
PHYSICAL REVIEW A 108, 033718 (2023)

Numerical simulations of atmospheric quantum channels
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Atmospheric turbulence is one of the lead disturbance factors for free-space quantum communication. The
quantum states of light in such channels are affected by fluctuating losses characterized by the probability
distribution of transmittance (PDT). We obtain the PDT for different horizontal links via numerical simulations
of light transmission through the atmosphere. The results are compared with analytical models: the truncated
log-normal distribution, the beam-wandering model, the elliptic-beam approximation, and the model based on
the law of total probability. Their applicability is shown to be strongly dependent on the receiver aperture radius.
We introduce an empirical model based on the Beta distribution, which is in good agreement with numerical
simulations for a wide range of channel parameters. However, there are still scenarios where none of the above
analytical models fits the numerically simulated data. The numerical simulation is then used to analyze the
transmission of quadrature-squeezed light through free-space channels.
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I. INTRODUCTION

Quantum communication is a rapidly developing field with
a wide range of applications. One of its main advantages is the
ability to establish secure links between remote parties (for a
review see Refs. [1–4]). It can also be used in many other
applications, such as quantum digital signature [5], connect-
ing quantum devices with quantum teleportation [6,7], and
entanglement swapping protocols [8], to name just a few.

Optical radiation fields serve as natural carriers of quantum
information for communication channels. Quantum light can
be distributed through optical fibers or free space. The latter
offers several practical advantages, including the ability to
establish satellite-mediated global quantum communication,
communication through hard-to-access regions, and commu-
nication with moving parties. Various implementations of
free-space channels have been reported in the literature for
horizontal (see, e.g., Refs. [9–19]) and vertical (see, e.g.,
Refs. [20–22]) links, including experiments involving satel-
lites [23–36].

Atmospheric turbulence is one of the major obstacles
for free-space quantum communication. Its effect on the
optical fields is described by methods [37–39] developed
in classical atmospheric optics. The corresponding tech-
niques differ depending on the degrees of freedom of light
and the types of measurements involved in the protocol.
For example, protocols dealing with optical angular mo-
mentum [40–42] require a proper description of the spatial
structure of the modes [43–49]. Other types of protocols
and experiments involving photocounting [50,51], polariza-
tion analysis [9,12,52,53], homodyne detection [10,11,16,54–
56], and so on, demand a proper description of the fluctu-
ating losses in atmospheric channels. In this case, the light
mode at the transmitter can be prepared, for example, as a
quasimonochromatic mode in the form of a pulsed Gaussian
beam. For discrete-variable protocols, using propagation of

single photons in each direction and/or measurements with
long detection times, fluctuations of losses (scintillation) can
be neglected [57–59].

In this paper we focus on protocols with a fixed spatial
structure of light modes at the transmitter. As mentioned, in
this case the quantum states of a quasimonochromatic light
mode with a fluctuating shape at the receiver are affected
by fluctuating losses. They change the quantum states of the
quasimonochromatic mode according to the input-output re-
lation (cf. Refs. [55,60,61] and Appendix A)

Pout (α) =
∫ 1

0
dη

1

η
Pin

(
α√
η

)
P (η). (1)

Here Pout (α) and Pin(α) are the Glauber-Sudarshan P func-
tions [62,63] at the channel output and input, respectively,
η is the channel transmittance, and P (η) is the probability
distribution of transmittance (PDT). Obviously, the PDT is the
main characteristic of quantum channels. Equation (1) has a
similar form in both quantum and classical optics and thus the
PDT can be obtained from purely classical considerations.

The mentioned approach has been successfully applied to
analyze quantum-state transfer through free-space channels
(see Ref. [64] for a brief summary). For example, quadra-
ture squeezing [55,61], Bell nonlocality [52,53], Gaussian
entanglement [65,66], and higher-order nonclassical and en-
tanglement phenomena [67,68] have been analyzed in the
context of their transfer through atmospheric channels. Also
the input-output relation (1) has been applied to analyze
quantum communication protocols such as the decoy state
protocol [69,70], continuous-variable quantum key distribu-
tion protocols [54,71–81], and continuous-variable quantum
teleportation [82–84].

A rigorous description of free-space quantum channels
requires knowledge of the PDT. Random fluctuations of the
refractive index due to atmospheric turbulence lead to random
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wandering of the beam centroid, fluctuations of the beam-spot
shape, etc. These effects in turn lead to fluctuations in the
intensity of the beam passing through the receiver aperture.
The PDT characterizes the quantum channel associated with
a quasimonochromatic mode. This characteristic can be ob-
tained from purely classical considerations, corresponding to
coherent states at the transmitter.

Several analytical models of the PDT have been proposed.
One of them focuses on the effect of beam wandering [61].
Furthermore, the elliptic-beam model [85] involves beam-
spot distortions approximated by Gaussian elliptic beams with
randomly oriented semiaxes. In particular, this model shows
that beam-spot distortions can be effectively described by
the truncated log-normal distribution considered earlier in
Refs. [50,51]. Assuming that beam wandering and broadening
are statistically independent, the law of total probability can
be employed to derive the PDT [70].

All analytical models have a common drawback: They are
applicable for limited values of channel parameters such as
turbulence strength, propagation distance, receiver aperture
size, and beam parameters. It is usually difficult to deter-
mine which model to use for given values of the channel
parameters. In this paper we address this problem by pro-
viding numerical simulations of the PDT for horizontal links
and comparing the results with analytical models. For this
purpose, we use the sparse-spectrum model [86–88] of the
phase-screen method (see Refs. [48,49,89–95] for its recent
applications). We also numerically check statistical properties
of beams after passing through the atmosphere: Gaussianity of
the distribution of the beam-centroid position, correlation be-
tween beam deflection and beam shape, etc. These properties
are directly related to the applicability of analytical models.

The phase-screen method cannot be considered a substitute
for experimental investigations, since it involves approxi-
mations. Nevertheless, the sparse-spectrum model yields the
statistics of phase disturbances that are in good agreement
with the analytical expression (cf. Appendix B). Most im-
portantly, the method is free of assumptions about the beam
shape and its statistical characteristics made in the analyti-
cal models of the PDT. Thus, our results can be useful to
determine their applicability. Numerically simulated data can
also be used directly to analyze quantum light transmission
in atmospheric channels for a variety of scenarios. Taking
the quadrature squeezing as an instance, we demonstrate how
numerical analysis can be employed to study the transmission
of nonclassical phenomena through free-space channels.

The rest of the paper is organized as follows. In Sec. II
we introduce preliminary information on the propagation
of Gaussian beams through the turbulent atmosphere, the
sparse-spectrum formulation of the phase-screen method, and
analytical models. An empirical analytical model based on the
Beta distribution, which shows good agreement with the nu-
merically simulated data, is introduced in Sec. III. Numerical
simulations of atmospheric channels and comparison of the
obtained numerically simulated data with analytical models
are considered in Sec. IV. In Sec. V the statistical properties
of beams after passing through the turbulent atmosphere are
analyzed. An application of the discussed method to a de-
scription of the transmission of quadrature squeezing through
free-space channels is considered in Sec. VI. A summary and

concluding remarks are given in Sec. VII. In the Supplemental
Material [96] one can find numerically simulated data for
different channels, an interactive visualization tool, and the
corresponding PYTHON 3 codes.

II. PRELIMINARIES

In this section we briefly introduce preliminary results
needed for our consideration. All of them are related to
channel characterization by the PDT and are thus derived
from classical considerations. First, we discuss the fluctuating
channel transmittance η. Then we briefly review the sparse-
spectrum formulation of the phase-screen method used for
our numerical simulations. Finally, we review the existing
analytical models of the PDT.

A. Channel transmittance

The distribution of a light beam through the turbulent at-
mosphere along the z axis can be described by the paraxial
equation [38] for the field amplitude u(r; z),

2ik
∂u(r; z)

∂z
+ �ru(r; z) + 2k2δn(r, z)u(r; z) = 0, (2)

where k is the wave number, δn(r, z) is a fluctuating part of
the index of refraction of air, and r = (x y)

T
is the vector

of transverse coordinates. The Gaussian beams are defined by
the boundary conditions of this equation,

u(r; 0) =
√

2

πW 2
0

exp

(
− r2

W 2
0

− ik

2F0
r2

)
. (3)

Here W0 and F0 are the beam-spot radius and the wave-front
radius at the transmitter, respectively. For our purposes we
will use two types of initial conditions. The first corresponds
to the case of F0 = +∞. In the absence of atmosphere,
this beam is collimated, i.e., it is minimally divergent, for a
propagation distance much shorter than the Rayleigh length,
z � zR = kW 2

0 /2. The second corresponds to F0 = zap, where
zap is the channel length. Such a beam is considered to be
geometrically focused (cf. Ref. [97]) because in the absence
of atmosphere it has a minimum beam-spot radius in the plane
of the receiver aperture, z = zap, given W0 and zap.

