-
vian regime. In the same limit, the broadening of these peaks
is γp/4, which can be compared with κ/2 from the usual
cavity QED system in the absence of vertical (background)
decay [49].

III. RESULTS

A. Linear response of the vacuum Rabi polariton poles
for different delay times

As shown in Ref. [40], retardation effects can have a signif-
icant influence on the coupling rate of this cavitylike system.
This linear result is shown in Fig. 2, where the first near-
resonant complex poles are calculated as a function of the
delay time. However, note that the general solution contains
multiple resonances. We observe how the values of the com-
plex poles decrease for an increasing retardation time. The
frequency units are shown in terms of a derived cavity-atom
coupling rate g. We stress that this coupling rate is only valid
for small delay times, and general, the resonances depend on
the distance between the qubits. Hence, later will consider
an effective coupling rate geff < g, when one enters a non-
Markovian regime, as the Rabi doublets decrease in energy
and spectrally sharpen.

It is important to realize that these non-Markovian delay
times correspond to much longer length scales than a few
wavelengths. For example, if we consider a delay time of
τ = 0.2/γp, with a typical quantum-dot (QD) decay rate γp =
1 ns−1 and a group index ng = c/vg = 10, the distance be-
tween the probe qubit and the mirror one will be 6 mm, which
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FIG. 3. Master-equation calculation of the total spectrum of a
three-qubit system for different ratios of γm/γp in the Markovian
(nonretarded) regime. The probe dot is pumped with � = 0.5γp ≈
0.22g: (a) on-resonance pumping and (b) off-resonance pumping
with �n = g/2.

is thousands of wavelengths for typical integrated quantum
dots (e.g., with a wavelength of 1000 nm). Thus, low-loss
waveguides are required, such as SiN [50].

B. Nonlinear Markovian regime

1. Emitted spectrum for different qubit decay rate ratios

We next solve the three-qubit Markovian master equa-
tion [Eq. (2)] and investigate the analog of a cavity QED
system by using the side qubits acting as dipole mirrors [15]
(through resonant scattering) but now with optical pump-
ing. All the calculations presented are performed in PYTHON,
and for this first method, we make use of the QuTiP li-
brary [51,52]. For the excitation, we pump the center TLS
(probe qubit) with a sufficiently strong field � = 0.5γp, so
as to induce nonlinear interactions, and study the influence
of the ratio γm/γp. Using resonant pumping, in Fig. 3(a) we
show how, by increasing the γm/γp ratio, the total spectrum
[Eq. (13)] of our system resembles the characteristic Rabi
splitting from a cavity system when pumped on-resonance (as
also shown in Fig. 2), under linear response. Note that if we
go to the opposite limit, where γm/γp ≈ 0, then the system
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TABLE I. Dressed state labels with coherent qubit interactions
and the correspondence in terms of the bare states.

Dressed state Correspondence in bare basis

|0〉 |ggg〉
|1a〉 1√

2
|geg〉 − 1

2 (|egg〉 + |gge〉)

|1b〉 1√
2
(|egg〉 − |gge〉)

|1c〉 1√
2
|geg〉 + 1

2 (|egg〉 + |gge〉)

|2a〉 1√
2
|ege〉 − 1

2 (|eeg〉 + |gee〉)

|2b〉 1√
2
(|gee〉 − |eeg〉)

|2c〉 1√
2
|ege〉 + 1

2 (|eeg〉 + |gee〉)
|3〉 |eee〉

behaves as a single TLS, since the coupling of the side dots in
this limit is negligible [53].

Based on these solutions, we choose a ratio of γm/γp = 10
for the rest of our investigations. This regime has also been
experimentally demonstrated [15], though our findings below
are quite general.

Within the Markovian limit of the model, we see four
resonances that show a splitting near the expected one-photon
JC resonances (first photon ladder states, near ±g). This in-
dicates that we are beyond the weak-excitation limit where
nonlinear effects appear from the pump field. The origin of
these multiple resonances will be explained below in terms of
the dressed states (Sec. III B 2).

Next, in Fig. 3(b) we show a similar study where the three
qubits are still on-resonance with each other, but now we have
an off-resonant pumping, with �n = g/2. In this case, we can
again see four resonances, but they now move farther from
the expected linear one-photon resonances due to the detuning
introduced in the system. We now clearly see additional non-
linear states that are not associated with the linear polariton
states at ±g.

