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Enhancing strength and range of atom-atom interaction in a coupled-cavity
array via parametric drives
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Coherent long-range interactions between atoms are a prerequisite for numerous applications in the field of
quantum information science. Here we present an appealing method to dramatically enhance the long-range
atom-atom interaction mediated by a coupled-cavity array that is subjected to two-photon (parametric) drives.
Our method allows one to greatly amplify both the localization length of the single-photon bound-state wave
function and the effective atom-photon coupling strength, resulting in a significant improvement of photon-
mediated coherent interaction between two distant atoms. Additionally, we illustrate this effect by analyzing
how it facilitates the transfer of information and the creation of entanglement between the atoms.
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I. INTRODUCTION

The pursuit of coherent interactions between atomic
emitters, such as neutral atoms, solid-state spins, and super-
conducting qubits, is a central topic of interest in the quantum
information science community [1–4]. In fact, it can acti-
vate a variety of important applications, including quantum
annealing [5], quantum sensing [6], quantum cryptography
[7], quantum computation [8], and quantum simulation [9]. In
particular, strong long-range atom-atom interactions lie at the
heart of this subject, unlocking opportunities for long-distance
quantum logic gates [10,11] and entanglement generation and
distribution [12,13]. Additionally, long-range couplings could
trigger a series of exciting phenomena, such as dynamical
quantum phase transitions [14], nonadditivity in statistical
mechanics [15], exotic long-range order [16], and the viola-
tion of the Lieb-Robinson bound on the speed of information
propagation [17]. To realize long-range interactions between
atoms, a mainstream solution is to interface the atoms with
a photonic waveguide and exploit the exchange of virtual
photons [18–25]. However, in this case, the resulting photon-
mediated interactions are considerably suppressed with the
increase of the atomic separation.

In this work, we put forward a feasible method to sub-
stantially enhance the long-range atom-atom interaction in
a coupled-cavity array. We show that, when each photonic
site of the array is subjected to a two-photon drive, both
the localization length of the single-photon bound-state wave
function and the effective atom-photon coupling strength can
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be amplified greatly. Accordingly, when two distant atoms are
both coupled to the photonic array in the dispersive regime,
the photon-mediated atom-atom interaction is strongly en-
hanced in terms of both range and strength, pushing it from
the weak coupling regime into the strong coupling regime. As
a concrete application, we show that, even with a relatively
large interatomic distance, quantum entanglement and quan-
tum state transfer between two separated atoms can still be
efficiently generated. Finally, we emphasize that our model is
quite general and can be implemented with different kinds of
architectures, such as superconducting qubits coupled to a mi-
crowave cavity array [20,23–27] and atomic emitters coupled
to an optical cavity array [28–32].

II. THE SETUP

As schematically shown in Fig. 1(a), we consider a cou-
pled atom-photon system, where two atoms with excited
state |ex〉 (x = A, B) and ground state |gx〉 interact with
a one-dimensional coupled-cavity array. The corresponding
Hamiltonian reads (setting h̄ = 1)

Ha = ωa

∑
n

a†
nan + ωq

∑
x

σ x
+σ x

−

−
[

J
∑

n

a†
nan+1 − G(a†

jσ
A
− + a†

l σ
B
− ) + H.c.

]
, (1)

where an (a†
n) is the bosonic annihilation (creation) operator

of the nth cavity with the index n ∈ [−N, N], σ x
− = |gx〉〈ex|

(σ x
+ = |ex〉〈gx|) is the atomic lowering (raising) operator, and

ωa and ωq are the resonance frequency of the cavities and
atoms, respectively. J is the cavity-cavity nearest-neighbor
coupling strength, and G is the atom-cavity coupling strength.
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(a)

(c)

(b)

FIG. 1. (a) Schematic illustration of the setup: two distant atom are coherently coupled to a coupled-cavity array that is subjected to
two-photon drives, and the two edge sites of the array are each coupled to an auxiliary damped cavity. (b) Propagating frequency band of
the coupled-cavity array. (c) Schematic diagram of the long-range atom-atom interaction. The parametric drives amplify both the localization
length (∝ er) of the single-photon bound-state wave function and the effective atom-photon coupling strength (∝ er/2), enabling the long-
distance coupling between two atoms.