Random fluctuations of the index of refraction in the case
of isotropic homogeneous turbulence are described by the
correlation function, the Markovian approximation for which
reads

〈δn(r1; z1)δn(r2; z2)〉

=
∫
R2

d2κ �n(κ; κz = 0)eiκ·(r1−r2 )δ(z1 − z2), (4)

where �n(κ; κz ) is the turbulence spectrum. We will use it in
the modified von Kármán–Tatarskii form given by

�n(κ; κz ) = 0.033C2
n exp

[−( κ
0
2π

)2]
(
κ2 + L−2

0

)11/6 . (5)

Here C2
n is the index-of-refraction structure constant charac-

terizing the local strength of the turbulence, 
0 and L0 are inner
and outer scales of turbulence corresponding to minimum and
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maximum sizes of the turbulence eddies, respectively, and
κ = √κ2 + κ2

z .
The beam intensity is defined as I (r, z) = |u(r; z)|2. As

discussed in Refs. [61,70,85] (see also Appendix A), the trans-
mittance is given by integration of the field intensity over the
aperture opening A in the receiver aperture plane z = zap,

η =
∫
A

d2r I (r; zap). (6)

Fluctuations of δn(r; z) lead to fluctuations of I (r; z) and con-
sequently to randomization of η. Moreover, this consideration
does not take into account deterministic losses caused by
absorption and scattering, which can be easily included in the
final results.

Next we consider the second- and fourth-order correlation
functions given by

�2(r; z) = 〈I (r; z)〉 (7)

and

�4(r1, r2; z) = 〈I (r1; z)I (r2; z)〉, (8)

respectively. These functions can be used to obtain various
statistical properties of the light beam passing through the
turbulent atmosphere. For instance, the first two moments of
the channel transmittance can be evaluated as

〈η〉 =
∫
A

d2r �2(r; z) (9)

and

〈η2〉 =
∫
A

d2r1

∫
A

d2r2�4(r1, r2; z). (10)

Other applications of these functions needed for analytical
models of the PDT will be discussed in Sec. II C. In this
context, it is also important to mention the recent results
in Refs. [94,95] about spatial modes that are different from
Gaussian beams and which exhibit better transmittance for
particular realizations of turbulent channels.

B. Sparse-spectrum model for phase-screen method

According to Eq. (6), in order to sample the channel
transmittance η, one must first sample the field amplitude
u(r; z). This can be accomplished using the sparse-spectrum
model for the phase-screen method [86–88]. Its verification
technique is discussed in Appendix B. The method relies on
the fact that given the field amplitude u(r, zm−1) at the point
z = zm−1, one can find an approximate solution to the paraxial
equation (2) at the point z = zm > zm−1 up to the second order
of l = zm − zm−1 (cf. Ref. [89]),

u(r; zm) ≈ e−(il/4k)�r e−iφ(r)e−(il/4k)�r u(r; zm−1). (11)

Here

φ(r) = k
∫ zm

zm−1

dz δn(r, z) (12)

is referred to as the phase screen. As follows from Eq. (4), the
correlation function of the latter is

〈φ(r1)φ(r2)〉 =
∫
R2

d2κ �φ (κ)eiκ·(r1−r2 ), (13)

where

�φ (κ) = 2π lk2�n(κ; 0) (14)

is the power spectral density of the phase screens. Equa-
tion (11) implies that propagation between the points zm−1 and
zm is reduced to vacuum propagation up to the midpoint of this
interval, followed by the phase increment by φ(r) and finally
vacuum propagation again.

The phase-screen method can be outlined as follows. First,
the propagation distance is divided into M slabs [zm−1, zm],
where m = 1, . . . , M, z0 = 0, and zM = zap. Then the phase
screens are sampled at the midpoints of these slabs. Finally,
the vacuum propagation of the field amplitude u(r, z) is sim-
ulated successively between these points and the r-dependent
phase is incremented on them.

The vacuum propagation can be simulated using the
Fourier transform of the field amplitude. In the sparse-
spectrum model [86–88], the phase screens are expanded into
N harmonics such that

φ(r) ≈ Re
N∑

n=1

aneiκn·r. (15)

The sampled values of φ(r) are obtained via sampling the
expansion coefficients an and the random vectors κn. Their
statistics should satisfy Eq. (13). This can be achieved if two
conditions are fulfilled. First, the real and imaginary parts of
the coefficients an are normally distributed with

〈an〉 = 0, 〈anam〉 = 0, 〈ana∗
m〉 = snδnm. (16)

Second, the values of sn and the random vectors κn are chosen
such that

N∑
n=1

sn pn(κ) = 2�φ (κ), (17)

where pn(κn) are the probability distributions for the random
vectors κn.

Let us split the domain of κ into N rings, Kn−1 < κ < Kn,
where

Kn = Kmin exp

[
n

N
ln

(
Kmax

Kmin

)]
, (18)

n = 0, . . . , N , and Kmin and Kmax are the inner and outer
bounds of the spectral domain, respectively. We define pn(κn)
such that it has zero values outside the corresponding ring. In
this case, Eq. (17) is reduced to the form

sn pn(κn) = 2�φ (κn). (19)

Integrating this expression inside the ring, we get

sn = 2π

∫ Kn

Kn−1

dκ κ �φ (κ ). (20)

The probability distributions for the vector κn are given by
pn(κn) = 2s−1

n �φ (κn). We approximate it by sampling the
absolute values of κn as

κn =
√

K2
n−1 + ξn

(
K2

n − K2
n−1

)
, (21)
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where ξn ∈ [0, 1] is the uniformly distributed random vari-
able, and by independently sampling the polar angle of κn as a
uniformly distributed random variable in the domain [0, 2π ].

C. Analytical and semianalytical models

1. Truncated log-normal model

The log-normal distribution is a widely used model
that describes light passing through atmospheric chan-
nels [13,50,51]. In the domain of its applicability, this
distribution should be truncated, since the channel efficiency
cannot exceed the value of one. The normalized truncated
log-normal PDT is given by

P (η; μ, σ ) = 1

F (1)

1√
2πησ

exp

(
− (ln η + μ)2

2σ 2

)
, (22)

where F (x) is the cumulative distribution function of the log-
normal distribution. The parameters μ and σ are related to the
first and second moments of the transmittance [cf. Eqs. (9)
and (10)], respectively, as

μ = μ(〈η〉, 〈η〉2) ≈ − ln

(
〈η〉2√
〈η2〉

)
, (23)

σ 2 = σ 2(〈η〉, 〈η〉2) ≈ ln

( 〈η2〉
〈η〉2

)
. (24)

Thus, the truncated log-normal model is completely char-
acterized by two moments of the transmittance, i.e., by the
information contained in the field correlation functions (7)
and (8).

2. Beam-wandering model

Here we briefly sketch the beam-wandering model consid-
ered in Ref. [61]. In this model it is assumed that the beam
intensity at the receiver-aperture plane has a Gaussian shape,
but W0 is replaced with the short-term beam-spot radius WST,

W 2
ST = W 2

LT − 4σ 2
bw. (25)

Here WLT, defined as

W 2
LT = 4

∫
R2

dr x2�2(r; z), (26)

is the long-term beam-spot radius and

σ 2
bw =

∫
R4

dr1dr2x1x2�4(r1, r2; z) (27)

is the variance of a beam-centroid coordinate. Assuming that
the beam-centroid position is normally distributed, an ana-
lytical form for the PDT is derived in Ref. [61] (see also
Appendix C). The basic assumption behind this model is that
atmospheric turbulence results mostly in beam wandering.