2. Dressed-state picture

To better explain the additional resonances that appear in
the nonlinear regime, it is useful to use a dressed-state basis
[54,55]. In the bare basis, we have the states |ggg〉, |egg〉, |geg〉,
|eeg〉, |gge〉, |ege〉, |gee〉, and |eee〉, where g and e correspond
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FIG. 4. Energy levels of the three-qubit system in a Markovian regime. (a) Dressed-state basis in the absence of an optical pumping without
using the interaction picture. (b) Same case as in (a) but now in the interaction picture. (c) Optically driven case with � = 0.5γp ≈ 0.22g
(on-resonance). (d) Optically driven case with � = 0.5γp ≈ 0.22g and �n = g/2 (off-resonance). Prime labeled transitions are degenerate
with their corresponding unprimed transition. This schematic only applies to the Markovian system, and in the MPS approach there are also
multiphoton states.
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FIG. 5. Dressed-state population for � = 0.5g (a) on-resonance
and (b) off-resonance with a detuning of �n = g/2.

to the ground and excited levels, respectively, of the mirror-
1 qubit, probe qubit, and mirror-2 qubits. In the presence of
coherent qubit interactions, we can obtain the dressed states
from Eq. (8), as shown in Table I. These are the natural dressed
states in the absence of any optical pumping, mediated by the
coherent coupling between the qubits. Optical pumping will
cause additional dressing.

In Figs. 4(a) and 4(b) we show the energy levels in the nat-
ural (unpumped) dressed-state basis without using the interac-
tion picture and its equivalence within the interaction picture.
Then in Figs. 4(c) and 4(d) we demonstrate how the states
are additionally dressed by the optical pump field (on- and
off-resonance, respectively) with their corresponding energy
levels shifted. Key optical transitions are shown with arrows.

We also examine the emitted spectra for different pump
strengths and relate the spectral peaks with the possible energy
transitions between these dressed states. In order to identify
the possible energy transitions that are optically allowed (from
a fairly high number), we first calculate the dressed-state pop-
ulations in the natural dressed-state basis, as shown in Fig. 5.
In both the resonant and detuned cases, we find five populated
states, which allow us to identify the dominant transitions,
which are then plotted with the numerically computed spectra
shown in Fig. 6 (dashed curves).

Figure 6(a) shows the spectra for on-resonance excitation.
If we focus on the positive (blue) frequency side of the spectra,
we can distinguish five different peaks that are labeled as Ti,
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FIG. 6. Master-equation calculations [Eq. (13)] of the output
spectrum of a three-qubit system for different pumping rates of
the probe dot (γm/γp = 10). (a) On-resonance pumping. (b) Off-
resonance with �n = g/2. Red dashed lines correspond to the
transition lines shown in Fig. 4, and Tm,m′ and Ti,i′ correspond to
degenerate transitions Tm = Tm′ and Ti = Ti′ , respectively.

Ti′ , Tj , Tk , Tl , Tm, and Tm′ . These correspond directly to the
transitions shown in Figs. 4(c) and 4(d), similarly labeled, plus
the primed transitions which correspond to the degenerate
states. Clearly, the correspondence between the full spectral
results and the identified dressed-state resonances is very
good.

Figure 6(b) shows the case in which the laser is off-
resonance with respect to the qubits, with a detuning of �n =
g/2. A similar dressed energy-level ladder state scheme to
Fig. 6(a) is seen, but the position of the peaks observed in the
spectrum are now qualitatively different due to different non-
linear dressing. However, the same basic photon transitions
are identified in both scenarios.

3. Driven Jaynes-Cummings system

It is useful to also compare the nonlinear response of the
three-qubit system with a driven JC system since both these
systems have a similar linear response. Moreover, a key aspect
of using mirror qubits is that they are fermionic systems and
one can expect significantly different nonlinear interactions,
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FIG. 7. Jaynes-Cummings model energy levels (of the first
photon-matter states) where ωi is the frequency of the ith eigenen-
ergy. The qubit and cavity are on-resonance. The one-photon states
yield a similar strong-coupling regime to the three-qubit system, as
shown in Fig. 4(a).

even when they are behaving as mirrors for cavity QED. Thus,
below we show the main features of a (dissipative) JC model
which solves a single TLS interacting with a single quan-
tized electromagnetic field mode, in the usual rotating-wave
approximation [56].

For this model, we solve the corresponding master equa-
tion, following an approach similar to the one described in
Sec. II A, where now the effective system Hamiltonian is [57]

H eff
S = �a(σ+σ−) + �c(a†a)

+ g(aσ+ + a†σ−) + �(σ− + σ+), (30)

with σ+ and σ− the creation and annihilation operators of
the single qubit, a† and a the (bosonic) ladder operators of
the cavity, and g the qubit-cavity coupling. As in the previous
examples, � is the drive strength of the qubit and, in this JC
case, �a = ωa − ωL and �c = ωc − ωL represent possible de-
tunings between the drive and the atom or cavity, respectively.
This is a standard driven JC model with an optical pumping
term. In addition, we also include one collapse operator for
the cavity mode decay,

C = √
κa, (31)

where κ is the cavity decay rate. Similar to the three-qubit case
studied before, we assume there are no additional decay rates
(e.g., off chip), other than to the waveguide or to the cavity,
and so we assume κ is the dominant decay process.