Moreover, each cavity of the array is subjected to
a two-photon drive, described by the Hamiltonian Hd =
η

∑
n(a†2

n e−iωst e−iφ + H.c.), where η is the two-photon driv-
ing amplitude, ωs is its driving frequency, and φ is the
associated phase. Experimentally, the parametric drives have
been implemented with different kinds of architectures,
such as flux-modulated Josephson parametric amplifiers in
the microwave regime [33–37] and χ (2) nonlinear crys-
tals in the optical domain [38–40]. In addition, we assume

that two edge sites of the array are each coupled to an
auxiliary damped cavity, which is described by the Hamil-
tonian HA = ωA(A†

−N A−N + A†
N AN ) − J0(A†

−N a−N + A†
N aN +

H.c.). As discussed below, these two auxiliary cavities
constitute the main dissipative channels of this system
and are used to stabilize a pure squeezed vacuum state
of the internal cavities. In the rotating frame at the fre-
quency ωs/2, the Hamiltonian of the whole system takes the
form

H = �A(A†
−N A−N + A†

N AN ) + �a

∑
n

a†
nan + �q

∑
x

σ x
+σ x

−

−
[ ∑

n

(
Ja†

nan+1 − ηa†2
n e−iφ

) + J0(A†
−N a−N + A†

N aN ) − G(a†
jσ

A
− + a†

l σ
B
− ) + H.c.

]
, (2)

where �A = ωA − ωs/2, �a = ωa − ωs/2, and �q = ωq − ωs/2 are the detunings. Here we assume that �A, �a, and �q are
by far the largest parameters in the system dynamics. This assumption allows us to neglect many nonresonant processes, and
the resulting quasi-resonant dynamics shows highly enhanced atom-field interaction similar to the results of Refs. [41–44].
Specifically, it is convenient to perform the Bogoliubov squeezing transformation an = βncosh(r) − β†

n e−iφsinh(r), which
diagonalizes the Hamiltonian of each parametrically driven cavity, where r = 1

4 ln[(�a + 2η)/(�a − 2η)] is the squeezing
parameter. In this squeezed frame, the detuning of the modes βn is given by �s = �a/cosh(2r). Additionally, we assume that
the auxiliary cavities are resonant with these modes, corresponding to �A = �s. Consequently, the total Hamiltonian can be
expressed as follows:

HS = �s(A
†
−N A−N + A†

N AN ) + �s

∑
n

β†
nβn + �q

∑
x

σ x
+σ x

−

−
[

J cosh(2r)
∑

n

β†
nβn+1 + J0cosh(r)(A†

−Nβ−N + A†
NβN ) − Gcosh(r)(β†

j σ
A
− + β

†
l σ B

− )

− J sinh(2r)
∑

n

β†
nβ

†
n+1e−iφ − J0sinh(r)(A†

−Nβ
†
−N + A†

Nβ
†
N )e−iφ + Gsinh(r)(β†

j σ
A
+ + β

†
l σ B

+ )e−iφ + H.c.

]
. (3)

In particular, HS can be simplified by performing a rotating wave approximation that consists in dropping nonresonant
fast-oscillating terms (which can be easily identified in the interaction picture) characterized by an interaction strength much
smaller than the corresponding frequency. Specifically, in the limit 2�s � J0sinh(r), Jsinh(2r), and �s + �q � Gsinh(r), the
Hamiltonian (3) can be approximated as

H ′
S = �s(A

†
−N A−N + A†

N AN ) + �s

∑
n

β†
nβn + �q

∑
x

σ x
+σ x

−

−
[
J

∑
n

β†
nβn+1 + J0(A†

−Nβ−N + A†
NβN ) − G(β†

j σ
A
− + β

†
l σ B

− ) + H.c.

]
, (4)
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where J0 = J0cosh(r), J = Jcosh(2r), and G = Gcosh(r)
are the modified coupling strengths. Remarkably, the cavity-
cavity and atom-cavity couplings can be greatly enhanced due
to the amplified fluctuations of the squeezed photons. This
constitutes the key ingredients for realizing a long-distance
atom-atom interaction.