3. Elliptic-beam model

The main idea behind the elliptic-beam model [85] is to
approximate the beam intensity by the elliptic Gaussian form

I (r; zap) = 2

π
√

det S
exp[−2(r − r0)TS−1(r − r0)]. (28)

Here

r0 =
∫
R2

d2r r I (r; zap) (29)

and

S = 4
∫
R2

d2r[(r − r0)(r − r0)T]I (r; zap) (30)

are the beam-centroid position and the spot-shape matrix, re-
spectively. As it has been discussed in Ref. [85], all parameters
of the elliptic-beam model can be approximately related to the
field correlation functions (7) and (8) (see also Appendix D).

In this paper, along with the analytical approximation
considered in Ref. [85], we will use a semianalytical tech-
nique to obtain the elliptic-beam PDT. This method is free
from assumptions about the statistical characteristics of the
elliptic-beam model. In particular, this technique involves the
following steps: (i) The values of the field intensity I (r; zap)
are sampled using the sparse-spectrum model for the phase-
screen method, (ii) the sampled values of r0 and S are obtained
using Eqs. (29) and (30), (iii) these values are successively
substituted into Eqs. (28) and (6) to obtain the sampled values
of the transmittance η, and (iv) the elliptic-beam PDT is re-
constructed from the sampled values of η. This semianalytical
approach is not considered a practical tool for obtaining the
PDT. Rather, it is used solely to assess the general applicabil-
ity of the elliptic-beam model, without relying on analytical
approximations of the model parameters.

4. Model based on the law of total probability

As discussed in Ref. [85], the beam-spot distortion leads
to the log-normal shape of the PDT. At the same time, beam
wandering leads to the log-negative Weibull distribution [61].
The model based on the law of total probability [70] employs
these observations and combines them into a single PDT that
accounts for two effects simultaneously. The corresponding
function is given by

P (η) =
∫
R2

d2r0P (η|r0)ρ(r0). (31)

Here ρ(r0) is the Gaussian probability distribution for a beam-
centroid coordinate with variance (27). The function

P (η|r0) = P (η; μr0 , σr0 ) (32)

is the truncated log-normal PDT [cf. Eq. (22)], where μr0 =
μ(〈η〉r0 , 〈η2〉r0 ) and σr0 = σ (〈η〉r0 , 〈η2〉r0 ) are obtained from
Eqs. (23) and (24), respectively. The conditional moments
〈η〉r0 and 〈η2〉r0 are defined similarly to (9) and (10), respec-
tively. However, in this case the field correlation functions
are replaced by �

(c)
2 (r; z) = 〈I (c)(r; z)〉 and �

(c)
4 (r1, r2; z) =

〈I (c)(r1; z)I (c)(r2; z)〉, where

I (c)(r; z) = I (r + r0; z) (33)

is the beam intensity function with the origin of the coordinate
system placed at the position r0 of the beam centroid.

There are two ways to obtain the conditional moments
〈η〉r0 and 〈η2〉r0 . The first requires direct integration of the
field correlation functions �

(c)
2 (r; z) and �

(c)
4 (r1, r2; z). This

leads to an involved integration of the analytic expressions for
these functions, which in turn are often expressed in terms of
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TABLE I. Parameter values for the channels with weak, moderate, and strong impact of turbulence considered in this paper.

Parameter Weak Moderate Strong

Rytov parameter σ 2
R 0.2 1.5 33.3

structure constant C2
n (m−2/3) 5 × 10−15 1.5 × 10−14 6 × 10−16

outer scale L0 (m) 80 80 80
inner scale 
0 (m) 10−3 10−3 10−3

channel length zap (km) 1 1.6 50
beam-spot radius at the transmitter W0 (cm) 2 2 6
wavelength λ = 2π/k (nm) 809 809 808

multiple integrals. However, given the numerically simulated
data, these moments can be evaluated with standard numerical
integration. The PDT obtained with such a semianalytical
technique can be used for a general analysis of the model
applicability. The second possibility is the analytical approxi-
mation based on the assumption of weak beam wandering (see
Ref. [70] and Appendix E). An analysis of the corresponding
PDT will give us information about the suitability of this
approximation.

III. BETA-DISTRIBUTION MODEL

In this section we introduce an empirical model based on
the Beta distribution [98]. The choice of such an ansatz is mo-
tivated by several reasons. First, this distribution is naturally
defined in the domain η ∈ [0, 1]. Then it can be parametrized
by the two moments 〈η〉 and 〈η2〉. Finally, this distribution has
a highly variable shape depending on the parameter values.
We will show that the Beta-distribution model fits the results
of numerical simulations better than other analytical models
for a wide range of channel parameters.

The PDT for the Beta-distribution model reads

P (η; a, b) = 1

B(a, b)
ηa−1(1 − η)b−1. (34)

Here B(a, b) is the Beta function. The parameters a and b are
given by

a = a(〈η〉, 〈η2〉) = 〈η〉 − 〈η2〉
〈η2〉 − 〈η〉2

〈η〉, (35)

b = b(〈η〉, 〈η2〉) = a(〈η〉, 〈η2〉)

(
1

〈η〉 − 1

)
. (36)

These expressions parametrize the PDT in terms of 〈η〉 and
〈η2〉.

In many practical scenarios, the Beta PDT can be consid-
ered as a reasonable alternative to the truncated log-normal
distribution. This implies that one can reformulate the model
based on the law of total probability such that P (η|r0) in
Eq. (31) is replaced with the Beta PDT as

P (η|r0) = P (η; ar0 , br0 ), (37)

where ar0 = a(〈η〉r0 , 〈η2〉r0 ) and br0 = b(〈η〉r0 , 〈η2〉r0 ). In this
case, the conditional moments 〈η〉r0 and 〈η2〉r0 are defined in
the same way as discussed in Sec. II C 4.

IV. NUMERICAL SIMULATIONS

In this section we will simulate the PDTs for various hor-
izontal channels and compare the results with the analytical
models considered in Secs. II C and III. We will focus on
three channels classified by the value of the Rytov parameter
σ 2

R = 1.23C2
n k7/6z11/6

ap (see Ref. [97]). This parameter charac-
terizes the strength of scintillation and the overall impact of
turbulence on the entire channel, taking into account both the
local turbulence strength characterized by C2

n and the channel
length zap. We will consider three scenarios: weak impact
of turbulence with σ 2

R < 1, moderate impact of turbulence
with σ 2

R = 1, . . . , 10, and strong impact of turbulence with
σ 2

R > 10, as shown in Table I. The numerically simulated data,
an interactive tool for their visualization, and the correspond-
ing code can be accessed in the Supplemental Material [96].
It should be noted that our simulations do not include de-
terministic losses caused by absorption and scattering. For
practical applications of our results, these losses should be
additionally taken into account. In a typical scenario, they can
be considered on the order of 0.1 dB/km (see Ref. [99]).

In order to quantify the differences between the analyti-
cal or semianalytical and numerical PDTs, we will use the
Kolmogorov-Smirnov (KS) statistic (see, e.g., Ref. [100]),
given by

DM = sup
η

|FM (η) − F (η)|. (38)

Here F (η) = ∫ η

0 dη′P (η′) is the cumulative probability dis-
tribution of transmittance corresponding to the analytical
model, FM (η) = M−1∑M

i=1 θ (η − ηi ) is the empirical prob-
ability distribution obtained from M sampled transmittances
ηi, and θ (η) is the Heaviside step function. If an analytical
or semianalytical model presumes samples of transmittance,
F (η) is replaced by the empirical probability distribution
obtained from the corresponding sampled values. The cases
DM = 0 and DM = 1 correspond to complete equivalence and
maximum discrepancy, respectively, between the numerically
simulated data and analytical models.

We simulate data for three channels with the technique
described in Sec. II B. For the channels with weak and mod-
erate impact of turbulence, we use a spatial grid with 512
points along one axis. For the channel with strong impact of
turbulence, we use a spatial grid with 4096 points. The spatial
grid steps are 0.3, 0.4, and 1 mm for the channels with weak,
moderate, and strong impact of turbulence, respectively. The
number of spectral rings is N = 1024. The inner and outer
bounds of the spectrum are Kmin = 1/15L0 and Kmax = 2/
0,
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FIG. 1. The KS statistics, quantifying the differences between
the numerically simulated and analytical PDTs, shown for the beam-
wandering model (W), the elliptic-beam model (E), the truncated
log-normal model (L), the model based on the law of total prob-
ability with the approximation of weak beam wandering (TL), and
the Beta-distribution model (B) for the channel with weak impact of
turbulence and F0 = +∞

respectively. The number of phase screens is chosen from the
condition that the Rytov parameter for the interscreen distance
does not exceed 0.1 (cf. Refs. [92,101]). It is equal to 10 for
the channels with weak and moderate impact of turbulence
and 30 for the channel with strong impact of turbulence.
This implies that the values of the Rytov parameter for the
interscreen distances in these cases are 3 × 10−3, 2.2 × 10−2,
and 6.5 × 10−2, respectively. Small values of this parameter
enable proper simulation of atmospheric channels. The num-
ber of samples M = 105 for all channels.

