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Single-lossy-nanoparticle sensor with a dissipatively coupled photonic molecule
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An ultrasensitive optical whispering-gallery mode (WGM) sensor is highly desirable for detecting nanoparti-
cles and has been widely used in human disease diagnosis and environment monitoring. The sensing mechanisms
of a WGM sensor include mode shift, mode splitting, and mode broadening. To enhance mode broadening is a
quite useful way to improve the sensitivity for detecting lossy nanoparticles, but it has not been realized. Here, we
propose a feasible scheme for realizing a single-lossy-nanoparticle sensor with a dissipatively coupled photonic
molecule and show that the significant enhancement of mode broadening can be obtainable at exceptional points
when compared with a single-microcavity sensor subject to the same perturbation. The enhancement of mode
broadening originates from the complex-square-root topology near exceptional points and the unique feature of
level attraction in dissipative coupling, i.e., the repelled damping parameters of supermodes. Furthermore, we
show that the enhancement factor in mode broadening is larger than that in mode splitting when the dissipatively
coupled photonic molecule works in the strong-coupling regime. Therefore, our scheme may be useful to resolve
smaller changes in mode broadening and improve the detection limit of lossy-nanoparticle sensing.
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I. INTRODUCTION

Single nanoparticle sensing with ultrahigh sensitivity is of
critical importance for many applications, e.g., environmental
monitoring and early stage diagnosis of diseases [1]. Opti-
cal microcavity holds great potential in a single nanoparticle
sensor because of significant enhancement of light-matter
interaction with their high quality factor and small mode
volumes [2,3]. Generally, sensing mechanisms for detecting
different types of nanoparticles with a whispering-gallery
mode (WGM) optical microcavity include mode shift [4],
mode splitting [5], and mode broadening [6–8]. For lossy
nanoparticles, e.g., carbon nanotubes and gold nanorods, they
may strongly absorb the probe light and cause a signif-
icant broadening in the linewidth of cavity mode, thus a
mode broadening sensing mechanism will be quite appro-
priate [6–8]. The distinct advantage of a mode broadening
sensing mechanism is that it is insensitive to the fluctua-
tion of environment temperature or system instability and
it also removes the requirement of narrow linewidth (i.e.,
ultrahigh quality factor), which may greatly reduce the ex-
perimental difficulty. In order to further improve the sensing
sensitivity, considerable efforts have been made [9–14]. In
Ref. [9], Jing et al. have shown that nanoparticle-induced
mode splitting is significantly enhanced in a rotating WGM
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microcavity due to frequency shifts from the Sagnac effect. In
Ref. [10], Wiersig has found that a single optical microcavity
operating at non-Hermitian spectral degeneracies, i.e., excep-
tional points (EPs), is useful for enhancing mode splitting,
which has already been demonstrated with a single WGM
microcavity [13]. The enhancement of mode splitting stems
from the complex-square-root topology near EPs for the non-
Hermitian system and the unique feature of level repulsion
in coherent coupling. Furthermore, Chen et al. have shown
that parity-time symmetric WGM microcavities operating at
EPs can also exhibit larger mode splitting than the conven-
tional sensors with a single microcavity [14]. To the best of
our knowledge, most of the existing sensing enhancement
schemes only focus on mode splitting [10–14], but the en-
hancement of mode broadening for lossy-nanoparticle sensing
has not been studied yet. Considering the distinct advantage
of mode broadening in lossy-nanoparticle sensing, it may be
valuable to investigate the enhancement mechanism of mode
broadening for the potential application of the WGM sensor.
Unfortunately, we find that the enhancement of mode broad-
ening for lossy-nanoparticle sensing may not be realizable
with parity-time symmetric or coherently coupled microcavi-
ties directly as that in Ref. [14]; therefore, it is highly desirable
to study this issue with other types of coupled microcavities.

Coupled microcavities are usually named as photonic
molecules because the formation of optical supermodes are
analogous to the electronic states in molecules formed by
atoms [15]. Because of the additional degrees of freedom to
tailor the optical density of states and the spatial distribution
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of modes, the photonic molecule has been especially at-
tractive for fundamental studies and practical applications,
e.g., single-mode lasing [16], biosensor [17], and parity-time
symmetry [18,19]. Generally, the photonic molecule may be
formed in two different ways—the directly coupled geometry
[15] and the indirectly coupled geometry (e.g., by waveguide
[20–22], microcavity [23], or multilevel atom [24]). Up to
now, a photonic molecule in the directly coupled geometry
has been well studied, whereas the indirectly coupled ge-
ometry has not been effectively explored due to the lack of
special utility. Recently, it has been shown that the coupling
in the indirectly coupled geometry is tunable from traditional
coherent coupling to dissipative coupling by the propagat-
ing phase [21,22] or frequency detuning [23]. Dissipative
coupling has attracted great interest in an optomechanical
system [25], plasmonic nanostructure [26], and cavity spin-
tronics [27]. Especially, dissipative photon-magnon coupling
has been demonstrated to be responsible for level attrac-
tion [27], nonreciprocity and unidirectional invisibility of
microwave propagation [28], and steady Bell state generation
[29]. Therefore, it may be of great importance to explore
the new functionalities and deeply understand the existing
phenomena with the dissipatively coupled photonic molecule
in the indirectly coupled geometry.