Let us now introduce the dissipation of the auxiliary cav-
ities, while we assume that the dissipation of the internal
cavities is comparatively negligible. Such a scenario is com-
monly observed in these kinds of systems [25]. Then, the
dynamics of the whole system is described by the quantum
master equation

ρ̇S = −i[H ′
S, ρS] + γ

∑
x

L[σ x
−]ρS

+ κL[A−N ]ρS + κL[AN ]ρS, (5)

where L[O]ρ = (2OρO† − ρOO† − OO†ρ)/2 is the Lind-
blad operator for a given operator O, γ is the atomic
spontaneous emission rate, and κ is the decay rate of the
auxiliary damped cavity. Here, we consider that the auxiliary
cavities A−N and AN have a large dissipation, i.e., κ � J0. Af-
ter adiabatically eliminating the auxiliary cavities, we obtain
the reduced master equation

ρ̇s = −i[Hs, ρs] + γ
∑

x

L[σ x
−]ρs

+ κsL[β−N ]ρs + κsL[βN ]ρs, (6)

where

Hs = �s

∑
n

β†
nβn + �q

∑
x

σ x
+σ x

−

−
[
J

∑
n

β†
nβn+1 − G(β†

j σ
A
− + β

†
l σ B

− ) + H.c.

]
. (7)

Here, κs = J 2
0 /κ is the effective decay rate of the squeezed

modes β−N and βN . This expression entails that, in the
squeezed representation, the dissipation of the auxiliary cavi-
ties drives the array to the vacuum, which is a pure squeezed
state in the original frame [45]. Besides, in the dispersive
regime, the dissipation has a negligible effect on the atoms for
a sufficiently large array. So, the main dynamics of our system
are well described by the Hamiltonian (7) with the array in
the squeezed vacuum. The following analysis exploits this
result.

To better understand the basic system dynamics, here we
assume that the number of cavities is sufficiently large, and it
is much larger than the atomic separation 2N + 1 � |l − j|.
In this case, the auxiliary cavities primarily serve to justify the
utilization of the squeezed vacuum as the state of the array that
mediates the interaction between the atoms discussed below.
However, they do not play any other significant role in the
dynamics of the system. So, we can simplify the model by
assuming periodic boundary conditions for the array and per-
form the Fourier transformation βn = ∑

k βke−ikn/
√

2N + 1
with k ∈ [−π, π ]. Then, the Hamiltonian Hs in Eq. (7) can be

transformed into the momentum space

Hs,k =
∑

k

�k
sβ

†
k βk + �q

∑
x

σ x
+σ x

−

+
∑

k

Gk (β†
k σ A

−eik j + β
†
k σ B

−eikl + H.c.), (8)

where Gk = G/
√

2N + 1, and �k
s = �s − 2J cos(k) is the

dispersion relation, as seen in Fig. 1(b). We stress here that
there is a sharp difference with respect to the previous works
without two-photon drives for the generation of long-range
interactions [18–25]. In our scheme, the presence of para-
metric drives makes both the propagating frequency band 4J
[see Fig. 1(c)] and the coupling strength Gk proportional to a
hyperbolic cosine function of r, so that they both increase with
r. Consequently, as discussed in detail below, on the one hand
the broadened band results in an amplified localization length
of the single-photon bound-state wave function. On the other,
the enhanced coupling corresponds to an enhanced effective
atom-photon coupling strength. These two effects result in the
increased range and strength of the interaction between the
two distant atoms. In the following, we employ the model
of Eq. (8) to analyze the dynamics of the two atoms in the
dispersive regime, which is characterized by a large detuning
between the atomic transition frequency and the band-edge
frequency of the array. In this regime, it is reasonable to expect
that our approximated model faithfully captures the essential
features of the atomic dynamics in a finite system, which can
be realistically achieved in experiments [25].