A. Channel with weak impact of turbulence

In this section we consider a 1-km channel with weak local
turbulence, as detailed in the second column of Table I. These
parameter values result in a weak impact of turbulence over
the entire channel. For F0 = +∞, the Rayleigh length is zR =
kW 2

0 /2 ≈ 1.553 km, which is greater than the channel length
zap = 1 km. Therefore, in the absence of the atmosphere,
this beam can be approximately considered collimated. When
F0 = zap, the beam-spot radius at the receiver aperture plane is
minimized in the absence of the atmosphere for a given value
of W0 and zap. Such a beam can be considered geometrically
focused, as discussed in Ref. [97].

First, consider the collimated beam. The dependence of the
KS statistic on the aperture radius is shown in Fig. 1. Here
and in the following, the aperture radius is normalized by WLT

obtained according to Eq. (26) from numerically simulated
�2(r; zap). Evidently, the beam-wandering and elliptic-beam
models show the worst agreement with the numerically simu-
lated data. This result is counterintuitive since the beam-spot
distortion is expected to be small for weak impact of turbu-
lence. However, our simulations show that the contribution

FIG. 2. Numerically simulated (N), Beta-distribution (B), beam-
wandering (W), and truncated log-normal (L) PDTs shown for the
channel with weak impact of turbulence and F0 = +∞.

of this effect is still significant compared to beam wandering.
The Beta-distribution model shows the best agreement with
the numerically simulated data for the considered channel.
This model has a simple analytical form [cf. Eq. (34)] and
can be easily used for analytical considerations of various
nonclassical effects for quantum light distributed in such
channels. An example of the numerically simulated PDT and
different analytical PDTs can be seen in Fig. 2. This example
clearly demonstrates that the Beta-distribution model has the
best agreement with the numerically simulated PDT in this
case. The truncated log-normal and beam-wandering models
show much worse agreement.

Second, we consider the geometrically focused beam. The
corresponding KS statistic as a function of aperture radius
is shown in Fig. 3. The best result for small values of the
aperture radius is demonstrated by the total probability model
based on the Beta distribution. For the remaining domain, this
approximation no longer works. However, the model based on
the law of total probability without the assumption of weak
beam wandering still shows the best agreement with the nu-
merically simulated data, as can be seen from the KS statistic
for the corresponding semianalytical model. It is important to
note that the estimation of the PDT for such semianalytical
models is time consuming. For this reason, it is performed
only with 5 × 103 samples, leading to a significant increase
in the statistical error for the KS statistics. The elliptic-beam
model, while showing good agreement with the numerically
simulated data in the global minimum domain for the KS
statistic, has a small discrepancy between the semianalytical
and analytical models. The best choice among the analytical
models for large values of the aperture radius is given by the
Beta-distribution model.

The numerically simulated and analytical PDTs for the
geometrically focused beam are shown in Fig. 4. It is
interesting to note that the shape of the numerically simulated
PDT is similar to the PDT for the elliptic-beam model, but
for different values of the parameters. Consequently, the ex-
perimental or numerically simulated data can still be fitted by
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FIG. 3. The KS statistics, quantifying the differences between
the numerically simulated and analytical PDTs, shown for the beam-
wandering model (W), the elliptic-beam model (E), the truncated
log-normal model (L), the model based on the law of total probability
with the truncated log-normal (TL) and Beta (TB) distributions, and
the Beta-distribution model (B) for the channel with weak impact
of turbulence and F0 = zap. Solid and dashed lines correspond to
analytical and semianalytical models, respectively.

the elliptic-beam and beam-wandering models. However, the
estimated values of the channel parameters obtained with such
fitting are biased. In general, the modes of the elliptic-beam
PDTs are less (greater) than the modes of the numerically
simulated PDTs for aperture radii less (greater) than the value
corresponding to the minimum in the KS statistic.

It is worth noting that geometrical focusing significantly
improves the channel characteristics under the considered
conditions. This means that the effects of diffraction are still

FIG. 4. Numerically simulated (N) PDT, Beta (B) PDT, elliptic-
beam PDT (E), truncated log-normal PDT (L), and the PDT based
on the law of total probability with Beta distribution (TB), shown for
the channel with weak impact of turbulence and F0 = zap.

FIG. 5. The KS statistics, quantifying differences between the
numerically simulated and analytical or semianalytical PDTs, shown
for the beam-wandering model (W), the elliptic-beam model (E), the
truncated log-normal model (L), the model based on the law of total
probability with the truncated log-normal (TL) and Beta (TB) dis-
tributions, and the Beta-distribution model (B) for the channel with
moderate impact of turbulence and F0 = zap. Solid and dashed lines
correspond to analytical and semianalytical models, respectively.

significant. In particular, the mean transmittance 〈η〉 is larger
for F0 = zap than for F0 = +∞.

B. Channel with moderate impact of turbulence

The channel considered in this section (see the third col-
umn in Table I) is characterized by the same beam parameters
as the channel considered in Sec. IV A. However, its length
is 1.6 km. Such a channel has been implemented in Erlangen,
Germany (see Refs. [16,54,56]). In contrast to the previous
case, here we consider stronger local turbulence, resulting in
a moderate impact on the light beam. Since the propagation
distance is approximately equal to the Rayleigh length, the
corresponding beam is significantly divergent for F0 = +∞.
Therefore, the geometrically focused beam, F0 = zap, is the
optimal choice for given W0 and zap.

The corresponding KS statistics are shown in Fig. 5.
The best agreement with the numerically simulated data is
achieved by the models based on the law of total probability.
This fact becomes clear from the KS statistic for the corre-
sponding semianalytical model. However, these KS statistics,
similar to the previously considered case, suffer from a sig-
nificant statistical error. The Beta-distribution model shows
the best agreement among the analytical models for almost
the entire range of aperture radius values. Exceptions are
the beam-wandering and elliptic-beam models, which show
the best result in a range with aperture radius close to the
long-term beam-spot radius WLT. The latter models may still
be capable of fitting numerically simulated data for a wider
range of aperture radii. However, this may lead to a biased
estimation of the turbulence parameters.
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FIG. 6. Numerically simulated PDTs for the channel with the
moderate impact of turbulence. The cases F0 = zap and F0 = +∞
are given for the untracked (solid lines) and perfectly tracked (dot-
dashed lines) beams.

Examples of the numerically simulated PDTs are shown in
Fig. 6 for F0 = zap and F0 = +∞. For the considered aperture
radius Rap = 1.9 cm, the PDT shapes do not resemble the
beam-wandering and/or elliptic-beam PDTs. We also con-
sider a scenario with the beam-tracking procedure (see, e.g.,
Ref. [102]). The idea is to reduce the signal noise caused
by beam wandering. A typical setup consists of a beacon
laser at the receiver side and a position-sensitive sensor at
the transmitter side. The latter is used for fast control of the
source to align the beam centroid with the aperture center.
The transformation of the PDT due to the partial and the
complete mitigation of the beam wandering has been consid-
ered in Ref. [70]. The PDTs for the perfectly tracked beams
are shown in Fig. 6. These distributions describe only the
beam-spot distortion. One can see that in this case, contrary to
the assumptions in the model based on the law of total proba-
bility, these PDTs do not agree with the truncated log-normal
distributions. It is also clear that the beam tracking procedure
leads to an increase in the PDT modes. This implies that the
channel characteristics are significantly improved with beam
tracking.

C. Channel with strong impact of turbulence

In this section we consider a 50-km channel with weak
strength of local turbulence (see the fourth column in Table I).
The propagation distance plays a crucial role in such a sce-
nario; thus the overall impact of turbulence becomes strong.
The Rayleigh length in this case is zR ≈ 14 km. In the absence
of atmosphere, the beam-spot radius at the aperture plane is
almost the same for F0 = zap and F0 = +∞. Therefore, it is
reasonable to consider only the latter case.