The cavity-emitted spectrum is obtained from

Scav(ω) = Re
∫ ∞

0
〈a†(tss)a(tss + τ )〉 ei(ω−ωL )dτ, (32)

where tss refers to steady state. For all the driven JC cal-
culations below, we have carefully checked for numerical
convergence by increasing the photon-number states up to a
maximum of N = 100.

Figure 7 shows the familiar JC energy-level ladder system
for the dressed states, in the absence of optical pumping.
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FIG. 8. Cavity-emitted spectra of the driven JC solution (single
qubit-cavity system) for different qubit drive strengths [Eq. (30)],
with κ = γp (which yields equivalent broadening in the linear strong-
coupling regime, in the Markov regime). (a) Driven system with
κ = γp, to yield an equivalent linear polariton to the three-qubit
system. (b) Solution with a smaller value of the decay rate κ = 0.1γp,
where additional peaks can be partly observed for stronger pumps.

Although the lower two polariton states have an equivalence
with the three-qubit system in the Markov regime (namely,
both can yield vacuum Rabi oscillations), this is only for linear
excitation. Clearly the nonlinear states are quite different, and
it is also well known that accessing the higher-lying states
of the JC system is notoriously difficult [34,35,58,59] and
typically one needs very large g/κ ratios, e.g., with state-
of-the-art circuit QED systems [33], or/and very specialized
spectroscopy techniques. This makes the observation and ex-
ploitation of the nonlinear JC states very challenging. Part of
the problem in the JC system is that the dissipation also scales
with the photon number, causing increasing dissipation for the
higher-lying excitations.

In order to compare our driven three-qubit results with
the (dissipative) JC solution, we choose the same value of g
and set κ = γp, since this yields similar polariton resonances
with weak excitation (see Fig. 2). However, as can be seen in
Fig. 8(a), the observable peaks in a JC system are too broad
to allow any discernible features from higher-order spectral
peaks. For clarity, we also show the solution with an order
of magnitude reduction in the cavity decay rate, κ = 0.1γp;
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FIG. 9. Output spectra of a three-qubit system (with γm/γp = 10) calculated using the MPS approach with the probe dot pumped with
� = 0.5γp. Spectra with three delay times (τγp = 0.2, 0.3, and 0.5) are plotted as a function of (a) (ω − ωL )/geff and (b) (ω − ωL )/g. Note
the different frequency scales. Also shown are contour plots with similar calculations of the output spectrum as a function of the delay times,
with τmax = 0.5/γp, for (c) on-resonance pumping and (d) off-resonance pumping with �n = geff/2. Red dashed lines show the transition lines
previously calculated in the Markovian regime.

in this case, we can partly observe some of the anharmonic
ladder states [Fig. 8(b)], though these are rather weak, even
on a logarithmic scale. To be clear, in Fig. 8(b), with suitable
pumping, we barely observe a peak at (ω − ωL )/g = √

2,
which corresponds to the second excitation manifold in Fig. 7,
and an even smaller peak at (ω − ωL )/g = √

3, corresponding
to the third excitation manifold (or fourth energy level in
Fig. 7). This is significantly different from the results observed
in Fig. 4, where for much weaker pump fields we can already
see nonlinear spectral peaks representing different transitions
between the dressed states of the three-qubit system, and these
are all clearly resolved even on a linear scale.

Note that, in contrast to the dissipate JC system, in the
three-qubit waveguide system there is no direct cavity decay:
The full solution for photons and decay is automatically cap-
tured through the couplings between the qubits and waveguide
modes; the side qubits act as mirrors and yield multiple cavity
resonances, as discussed earlier, with the lower two polari-
tons having a decay rate of γp/4, which is analogous to a

broadening of κ/4 only in the linear spectrum of a dissipative
JC model [49].

C. Nonlinear non-Markovian regime

Next we investigate the non-Markovian regime making use
of the MPS approach seen in Sec. II B. Here we fully account
for the effects of retardation and nonlinearities on the pump-
induced spectra.

In the nonlinear regime, the spectrum in the presence of re-
tardation effects is shown in Fig. 9. We choose three example
delay times (on-resonance) and plot the spectrum in terms of
geff [Fig. 9(a)] and in terms of g [Fig. 9(b)]. We can observe
how the peaks, which can be explained through the dressed
energy ladder states, do not depend on the retardation when
considered in terms of geff , although they appear at different
positions when computed in terms of g.