III. ENHANCING THE LONG-RANGE INTERACTION
BETWEEN TWO ATOMS

Let us first consider the coupling of the single atom A to
the coupled-cavity array. We note that the Hamiltonian (8)
conserves the total number of excitations, and as discussed
above, it is reasonable to assume that in the squeezed rep-
resentation the array is in its vacuum state, so we can focus
on the single-excitation manifold. Specifically, there exists
a bound state |〉 = cos(θ )|Vac〉|eA〉 + sin(θ )

∑
k ck|1k〉|gA〉

[18,22], where θ quantifies the degree of atom-photon hy-
bridization, |Vac〉 is the vacuum state of the modes βk , |1k〉 =
β

†
k |Vac〉 is a single-photon excitation state, and ck is the am-

plitude of the single-photon component with momentum k.
This single-photon bound state satisfies the eigenvalue equa-
tion Hs,k|〉 = �BS|〉 with the eigenfrequency �BS , which
fulfills the relation δ = � + G2/

√
δ2 + 4J δ. Here, we have

introduced the detunings δ = �BS − �U and � = �q − �U

with �U = �s + 2J the upper band edge. In the following,
we focus on the case of δ > 0, i.e., �BS > �U , such that
the bound state eigenfrequency lies above the propagating
frequency band.

The photonic component of the single-photon bound state
is localized exponentially around the atomic position. By uti-
lizing the Fourier transformation cn = ∑

n cke−ikn/
√

2N + 1,
we can work out the amplitude cn of the single-photon com-
ponent at position n [see Appendix A for more detail],

cn = (−1)|n− j|e− |n− j|
ξ

√
coth(1/ξ )

, (9)
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FIG. 2. (a) The photonic wave function |cn| in the real space
versus the spatial position n − j. (b) The localization length ξ and
(c) the effective atom-photon coupling strength Ge as a function of
the squeezing parameter r. We have set � = 10G and J = 10G.

where the localization length is defined as

ξ = 1

arccosh(1 + δ/2J )
. (10)

We can see from Fig. 2(a) that the photonic component
extends over multiple sites and exhibits an exponentially
decaying envelope around the atomic position j, which is
characterized by the localization length ξ . When we increase
the squeezing parameter r at a fixed value of the detuning �

between the atomic transition frequency and the upper band
edge, the localization length ξ will be extended exponentially
with ξ ∝ er , so that the spatial distribution of the localized
photon is greatly broadened [see Figs. 2(a) and 2(b)]. This
is due to the enhanced cavity-cavity interaction strength J
which, in turn, manifests itself in an enhanced propagating
frequency band [see Fig. 1(b)].

In particular, the photon confined around the single atom
A has the same properties as the mode of a real cavity [21].
Therefore, the coupling of a single atom to the coupled-cavity
array can be well understood by mapping to the Jaynes-
Cummings model with the effective atom-photon coupling
strength

Ge =
√

2G
(1 + 4J /δ)

1
4

(11)

and the effective atom-photon detuning �e = �q −∑
k �k|ck|2 = � + δ/(1 + δ/2J ). In Fig. 2(c), we plot

the effective atom-photon coupling strength Ge as a function
of the squeezing parameter r. As the squeezing parameter r
increases, the effective atom-photon coupling strength will
exhibit an exponential enhancement with Ge ∝ er/2.

Let us now consider two spatially separated atoms inter-
acting with the coupled-cavity array. In the dispersive regime
�e � Ge (δ ≈ �), the effective cavity will mediate a coherent
atom-atom interaction via the exchange of virtual photons

FIG. 3. (a) and (b) The photon-mediated atom-atom coupling
strength Gl j as a function of the atomic separation l − j. (c) The
absolute value of the coupling strength |Gl j | and the cooperativity
C versus the squeezing parameter r for the case of two distant atoms
|l − j| = 6, where we set γ = 0.001G. The other parameters are the
same as in Fig. 2.

[18]. By tracing out the modes βk in Hamiltonian (4), we can
obtain the effective Hamiltonian in the interaction picture as
[see Appendix B for more detail]

HAB = Gl j (σ
A
+σ B

− + σ A
−σ B

+ ) (12)

with

Gl j = (−1)|l− j| G ′2
e

2�
e− |l− j|

ξ ′ , (13)

where we have the effective atom-photon coupling strength
G ′

e = √
2G/(1 + 4J /�)