The KS statistics, quantifying the differences between the
numerically simulated data and the analytical or semianalyt-
ical models for the considered channel, are shown in Fig. 7.
The general conclusions are similar to the case of moderate
impact of turbulence: The beam-wandering and elliptic-beam

FIG. 7. The KS statistics for the beam-wandering model (W),
the elliptic-beam model (E), the truncated log-normal model (L), the
model based on the law of total probability with the truncated log-
normal (TL) and Beta (TB) distributions, and the Beta-distribution
model (B) for the channel with strong impact of turbulence and
F0 = zap. Solid and dashed lines correspond to analytical and semi-
analytical models, respectively.

models show good agreement with the numerically simulated
data for the aperture radius close to the long-term beam-spot
radius WLT; outside this range, the best result is usually given
by the Beta-distribution model. However, there is an important
exception: For small apertures, the best result is given by the
truncated log-normal model and the model based on the law
of total probability with the truncated log-normal distribution.
The KS statistic for the semianalytical models based on the
law of total probability demonstrates the best result for large
apertures.

The numerical PDT and the Beta PDT for different values
of the aperture radius are shown in Fig. 8. Obviously, the PDT
skewness changes with increasing aperture; this property is
inherent in all considered channels. For small apertures, the
PDT mode is left centered such that its shape is close to the
truncated log-normal distribution or the model based on the
law of total probability. This can be explained by a leading
role of the beam-spot distortion. For larger apertures, the
finite size of the beam becomes important. As a consequence,
the PDT resembles the distributions for the beam-wandering
and/or elliptic-beam models, which are right centered.

V. STATISTICAL CHARACTERISTICS
OF BEAM PARAMETERS

The analytical and semianalytical models considered in
the previous sections are based on assumptions about the
statistical properties of the beam parameters. First, the
beam-wandering model, the elliptic-beam model, and the
model based on the law of total probability all assume that the
beam-centroid position follows a two-dimensional Gaussian
distribution. Then the model based on the law of total proba-
bility includes the assumption that the beam-centroid position
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FIG. 8. Numerically simulated (N), truncated log-normal (L),
Beta (B), and beam-wandering (W) PDTs for the channel with strong
impact of turbulence and F0 = zap, shown for different values of the
aperture radius.

is statistically independent of the beam shape. Finally, the
elliptic-beam model supposes a particular shape of the proba-
bility distribution for the semiaxes of the ellipse, forming the
beam shape in the Gaussian approximation. In this section we
will verify these assumptions through numerical simulations.

A. Gaussianity of the beam-centroid position

Here we verify that the beam-centroid position follows a
two-dimensional Gaussian distribution. To accomplish this,
we calculate the beam centroid position using Eq. (29) for
each sampling event and analyze the corresponding statis-
tical data. Note that x0 and y0 are statistically independent.
Therefore, it is sufficient to check whether a single coordinate
follows a Gaussian distribution.

To characterize non-Gaussianity, we will use skewness and
excess kurtosis [103]. The corresponding values for differ-
ent channels are given in Table II. The largest discrepancy

TABLE II. Skewness and excess kurtosis for the beam-centroid
coordinate x0 in the case of channels with weak, moderate, and strong
impact of turbulence, as given in Table I.

Impact of Wave-front Excess
turbulence radius F0 Skewness kurtosis

weak zap −0.0043 −0.0038
weak +∞ 0.0058 0.014
moderate zap −0.003 −0.0279
moderate +∞ 0.0172 −0.0046
strong +∞ 0.0008 −0.1064

FIG. 9. Histogram obtained from the numerically simulated data,
demonstrating the distribution of the beam-centroid coordinate x0

in the case of a channel with strong impact of turbulence (cf.
Table I), compared with the corresponding Gaussian distribution
(dashed line).

with the assumption of Gaussian distribution for the beam-
centroid position is shown by the channel with strong impact
of turbulence. However, even in this case, the skewness and
excess kurtosis are small. This implies that the numerically
simulated data demonstrate good agreement with Gaussian
distributions in all cases. In Fig. 9 we compare numerically
simulated data with the corresponding Gaussian distribution
for the case where we find maximal absolute values of the
skewness and excess kurtosis. As can be seen, the deviation
from the Gaussian distribution is negligible even for such a
scenario.

B. Statistical contribution of beam wandering

In this section we analyze the contribution of beam wan-
dering into the PDT shape. This can be characterized by
correlations between the beam-deflection distance r0 = |r0|
and the transmittance η. Nonzero values of the corresponding
Pearson correlation coefficient

S(r0, η) = 〈�r0�η〉√〈
�r2

0

〉〈�η2〉
(39)

indicate a contribution of beam wandering into the PDT.
We analyze each sampling event and find the correspond-

ing values of η and r0 for it by using Eqs. (6) and (29),
respectively. With this set of sampled data, we can estimate
the Pearson correlation coefficient. The results are shown in
Fig. 10 as a function of the aperture radius in units of the
corresponding long beam-spot width Rap/WLT. Obviously, the
contribution of beam wandering in the PDT strictly depends
on the aperture radius. The maximum anticorrelations appear
for Rap ≈ 0.5WLT for all channels. Also channels with weak
impact of turbulence and with F0 = +∞ show relatively small
anticorrelations compared to other cases. Strong anticorrela-
tions shown by the Pearson coefficient (39) indicate the need
to explicitly account for the contribution of beam wandering
such as it is done in the elliptic-beam model and in the model
based on the law of total probability.
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FIG. 10. Pearson correlation coefficient (39) as a function of
aperture radius in units of the long beam-spot width corresponding
to each scenario. Here W , M, and S correspond to the channels with
weak, moderate, and strong impact of turbulence, respectively (see
Table I). The indices +∞ and zap indicate the cases with F0 = +∞
and F0 = zap, respectively.

C. Correlations between beam shape and beam deflection

The model based on the law of total probability [70] in-
cludes the assumption that the beam shape is independent
of the beam deflection. This implies that I (c)(r) in Eq. (33)
is statistically independent on r0. This assumption will be
verified in this section.

A straightforward way to do this is to study the correlations
between the beam deflection r0 and the transmittance of the
perfectly tracked beam obtained via integration similar to
Eq. (6) but for I (c)(r). For each sampling event, we find the
corresponding beam-centroid position r0 using Eq. (29), place
the aperture center there, and calculate the corresponding
transmittance η using Eq. (6). The result is the sample set of
two random variables r0 = |r0| and η, which we use to esti-
mate the Pearson correlation coefficient similar to Eq. (39). If
it differs from zero, then the assumption of statistical indepen-
dence between the beam shape and the beam deflection fails.

Values of this coefficient as a function of aperture radius
are shown in Fig. 11. In most cases the transmittance of the
perfectly tracked beam and the beam-deflection distance are
only weakly anticorrelated at least in the Gaussian approx-
imation. Relatively strong anticorrelations occur only in the
case of channels with strong impact of turbulence.

We also consider another way to verify statistical inde-
pendence between the beam-deflection distance and the beam
shape, which does not depend on the aperture. We characterize
the beam shape using the tangential beam-spot width Wr as
depicted in Fig. 12. For each sampling event, we find the
beam-centroid position r0 = (x0 y0)T and the corresponding
angle χ that defines the direction of the vector r0 to the x
axis such that tan χ = x0/y0. In the coordinate frame (xr, yr ),
oriented to the beam centroid,

xr = x cos χ + y sin χ, (40)

yr = −x sin χ + y cos χ, (41)

FIG. 11. Pearson correlation coefficient, defined similarly to
Eq. (39) but with the transmittance of the perfectly tracked beam,
as a function of aperture radius in units of the long beam-spot width
corresponding to each scenario. Lines are marked as in Fig. 10.

we calculate Sxr xr similarly to Eq. (30) and the corresponding
beam width as Wr = √Sxr xr . From the set of sampling events,
we obtain the Pearson correlation coefficient between Wr and
r0 = (x2

0 + y2
0 )1/2,

S(r0,Wr ) = 〈�r0�Wr〉√〈
�r2

0

〉〈
�W 2

r

〉 , (42)

characterizing statistical correlations between the beam cen-
troid and the beam shape. The results for different channels
are shown in Table III. They demonstrate that these statistical
correlations can be significant for channels with moderate
and strong impact of turbulence. However, as seen above,
for a wide range of aperture radii this correlation does not
significantly affect the transmittance values.