In Figs. 9(c) and 9(d) the output field spectra are calculated
for various delay times with an on-resonance pump [Fig. 9(c)]
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FIG. 10. Logarithmic scale of the photon probabilities for the
first few photon states in the waveguide cavity region, for the case
of resonant pumping (the case with off-resonant pumping is similar
and thus is not shown).

and an off-resonance one with �n = geff/2 [Fig. 9(d)], where
� = 0.5γp in both cases. The spectral peaks seen in Fig. 6
are also observed in this regime. We recognize how these
peaks do not depend on retardation as they appear as straight
vertical lines. However, the splitting observed on-resonance
in the Markovian regime disappears as the delay times in-
crease. Also, note that the retardation-induced peaks become
narrower for increased delay times.

In addition to the peaks identified from the Markovian
dressed states, there are now some extra peaks that emerge for
sufficiently large values of τ that cannot be explained in the
Markovian limit, which also vary depending on the retardation
(time delays). It is important to note that these additional
resonances are not due to higher-order cavity modes, since the
free spectral range on this system, defined as �ωFSR ≈ 2π

τRTγp
,

where τRT = 2τ , is outside the frequency regime shown. For
instance, for τγp = 0.3, �ωFSR = 10.47γp, which is outside
the spectral limits in Fig. 9. Thus the additional nonlinear
peaks with retardation are not related to higher-order (cavity-
like) modes.

The retardation-induced new peaks move in frequency and
get more pronounced as the delay time increases, suggest-
ing that this is a purely non-Markovian effect. To help us
understand the origin of these new peaks, we also calculate
the photon probabilities PN , by projecting the photon-number
operators on each time bin and calculating the probability of
having zero or one photon (|0〉 〈0| and |1〉 〈1|, respectively)
and combining these results to get the probability of having
zero (P0), one (P1), and two (P2) photons in the part of the
waveguide confined between the mirror qubits. We investigate
this for four different retardation values to see how they vary
as a function of τ , for � = 0.5γp and �n = 0 (Fig. 10).

We observe that the probability of having two photons
increases for higher values of τ , although it stays consider-
ably low in all case studies (for both on- and off-resonance
calculations). In all our simulations, we also observe signif-
icant photon bunching in our system, which becomes more
pronounced for longer time delays.

A similar phenomenon was previously reported in
Refs. [29,45], for time-delayed feedback, in the case of a
single TLS in front of a mirror, where they found that new
non-Markovian resonances appear at frequencies ω = (φ +
2πZ)/τ , with Z the set of integers, φ the phase of the
mirror, and τ the retardation time between the mirror and
the TLS. In our system, we do not have a single phase since
there are three different phases involved due to the interaction
between the three qubits, but we can observe an analogous
trend in the dependence of these new peaks with respect to
the delay times. In addition, our qubits act as nonlinear TLSs
and also have a frequency-dependent reflection, making the
analysis more complicated than the single perfect mirror.

This supports the idea that the additional resonances
we obtain with retardation are mediated through entangled
photon-matter states not present in the Markovian master-
equation solution (where the waveguide modes are traced out).
Thus, it is essential here to have a method (such as the MPS
approach) that treats the waveguide photons as part of the
system, allowing for entangled photon matter states.

IV. CONCLUSIONS

We have presented a theoretical study of an optically
pumped three-qubit waveguide system where the side qubits
act as mirrors, creating a cavitylike system with a probe
qubit in its center. We have theoretically modeled this sys-
tem, starting with a linear model (for reference) and then
accounted for various nonlinear interactions, where we stud-
ied the Markovian limit by solving the medium-dependent
(waveguide-qubit) master equation. The Markovian regime
allowed us to compare our results with a cavity system
to establish a γm/γp ratio that resembles the cavity be-
havior with the same characteristic vacuum Rabi splitting
and then with the well-known JC model. With optical
pumping, we observed new resonances including four reso-
nances with a splitting near the one-photon JC resonances,
showing signatures of multiquantum effects beyond weak
excitation.

The nonlinearities were further explained by computing the
dressed energy levels, where we first connected the dressed
state basis (in the absence of any optical pumping) with the
bare state basis. Then we added an optical pump field and
computed again the dressed energy levels, as well as the
dressed-state populations, and subsequently the spectral peaks
with their corresponding transitions. For comparison, we also
showed the first few nonlinear states of a driven JC system,
which was shown to yield a drastically different nonlinear
response. Moreover, the higher-order resonances of the driven
JC system were not visible with a comparable level of dissi-
pation.

Finally, we extended the model to include retardation and
non-Markovian dynamics, solving the Hamiltonian with the
MPS approach and comparing results for various values of
time retardation. We observed how the resonances previously
identified in the Markovian limit do not depend on retardation
if shown in terms of an effective coupling rate geff . We then
found additional peaks that cannot be seen in the Marko-
vian regime at all, which depend on the delay times; these
peaks become narrower for higher delay times (which is a
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purely non-Markovian effect). Photon probabilities were also
calculated with the MPS method, showing low values of the
two photon probabilities (although in an increasing trend with
longer retardation times). These new resonances stem from
additional waveguide photon-matter states, which cannot be
seen in the Markovian regime.
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