1
4 ≈ Ge, and the localization length

ξ ′ = 1/arccosh(1 + �/2J ) ≈ ξ . Note that the photon-
mediated interaction between two atoms naturally inherits the
property of the single-photon bound state. Thus, the result-
ing atom-atom interaction is exponentially localized in the

real space with Gl j∝e− |l− j|
ξ ′ , which is consistent with previous

studies [18–25]. However, the unique feature here is that both
ξ ′ and G ′

e increase with the squeezing parameter r, and this
will induce a significant enhancement of the photon-mediated
atom-atom coupling strength Gl j . To demonstrate this, we plot
the coupling strength Gl j as a function of the interatomic dis-
tance l − j without and with the parametric driving process in
Figs. 3(a) and 3(b). For the case of r = 0, the photon-mediated
atom-atom coupling decays rapidly as the atomic separation
increases, which results in a short-distance atom-atom inter-
action [see Fig. 3(a)]. This is in stark contrast to r 
= 0, where
the two-photon parametric interactions significantly suppress
the exponential decay behavior of the photon-mediated atom-
atom interaction [see Fig. 3(b)]. Hence, even if the two atoms
are separated by a relatively large distance, they can still be
strongly coupled to each other.

To quantify the enhancement of Gl j , we further introduce
the cooperativity C = G2

l j/γ
2 with the atomic spontaneous

emission rate γ . In Fig. 3(c), we plot the photon-mediated
atom-atom coupling strength |Gl j | and the cooperativity C as
a function of the squeezing parameter r for two distant atoms
|l − j| = 6. Without the two-photon driving process (r = 0),
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FIG. 4. Numerical simulations of (a) and (b) the fidelity F and
(c) and (d) the populations of two separated atoms versus the time
t . The results given in (c) and (d) are for |l − j| = 6 and the other
parameters are the same as in Fig. 3.

we obtain the relatively small values |Gl j | ≈ 1.38 × 10−4G
and C ≈ 0.02, such that the distant atoms are very weakly
coupled. However, these values are strongly enhanced when
r is increased, and for r > 0.723, we have |Gl j | > 1 × 10−3G
and C > 1, i.e., the atom-atom interaction enters into the
strong-coupling regime.

IV. LONG-RANGE ENTANGLEMENT AND QUANTUM
INFORMATION TRANSFER OF TWO ATOMS

As an application, we now discuss how to achieve long-
distance entanglement and quantum information transfer
between two separated atoms. If the two atoms initially are
prepared in the state |φ(0)〉 = |eA〉|gB〉 and the atomic de-
cay is negligible, one can generate a maximally entangled
state |S〉 = (|eA〉|gB〉 − i(−1)|l− j||gA〉|eB〉)/

√
2 at the time t =

π/(4|Gl j |). Similarly, the state of the atom A in the initial
state |φ(0)〉 = (α1|gA〉 + α2|eA〉)|gB〉 will be transferred to the
atom B with |φ(t )〉 = |gA〉(α1|gB〉 − i(−1)|l− j|α2|eB〉) at the
time t = π/(2|Gl j |).

In the presence of the atomic decoherence, we can use the
quantum master equation ρ̇r = −i[HAB, ρr] + γ

∑
x L[σ x

−]ρr

to characterize the dynamics of entanglement and popula-
tions of the two separated atoms. The entanglement of two
atoms may be quantified by the fidelity F = Tr(ρr |S〉〈S|) [46].
Figure 4 illustrates the numerical results of the time evo-
lution of the fidelity and atomic populations, highlighting
the effects of the enhanced cooperativity demonstrated in
Fig. 3(c). Specifically, for the chosen parameters, when the
atomic distance is large and r = 0, entanglement generation
[see Fig. 4(a)] and population transfer [see Fig. 4(c)] are
unfeasible. However, both tasks are made efficient by the
two-photon drives, as shown in Figs. 4(b) and 4(d).