D. Statistical distribution of semiaxes, forming elliptic beams

Let us consider the semiaxes of the ellipse, forming the
beam shape in the Gaussian approximation. These quantities

FIG. 12. Tangential beam-spot width Wr . The beam centroid is
deflected to the point r0 = (x0 y0 )T . The angle χ defines the direc-
tion of the vector r0 to the x axis.
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TABLE III. Pearson correlation coefficient between the beam-
deflection distance r0 and the radial beam width Wr [cf. Eq. (42)], for
the channels with weak, moderate, and strong impact of turbulence,
as given in Table I.

Impact of turbulence F0 = +∞ F0 = zap

weak 0.016 0.039
moderate 0.080 0.150
strong 0.317

can be defined as eigenvalues of the matrix S [cf. Eq. (30)],

W 2
1,2 = 1

2

[
Sxx + Syy ±

√
(Sxx − Syy)2 + 4S2

xy

]
,

such that W1 is assigned the eigenvalue with the sign + or
− if Sxy � 0 or Sxy � 0, respectively. As it is assumed in the
elliptic-beam model [85], the quantities

�1,2 = ln W 2
1,2/W 2

0 (43)

are distributed according to a bivariate Gaussian distribution.
This assumption is verified in this section.

For each sampling event we numerically calculate the ma-
trix S according to Eq. (30) and the corresponding values of
�1 and �2. The corresponding coarse-grained scatter plot for
the channel with strong impact of turbulence and F0 = zap is
shown in Fig. 13. It is compared with the covariance ellipse,
given by the equation

2∑
i, j=1

(�i − 〈�i〉)�−1
i j (� j − 〈� j〉) = 4, (44)

where �i j = 〈��i�� j〉 is the covariance matrix for the vari-
ables �1 and �2. Obviously, the corresponding distribution
differs significantly from the Gaussian distribution, especially
due to the pronounced minimum for �1 = �2. Another im-
portant observation is that the Pearson correlation coefficient
for these quantities is small; the variance ellipse almost resem-

FIG. 13. Coarse-grained scatter plot for �1 and �2 in the elliptic-
beam model for the channel with strong impact of turbulence. The
dashed line corresponds to the covariance ellipse, described by
Eq. (44).

bles a circle. Consequently, �1 and �2 can be considered as
uncorrelated in the second order.

In order to characterize non-Gaussianity, we first rotate the
coordinate system (�1,�2) to another one, (�(c),�(s) ), as

�(c) = 1√
2

(�1 + �2), (45)

�(s) = 1√
2

(�1 − �2). (46)

Since the probability distribution function is symmetrical with
respect to the axis �(c), the quantities �(c) and �(s) should
be uncorrelated. We then calculate the skewness and excess
kurtosis for these quantities in order to conclude about non-
Gaussianity of the probability distribution for �1 and �2.
The results are summarized in Table IV. Significant deviations
from the Gaussian distribution indicate the further need to
include this feature in the elliptic-beam model.

VI. APPLICATION: TRANSMISSION OF
QUADRATURE-SQUEEZED LIGHT

Quadrature squeezing is a fundamental example of non-
classical phenomena exhibited by quantum light when mea-
suring a field quadrature x̂ = 2−1/2(â + â†), where â is the
field annihilation operator [104–106]. The quadrature vari-
ances can be expressed as

〈�x̂2〉 = 1
2 + 〈:�x̂2:〉, (47)

where the term 1
2 corresponds to the quadrature variance of

the vacuum state and 〈:�x̂2:〉 represents the normal-ordered
quadrature variance. A negative value for 〈:�x̂2:〉 indicates
that the quadrature variance is smaller than its vacuum-state
value.

A scheme of quadrature measurement with homodyne de-
tection for the light passing through the turbulent atmosphere
has been proposed and implemented in Refs. [10,11]. In this
case, the local oscillator is transmitted in an orthogonally
polarized but the same spatial mode as the signal. Since the
depolarization effect of the atmosphere is negligible (see, e.g.,
Ref. [37]), the transmittance of the local oscillator and the
signal are strongly correlated. This correlation provides an
opportunity to control the value of channel transmittance and
postselect the events with high transmittance. Such a scheme
has been implemented in Ref. [16] and theoretically analyzed
in Refs. [55,85].

As it has been shown in Ref. [55], the normal-ordered
quadrature variance at the receiver site, 〈:�x̂2:〉out, is related
to the normal-ordered quadrature variance at the transmitter
site, 〈:�x̂2:〉in, as

〈:�x̂2:〉out = 〈η〉〈:�x̂2:〉in + 〈�T 2〉〈x̂〉2
in, (48)

where T = √
η is the transmission coefficient. It is important

to note that the constant losses on absorption and scattering
in the atmosphere as well as the losses of the optical system
should be accounted for in the PDT or in the numerically sim-
ulated data. For the squeezed vacuum state one has 〈x̂〉in = 0
and only the first term in Eq. (48) plays a role. The mean
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TABLE IV. Skewness and excess kurtosis for �(c) and �(s) in the case of channels with weak, moderate, and strong impact of turbulence,
as given in Table I.

Impact of turbulence Wave-front radius F0 Skewness for �(c), �(s) Excess kurtosis for �(c), �(s)

weak zap 2.5 × 10−1, −6.1 × 10−4 2.3 × 10−1, −8.5 × 10−1

weak +∞ −9.9 × 10−2,−1.0 × 10−2 −6.4 × 10−3, −1.0
moderate zap 2.5 × 10−1, 9.8 × 10−3 1.2 × 10−1, −8.1 × 10−1

moderate +∞ 1.5 × 10−1 − 3.7 × 10−3 −1.1 × 10−1, −9.9 × 10−1

strong +∞ 3.2 × 10−1, −9 × 10−3 2.5 × 10−1, −7.7 × 10−1

transmittance for the postselected signal is given by

〈η〉 = 1

F (ηmin)

∫ 1

ηmin

dη ηP (η), (49)

where ηmin is the minimal value of the postselected efficiency
(the postselection threshold) and F (ηmin) = ∫ 1

ηmin
dη ηP (η) is

the exceedance. The same quantity can be evaluated from the
numerically simulated data as

〈η〉 = 1

Nmin

∑
{ηi�ηmin}

ηi, (50)

where ηi are sampled values of the transmittance values and
Nmin is the number of events with ηi � ηmin.

We consider quadrature squeezing for the channels listed in
Table I. A typical example of the dependence of the squeezing
parameter on the postselection threshold ηmin is shown in
Fig. 14 for the channel with moderate impact of turbulence
and F0 = zap. A property common to all the examples con-
sidered is that the elliptic-beam and beam-wandering models
show a significant discrepancy with the numerically simulated
data in the case of a small postselection threshold ηmin. This
is due to the fact that these models are not bound to the value

FIG. 14. Squeezing parameter at the receiver as a function of the
postselection threshold ηmin, evaluated with the numerically simu-
lated data (N), the elliptic-beam approximation (E), the truncated
log-normal distribution (L), and the Beta-distribution model (B),
shown for the channel with moderate impact of turbulence (cf. Ta-
ble I) and F0 = zap. The initial squeezing at the transmitter site is
−3 dB. The constant losses are 0.38 dB. The receiver aperture radius
is Rap = 0.43WLT = 0.019 cm.

of the first moment 〈η〉. Another approach [17,85] assumes an
estimation of the channel parameters by the method of mo-
ments based on the beam-wandering and elliptic-beam PDTs.
This leads to good agreement with experimental (numerically
simulated) data. However, this method leads to biased values
of the estimated parameters of channels.

Another interesting observation from Fig. 14 is a slight
discrepancy between the squeezing parameters obtained from
the truncated log-normal distribution and the numerically sim-
ulated data at low postselection thresholds. This discrepancy
arises due to the influence of the tail cutoff on the first two
moments of the transmittance, leading to an error in Eqs. (23)
and (24). The semianalytical models based on the law of total
probability also exhibit a small discrepancy due to the corre-
lations between beam shape and beam deflection discussed in
Sec. V C. However, analytical models based on the law of total
probability with the approximation of small beam wandering
do not exhibit this discrepancy since this approximation as-
sumes a strong constraint on the first two moments of the
transmittance.