Inspired by Refs. [10–14,23], we propose a feasible
scheme for realizing a single-lossy-nanoparticle sensor with
a dissipatively coupled photonic molecule and show that the
significant enhancement of mode broadening can be obtain-
able at EPs when compared with a single WGM microcavity
sensor subject to the same perturbation. The enhancement
of mode broadening originates from the complex-square-root
topology near EPs and the unique feature of level attraction
in dissipative coupling, i.e., the repelled damping parame-
ters of supermodes. On the other hand, we show that the
strong dissipative coupling of the photonic molecule cannot
be reachable directly [23], which hinders its potential applica-
tion in the nanoparticle sensing. To overcome this difficulty,
we consider asymmetric coupling of microcavities, impose
the gain to suppress the additional loss in the microcavity,
and show that strong dissipative coupling may be attainable.
Benefitting from the strong dissipative coupling, we show that
the enhancement factor in mode broadening is larger than
that in mode splitting [14]; thus our scheme may be useful
to resolve smaller changes in mode broadening and improve
the detection limit of lossy-nanoparticle sensing.

II. DISSIPATIVELY COUPLED PHOTONIC MOLECULE

The schematic diagram for the dissipatively coupled pho-
tonic molecule is illustrated in Fig. 1, where the active WGM
microcavity μR1 with the gain ξ and the passive WGM mi-
crocavity μR2 are both evanescently coupled to the highly
dissipative WGM microcavity μR3 with the strength κ13 and
κ23, respectively. For simplicity, we only consider one of
two modes a j (clockwise or counterclockwise), i.e., single-
mode approximation, in jth ( j = 1, 2, 3) microcavity with
the eigenfrequency ω0

j and the intrinsic loss γ 0
j and then will

take the effect of backscattering into account in Sec. III. By
defining the complex frequencies ω′

1 = ω0
1 + i(ξ − γ 0

1 )/2 and
ω′

j = ω0
j − iγ 0

j /2 ( j = 2, 3), we could denote the Hamilto-

FIG. 1. Schematic diagram of dissipatively coupled photonic
molecule. Active WGM microcavity μR1 and passive WGM micro-
cavity μR2 are indirectly coupled by the highly dissipative WGM
microcavity μR3.

nian of the system as H = H0 + V with (h̄ = 1)

H0 =
3∑

j=1

ω′
ia

†
j a j, V = (κ13a†

1a3 + κ23a†
2a3 + H.c.). (1)

Due to the high loss of microcavity μR3, i.e., γ 0
3 � (γ 0

1 , γ 0
2 ),

we can adiabatically eliminate its mode using the Schrieffer-
Wolff transformation by defining the generator as follows
[30]:

S = κ13

ω′
1 − ω′

3

(a†
1a3 − a†

3a1) + κ23

ω′
3 − ω′

2

(a†
3a2 − a†

2a3). (2)

It is straightforward to justify the identity V + [S, H0] = 0,
and hence the effective Hamiltonian can be written as

Heff = eSH e−S ≈ H0 + 1

2
[S,V ]

=
∑
j=1,2

(
ω j − i

γ j

2

)
a†

j a j + κ12(a†
1a2 + a†

2a1). (3)

As the microcavity μR3 is decoupled with others, we have
discarded its effect to the dynamical evolution of the system
and hence obtain the indirectly coupled photonic molecule
with the strength κ12. The renormalized eigenfrequencies, loss
rates, and the effective coupling between microcavity modes
a1 and a2 are

ω j − i
γ j

2
= ω′

j + κ2
j3

ω′
j − ω′

3

, (4)

κ12 = κ13κ23

2

(
1

ω′
1 − ω′

3

+ 1

ω′
2 − ω′

3

)
. (5)

Evidently, the decoupling of dissipative mode a3 also modifies
the eigenfrequencies of modes a1 and a2 with the additional
loss, and the effective coupling κ12 combines the features of
both coherent coupling and dissipative coupling, which are
still to be explored. If two microcavities μR1 and μR2 are
identical, i.e., ω0

1 = ω0
2 and γ 0

1 = γ 0
2 , we can simplify the

effective coherent coupling as κ12 = 2κ13κ23/(ω0
1 − ω0

3 ) for
large detuning ω0

j − ω0
3 � γ 0

3 − γ 0
j . On the other hand, their

effective loss rates remain unchanged as γ1 = γ 0
1 − ξ and

γ2 = γ 0
2 according to Eq. (4). If the following parameters

κ13 = κ23 ≈ ω0
1 − ω0

3 ≈ 10γ 0
3 ≈ 50γ 0

1 ≈ 50γ 0
2 are satisfied,

the strong coherent coupling κ12 ≈ 50γ1 ≈ 50γ2 will be re-
alizable, which is consistent with the result in the cavity
quantum electrodynamics system [31].