V. DISCUSSION AND CONCLUSIONS

Finally, we discuss the experimental implementations of
our scheme. A promising platform is based on superconduct-
ing circuits with their advanced controllability and versatile
interfaces [47]. Specifically, the cavity array can be made
of superconducting microwave cavities embedded with su-
perconducting quantum interference device (SQUID) loops,
and the two-photon drives can be implemented by modulating
the flux threading the SQUID loops [33–37]. We note that
the strength of the two-photon drives should be quite large,
of the order of �a/2. In this devices, the value of η is propor-
tional to the strength of the flux modulation and the ultimate
limit of the two-photon strength is set by the instability of the
parametric process. When the flux modulation at frequency
ωs is in resonance with twice the frequency of the microwave
mode ωs = 2ωa, the strength of the two-photon drive cannot
exceed the relaxation rate of the microwave mode, otherwise
the system becomes unstable. The relaxation rate can be quite
small, so that under these conditions it is clearly not possible
to achieve the values of η needed for our proposal. However,
our system works in a different regime. We assume that the
parametric process is not resonant, but it is detuned by the
value �a, i.e., ωs = 2(ωa − �a). In this situation the instabil-
ity is moved to much larger values and the system is stable for
any value of η2 that does not exceed �2

a/4 by more than the
square of the relaxation rate. This is the case in our proposal.
For this reason, it should be possible, in principle, to use suf-
ficiently strong flux modulation and achieve the large values
of η used in this work (see Ref. [48] for a recent theoreti-
cal proposal which employs detuned parametric drives). This
would allow us to achieve long-range interactions between
superconducting qubits [20,23–27] or Rydberg atoms [49,50]
coupled to microwave cavities. Alternatively, in the optical
regime, two atomic emitters could be coupled to an array of
optical cavities [28–32]. In this case, the parametric drives
can be realized by degenerate parametric downconversion
[38–40].

In summary, we have proposed an efficient scheme for
enhancing long-range interaction between two atoms medi-
ated by a coupled-cavity array. We show that when each
site of the photonic chain is subjected to a parametric drive,
the localization length of the single-photon bound-state wave
function and the effective atom-photon coupling strength are
significantly increased, enabling a huge enhancement of the
coherent photon-mediated interaction between two distant
atoms. So, long-range entanglement and quantum informa-
tion transfer between two remote atoms can be achieved.
Our proposal is general, and can also be applied to other
quantum systems, such as phononic [51,52] and magnonic
crystals [53,54].
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APPENDIX A: LOCALIZATION LENGTH
OF SINGLE-PHOTON BOUND-STATE WAVE FUNCTION

In this section, we describe the procedure to derive the
single-photon bound-state wave function and corresponding
localization length. If we consider the atom A interacting with
the coupled-cavity array, the single-photon bound state can be
written as

|〉 = cos(θ )|Vac〉|eA〉 + sin(θ )
∑

k

ck|1k〉|gA〉. (A1)

By substituting |〉 into the Schrödinger equation with
Hs,k|〉 = �BS|〉, where Hs,k is defined in Eq. (8) of the
main text, one can obtain the coupled equations

cos(θ )(�BS − �q) = G√
2N + 1

∑
k

sin(θ )cke−ik j,

sin(θ )
(
�BS − �k

s

)
ck = G√

2N + 1
cos(θ )eik j . (A2)

Solving these equations will yield

ck = Geik j

tan(θ )
√

2N + 1[(δ + 2J ) + 2J cos(k)]
,

δ = � +
∫ π

−π

G2

(δ + 2J ) + 2J cos(k)

dk

2π
,

tan2(θ ) =
∫ π

−π

G2

[(δ + 2J ) + 2J cos(k)]2

dk

2π

(A3)

with δ = �BS − �U and � = �q − �U . In Eq. (A3), we sub-
stituted the sums with integrals according to

∑
k[1/(2N +

1)] → ∫ π

−π
(dk/2π ). Integrating Eq. (A3) for δ > 0 gives us

tan(θ ) = G
√

δ + 2J
(δ2 + 4J δ)

3
2

,

δ = � + G2

√
δ2 + 4J δ

= � + G2
e

2δ
,

(A4)

where Ge = √
2G/(1 + 4J /δ)

1
4 is the effective atom-photon

coupling strength. Substituting Eq. (A4) into Eq. (A3) and
using the Fourier transformation cn = ∑

k cke−ikn/
√

2N + 1,
we can obtain the single-photon bound-state wave function in

the real space

cn =
∫ π

−π

Ge−ik(n− j)

tan(θ )[(δ + 2J ) + 2J cos(k)]

dk

2π

= (−1)|n− j|e− |n− j|
ξ

√
coth(1/ξ )

(A5)

with

ξ = 1

arccosh(1 + δ/2J )
. (A6)

Obviously, the photonic component has an exponentially de-
caying envelope around the atomic position j, and ξ denotes
the localization length.