The Beta-distribution model shows the best agreement with
the numerically simulated data. The corresponding PDT is
strictly constrained to the first two moments of the trans-
mittance, making this model work well for small values of
the postselection threshold. However, this model also gives
acceptable results for larger values of ηmin.

The dependence of the squeezing parameters on the aper-
ture radius is shown in Fig. 15 for different values of the
postselection threshold ηmin. The behavior of these parameters
is generally predictable. For instance, a small value of the
aperture radius may require a large value of the postselection
threshold to achieve an acceptable value of the squeezing
parameter. However, as the aperture radius approaches the
long-term beam-spot radius, the postselection becomes less
significant.

VII. CONCLUSION

We have presented numerical simulations of the PDT
for horizontal atmospheric quantum channels. Depending
on the Rytov parameter values, we considered scenarios
with weak, strong, and moderate impact of turbulence. We
performed numerical simulations using the sparse-spectrum
model for the phase-screen method and compared our results
with existing analytical models, including the truncated log-
normal distribution, beam-wandering model, elliptic-beam
approximation, and the model based on the law of total
probability. Additionally, we compared our results with the
empirical model presented here based on the Beta distribution
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FIG. 15. Squeezing parameter at the receiver as a function of the
aperture radius Rap shown for different values of the postselection
thresholds ηmin. The channel parameters, the squeezing at the trans-
mitter, and the constant losses are the same as in Fig. 14.

and a corresponding modification of the model based on the
law of total probability. We also tested nontrivial statistical
assumptions on beam parameters at the receiver underlying
analytical models of the PDT.

An important conclusion drawn from this study is that the
applicability of analytical models depends strongly on the
aperture radius. At the same time, the dependence on the tur-
bulence strength has a significantly smaller effect on this
applicability. For instance, both the beam-wandering and
elliptic-beam models demonstrate good agreement with nu-
merically simulated data for aperture radii of the order of or
slightly exceeding the long-term beam-spot radius. If the aper-
ture radius is smaller or larger than this value, the PDT shape
is similar to beam-wandering and elliptic-beam PDT, but
with the left- and right-hand-side shifted distribution modes,
respectively. This implies that the elliptic-beam model may
fit numerically simulated data well within a wider range of
aperture-radius values. However, such a fitting may result in
biased estimations of turbulence parameters.

The empirical Beta-distribution model presented here, as
well as the corresponding model based on the law of total
probability, has shown the best agreement with numerically
simulated data over a wide range of aperture radii. The
Beta-distribution model has a simple analytical form and its
parameters depend solely on the first and second moments
of the transmittance. It should be noted that in practical
scenarios, determining the range of applicability of the beam-
wandering and elliptic-beam models with precision may be
difficult. Therefore, the use of the Beta-distribution model or
the corresponding model based on the law of total probability
may still be relevant, even if the aperture radius is expected to
fall within this range. Considering this, the Beta-distribution
model can be regarded as highly applicable for theoretical
research on atmospheric quantum channels.

We have applied our results to consider the transfer of
quadrature squeezing through atmospheric channels. Proper
experimental design allows for monitoring the actual transmit-
tance value and postselecting events with high transmittance.
The resulting squeezing depends on the mean transmittance
for the postselected data. However, the beam-wandering and
elliptic-beam models usually do not accurately approximate
〈η〉, resulting in worse agreement with numerically simulated
data for small values of the postselection threshold than other
models. Therefore, in scenarios where the accuracy of both
〈η〉 and 〈η2〉 is crucial, the Beta-distribution model proves to
be a more reliable solution. It demonstrates better agreement
with the numerically simulated data, particularly for small
minimum values of the postselected transmittance, than the
beam-wandering and elliptic-beam models.
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APPENDIX A: INPUT-OUTPUT RELATIONS

In this Appendix we briefly remind reader of the derivation
of the input-output relation (1) and the expression for the
transmittance η given by Eq. (6). More details on the deriva-
tion of these expressions can be found in Appendixes A–C
of the Supplemental Material in Ref. [61]. As mentioned in
Introduction, this consideration applies only to transmission
protocols with fixed spatial structure of light modes at the
transmitter.

Let us consider a quasimonochromatic light mode de-
scribed by the function

Vin(r, z; t ) =
∫
R

dk �(k)uin(r, z; k)eik(z−ct ). (A1)

Here �(k) is a normalized spectrally narrow function,
uin(r, z; k) is a solution to the paraxial equation (2) with a
fixed δn(r, z), and c is the speed of light. Since uin(r, z; k)
varies much slower with z than eikz, the modes with or-
thonormal time-spectrum functions can be considered as
approximately orthonormal with respect to the L2 scalar prod-
uct in R3.

The light at the transmitter side is prepared in a quantum
state of the quasimonochromatic mode Vin(r, z; t ), which is
described by the P function

Pin(α) = 1

π2

∫
C

d2βTr[ρ̂e(â†
in−α∗ )βe−(âin−α)β∗

]. (A2)

Here ρ̂ is the density operator and the annihilation operator
âin is expressed in terms of the positive-frequency part of the
electromagnetic-field operator Â(+)

in (r, z; t ) as

âin =
∫
R3

d2r dz Â(+)
in (r, z; t )V ∗

in (r, z; t ). (A3)

For brevity, we consider a scalar field, i.e., polarized light, and
the dimensionless field operator.
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We also consider another (unnormalized) solution to
Eq. (2),

uout (r, z; k) =
∫
R2

d2r′T (r, r′; z; zap)uin(r′, z; k). (A4)

The integral kernel T (r, r′; z; zap) can be uniquely defined
from the boundary condition at the aperture plane,

uout (r, zap; k) = IA(r)uin(r, zap; k), (A5)

where IA(r) is the indicator function equal to unity inside the
aperture opening A and zero outside. This implies that after
passing through the aperture, the normalized quasimonochro-
matic mode reads

Vout (r, z; t ) = 1√
η

∫
R

dk �(k)uout (r, z; k)eik(z−ct ), (A6)

where the transmittance η is defined from the normalization
condition of the function Vout (r, z; t ) in R3. Similarly, the
expression

Â(+)
out (r, z; t ) =

∫
R2

d2r′T (r, r′; z; zap)Â(+)
in (r′, z; t ) + Ĉ(r, z; t )

(A7)

uniquely defines the positive-frequency field operator
Â(+)

out (r, z; t ), which for z � zap describes the electromagnetic
field after passing through the aperture. Here Ĉ(r, z; t ) defines
noise modes in the vacuum state. This operator is defined from
the conditions of preserving the commutation relations.

The detection system analyzes quantum states of the mode
Vout (r, z; t ) with the P function

Pout (α) = 1

π2

∫
C

d2βTr[ρ̂e(â†
out−α∗ )βe−(âout−α)β∗

], (A8)

where

âout =
∫
R3

d2r dz Â(+)
out (r, z; t )V ∗

out (r, z; t ). (A9)

Using Eq. (A7), we can show that

âout = √
ηâin +

√
1 − ηĉ, (A10)

where ĉ is an operator representing a noise mode in a vacuum
state, which is directly related to Ĉ(r, z; t ). Substituting this
expression into Eq. (A8) and using Eq. (A2), we get

Pout (α) = 1

η
Pin

(
α√
η

)
. (A11)

The detection systems considered here do not distinguish
between fluctuating shapes of the modes Vout (r, z; t ). This im-
plies that the final expression should be averaged with respect
to η. As a result, we arrive at the input-output relation (1).

The transmittance η can be obtained by normalization of
Vout (r, z; t ) [cf. Eq. (A6)]. We employ the fact that uout (r, z; k)
varies much slower with z than eikz. Together with Eq. (A5)
this gives

η =
∫
R

dk|�(k)|2η(k), (A12)

where

η(k) =
∫
A

d2r|uin(r, zap; k)|2. (A13)

FIG. 16. Phase-structure function depending on the separation
distance. The lines correspond to the theoretical value and to the
results of three different simulations.

Since �(k) is a sharp normalized function, we get

η ≈ η(k0), (A14)

where k0 is the maximum point of |�(k)|2. This leads to
Eq. (6). This means that the transmittance does not depend
significantly on the time spectrum �(k) of quasimonochro-
matic modes.