APPENDIX B: PHOTON-MEDIATED
ATOM-ATOM INTERACTION

In this section, we show how to derive the photon-mediated
interaction of atoms. In the interaction picture, we can obtain
the coherent interaction between the atoms and the photonic
modes

HI
s,k =

∑
k

G√
2N + 1

[(β†
k σ A

−eik j + β
†
k σ B

−eikl )e−i(�q−�k
s )

+ (βkσ
A
+e−ik j + βkσ

B
+e−ikl )ei(�q−�k

s )]. (B1)

In the dispersive regime, the bound state gives rise to an
effective dipole-dipole interaction between the two atoms. By
eliminating the photonic modes, the atom-atom interaction is
described by the effective Hamiltonian

HAB = Gl j (σ
A
+σ B

− + σ A
−σ B

+ ), (B2)

where the photon-mediated atom-atom coupling strength is
given by

Gl j =
∫ π

−π

G2eik(l− j)

(� + 2J ) + 2J cos(k)

dk

2π

= (−1)|l− j| G2

√
�2 + 4�J

e− |l− j|
ξ ′ ,

= (−1)|l− j| [
√

2G/(1 + 4J /�)
1
4 ]2

2�
e− |l− j|

ξ ′ . (B3)

Here ξ ′ = 1
arccosh(1+�/2J ) is the localization length, which

characterizes the interaction range between two spatially sep-
arated atoms. These equations are consistent with the results
of the previous section in the dispersive regime where δ ∼ �.
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E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, Science 362,
662 (2018).

[4] F. Borjans, X. G. Croot, X. Mi, M. J. Gullans, and J. R. Petta,
Nature (London) 577, 195 (2020).

[5] A. W. Glaetzle, R. M. W. van Bijnen, P. Zoller, and W. Lechner,
Nat. Commun. 8, 15813 (2017).

[6] C. L. Degen, F. Reinhard, and P. Cappellaro, Rev. Mod. Phys.
89, 035002 (2017).

033717-6

https://doi.org/10.1103/PhysRevX.8.041018
https://doi.org/10.1103/PhysRevX.8.011002
https://doi.org/10.1126/science.aau4691
https://doi.org/10.1038/s41586-019-1867-y
https://doi.org/10.1038/ncomms15813
https://doi.org/10.1103/RevModPhys.89.035002


ENHANCING STRENGTH AND RANGE OF ATOM-ATOM … PHYSICAL REVIEW A 108, 033717 (2023)

[7] C. Schimpf, M. Reindl, D. Huber, B. Lehner, S. F. C. D. Silva,
S. Manna, M. Vyvlecka, P. Walther, and A. Rastelli, Sci. Adv.
7, eabe8905 (2021).

[8] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R.
Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell
et al., Nature (London) 574, 505 (2019).

[9] M. Gong, S. Wang, C. Zha, M.-C. Chen, H.-L. Huang, Y.
Wu, Q. Zhu, Y. Zhao, S. Li, S. Guo et al., Science 372, 948
(2021).

[10] A. J. Sigillito, M. J. Gullans, L. F. Edge, M. Borselli, and J. R.
Petta, npj Quantum Inf. 5, 110 (2019).

[11] F. Marxer, A. Vepsalainen, S. W. Jolin, J. Tuorila, A. Landra,
C. Ockeloen-Korppi, W. Liu, O. Ahonen, A. Auer, L. Belzane
et al., PRX Quantum 4, 010314 (2023).

[12] W. Pfaff, B. J. Hensen, H. Bernien, S. B. van Dam, M. S. Blok,
T. H. Taminiau, M. J. Tiggelman, R. N. Schouten, M. Markham,
D. J. Twitchen, and R. Hanson, Science 345, 532 (2014).

[13] W. D. Newman, C. L. Cortes, A. Afshar, K. Cadien, A.
Meldrum, R. Fedosejevs, and Z. Jacob, Sci. Adv. 4, eaar5278
(2018).
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