APPENDIX B: VERIFICATION
OF THE PHASE-SCREEN METHOD

In this Appendix we present a verification technique of the
sparse-spectrum model for the phase-screen method. For this
purpose we consider the phase-structure function [37,97]

Dφ = 〈[φ(r) − φ(r + �r)]2〉
= 2[〈φ2(r)〉 − 〈φ(r)φ(r + �r)〉], (B1)

where the correlation functions are given by Eq. (13). We
compare these theoretical values with the sampled values
obtained by three different methods: (i) the standard phase-
screen method with a fast Fourier transform (FFT) [89–92],
(ii) the method of subharmonics [107], and (iii) the sparse-
spectrum model [86–88].

The results are shown in Fig. 16. It can be clearly seen that
the sparse-spectrum model gives the best agreement between
theory and numerical data. For our simulation we use the
following parameters of the atmosphere and the simulation
parameters: λ = 808 nm, C2

n = 10−14 m−2/3, 
0 = 10−3 m,
L0 = 80 m, l = zm − zm−1 = 100 m [cf. Eq. (12)], a spatial
grid composed of 1024 points for each dimension, a spa-
tial grid step of 2 mm, and the number of iterations 104.
For the subharmonic method, we use six subharmonics. For
the sparse-spectrum model, the number of spectral rings is
N = 1024 and the inner and outer bounds of the spectrum are
Kmin = 1/15L0 and Kmax = 2/
0, respectively.
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APPENDIX C: BEAM-WANDERING PDT

As it has been shown in Ref. [61], the beam-wandering
PDT is given by the log-negative Weibull distribution, i.e.,

P (η) = R2

σ 2
bwηϑ (2/WST)

(
ln

η0

η

)2/ϑ (2/WST )−1

× exp

[
− R2

2σ 2
bw

(
ln

η0

η

)2/ϑ (2/WST )
]

(C1)

for η ∈ [0, η0] and P (η) = 0 otherwise. Here

η0 = 1 − exp

(
−2

R2
ap

W 2
ST

)
(C2)

is the maximum transmittance,

R(ζ ) = Rap

[
ln

(
2

η0

1 − exp
(−R2

apζ
2
)I0
(
R2

apζ
2
))]−1/ϑ (ζ )

(C3)

is the scale parameter, and

ϑ (ζ ) = 2R2
apζ

2
e−R2

apζ
2I1
(
R2

apζ
2
)

1 − exp
(−R2

apζ
2
)
I0
(
R2

apζ
2
)

×
[

ln

(
2

η0

1 − exp
(−R2

apζ
2
)
I0
(
R2

apζ
2
)
)]−1

(C4)

is the shape parameter. In these equations, Rap is the aperture
radius, W 2

ST is the short term [cf. Eq. (25)], σ 2
bw is the beam-

wandering variance [cf. Eq. (27)], ζ = 2/WST, and In(x) is the
modified Bessel function.

APPENDIX D: ANALYTICAL APPROXIMATION
FOR THE ELLIPTIC-BEAM MODEL

In order to formulate the analytical approximation used
in the elliptic-beam model [85], we first need an expression
for the transmittance of the elliptical beam (28) through the
aperture of the radius Rap, as a function of the vector v =
(x0 y0 �1 �2) and the angle φ between the axis x and
the ellipse semiaxis W1. Here x0 and y0 are the beam-centroid
coordinates and �1,2 are related to the length of the ellipse
semiaxes, W1,2, as given by Eq. (43). This transmittance reads

η = η̃0 exp

⎡
⎣−
(

r0

R
(

2
Weff (φ−χ )

)
)ϑ[2/Weff (φ−χ )]

⎤
⎦, (D1)

where r0 = |r0| is the beam-deflection distance; the scale
parameter R(ζ ) and the shape parameter ϑ (ζ ) are given by
Eqs. (C3) and (C4), respectively;

η̃0 = 1 − I0

(
R2

ap
W 2

1 − W 2
2

W 2
1 W 2

2

)
exp

(
−R2

ap
W 2

1 + W 2
2

W 2
1 W 2

2

)

− 2

{
1 − exp

[
−R2

ap

2

(
1

W1
− 1

W2

)2
]}

× exp

⎡
⎢⎣−
⎛
⎝ Rap

(W1+W2 )2

|W 2
1 −W 2

2 |
R
(

1
W1

− 1
W2

)
⎞
⎠

ϑ (1/W1−1/W2 )
⎤
⎥⎦ (D2)

is the maximum transmittance for the elliptic beam;

W 2
eff (φ − χ ) = 4R2

ap

(
W
{

4R2
ap

W1W2
exp

[
2R2

ap

(
1

W 2
1

+ 1

W 2
2

)]

× exp

[
R2

ap

(
1

W 2
1

− 1

W 2
2

)
cos(2φ−2χ )

]})−1

;

(D3)

χ is the angle that defines the direction of the vector r0 to the
x axis (cf. Fig. 12); In(x) is the modified Bessel function; and
W is the Lambert function.

The elliptic-beam PDT is given by

P (η) = 2

π

∫
R4

d4v
∫ π/2

0
dφ ρG(v|μ, �)δ(η − η(v, φ)).

(D4)

Here η(v, φ) is the transmittance defined by Eq. (D1) as a
function of random parameters and ρG(v|μ, �) is the Gaus-
sian probability density function of the vector v with the
mean μ and the covariance matrix �. This matrix is clearly
divided into two diagonal blocks since 〈�r0��1,2〉 = 0 due
to symmetry. The first block, related to the beam-centroid
coordinates x0 and y0, reads σ 2

bwI2, where I2 is the 2 × 2 unity
matrix. The second block consists of the elements

〈��i�� j〉 = ln

(
1 +

〈
�W 2

i �W 2
j

〉
〈
W 2

i

〉〈
W 2

j

〉
)

. (D5)

Two first components of the vector μ are zero in the case when
〈r0〉 = 0. The two other components are given by

〈�i〉 = ln

⎡
⎣〈W 2

i

〉
W 2

0

(
1 +

〈(
�W 2

i

)2〉
〈
W 2

i

〉2
)−1/2

⎤
⎦. (D6)

The moments of W 2
i in Eqs. (D5) and (D6) are ex-

pressed in terms of field correlation functions �2(r; zap) and
�4(r1, r2; zap) as

〈
W 2

i

〉 = 4

(∫
R2

d2r x2�2(r; zap) − 〈x2
0

〉)
, (D7)

〈
W 2

i W 2
j

〉 = 8

(
−8δi j

〈
x2

0

〉2 − 〈x2
0

〉〈
W 2

i

〉
+
∫
R4

d4r
[
x2

1x2
2 (4δi j − 1) − x2

1y2
2(4δi j − 3)

]
× �4(r1, r2; zap)

)
. (D8)

These moments can be calculated analytically, for instance,
using the phase approximation of the Huygens-Kirchhoff
method, as demonstrated in Ref. [85]. However, in this paper
we calculated these moments from the numerically simulated
data.
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APPENDIX E: APPROXIMATION OF WEAK BEAM
WANDERING FOR THE MODEL BASED ON THE LAW

OF TOTAL PROBABILITY

In both variants of the model based on the law of to-
tal probability, i.e., those based on the truncated log-normal
distribution (cf. Sec. II C 4) and those based on the Beta dis-
tribution (cf. Sec. III), one needs to evaluate the conditional
moments of the transmittance, 〈η〉r0 and 〈η2〉r0 . In the approx-
imation of weak beam wandering [70] these quantities are
evaluated as

〈η〉r0 = η0 exp

[
−
(

r0

R(2/WST)

)ϑ (2/WST )
]
, (E1)

〈η2〉r0 = h2
0 exp

[
−2

(
r0

R(2/WST)

)ϑ (2/WST )
]
, (E2)

where the scale parameter R(ζ ) and the shape parameter ϑ (ζ )
are given by Eqs. (C3) and (C4), respectively. The efficiency
η0 can be obtained from Eq. (C2) if the field correlation
function �2(r; zap) is Gaussian. Otherwise, it is obtained as

η0 = 〈η〉∫∞
0 du u e−u2/2e−{[σbw/R(2/WST )]u}ϑ (2/WST ) . (E3)

The parameter h0 is evaluated as

h2
0 = 〈η2〉∫∞

0 du u e−u2/2e−2{[σbw/R(2/WST )]u}ϑ (2/WST ) . (E4)

In addition, this approximation ensures that two important
statistical moments of transmittance, namely, 〈η〉 and 〈η2〉,
retain their original definitions given by Eqs. (9) and (10),
respectively.
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