On the other hand, if the frequency detunings of three
microcavities are far less than the corresponding intrinsic
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loss detunings ω0
j − ω0

3�γ 0
3 − γ 0

j , the effective loss rates and
coupling strength can be approximately expressed as

γ1 = γ 0
1 − ξ + 4κ2

13

γ 0
3 − γ 0

1 + ξ
, γ2 = γ 0

2 + 4κ2
23

γ 0
3 − γ 0

2

, (6)

κ12 = 2κ13κ23

(
1

γ 0
3 − γ 0

1 + ξ
+ 1

γ 0
3 − γ 0

2

)
i. (7)

To clearly analyze the dissipative coupling feature of the sys-
tem, we discuss the cases with and without the gain in the
microcavity μR1, respectively. First, we consider the case of
zero gain as Ref. [23] and the additional loss will dominate
the decay of microcavities for the strong-coupling regime
(κ13, κ23, γ

0
3 ) � (γ 0

1 , γ 0
2 ); thereby we can derive the ratios of

effective coupling strength to the loss rates as
|κ12|
γ1

≈ κ23

2κ13
,

|κ12|
γ2

≈ κ13

2κ23
. (8)

Therefore, it is impossible to simultaneously realize the
strong coupling for microcavities μR1 and μR2 (|κ12| � γ1,

|κ12| � γ2) regardless of the choice of the coupling strength
κ13 and κ23.

However, the situation will be significantly changed for the
existence of gain in the active microcavity μR1. According to
Eq. (7), the amplitude of effective coupling decreases slightly
with the increase of gain, but the loss of the microcavity
μR2 remains unchanged as shown in the second term of
Eq. (6); thus the asymmetric coupling of microcavities μR1

and μR2 with microcavity μR3 (κ13 � κ23) could lead to
the strong coupling of the microcavity μR2, i.e., |κ12|/γ2 ∼
κ13/κ23 � 1. On the other hand, the loss of the microcavity
μR1 can be greatly suppressed because of the gain as shown
in the first term of Eq. (6) and it may also approach the strong-
coupling regime |κ12| � γ1 in principle. If we choose the
parameters of systems κ13 = 10κ23 and κ13 = γ 0

3 = ξ/1.56,
the ratios of effective coupling strength to loss of microcav-
ities μR1 and μR2 will be |κ12|/γ1 ≈ 10 and |κ12|/γ2 ≈ 4,
respectively. The key elements for realizing strong dissipative
coupling are the ultralow loss of microcavity μR1 suppressed
by the gain and the asymmetric coupling of two microcavities,
which provides an alternative platform for studying the related
issues of the dissipatively coupled photonic molecule.

We now analyze the symmetry of the dissipatively coupled
photonic molecule in the context of space-reversal and time-
reversal operations, where parity operator means the exchange
of modes a1 and a2 and time-reversal operator corresponds to
complex conjugate. In the rotating frame of 1

2

∑
j=1,2(ω1 +

ω2)a†
j a j , the effective Hamiltonian of dissipatively coupled

photonic molecule Heff is just antiparity time symmetric for
the identical loss rates γ1 = γ2 = γ [22]. On the other hand,
we solve the eigenequation det(Heff − ωI ) = 0 in the basis of
{a1, a2} and then obtain the eigenfrequencies of two super-
modes as follows:

ω± = 1

4

2∑
j=1

(2ω j − iγ j )

± 1

2

√
[2ω1 − 2ω2 − i(γ1 − γ2)]2 + 4κ2

12. (9)

We investigate the feature of its energy level by plotting the
energy difference ω± − ω1 against the frequency detuning

FIG. 2. (a) Level repulsion and (b) level attraction of the pho-
tonic molecule for coherent coupling and dissipative coupling,
respectively. The parameters |κ12| = 10γ are taken into account.

ω2 − ω1 in Fig. 2. For coherent coupling, we can see that
the eigenfrequencies Re(ω+) (black solid line) and Re(ω−)
(red dashed line) are repelled, but the damping parameters
Im(ω+) (pink dotted line) and Im(ω−) (blue dot-dashed line)
are attracted in Fig. 2(a), which is known as level repulsion.
The opposite, called level attraction [27], is true for dissipative
coupling as shown in Fig. 2(b), and the damping parameters
Im(ω+) (pink dotted line) and Im(ω−) (blue dot-dashed line)
of supermodes are repelled, which is the key point for realiz-
ing a lossy-nanoparticle sensor. The feature of level repulsion
in a coherently coupled photonic molecule has been employed
for the enhancement of mode splitting [10–14], while the
feature of level attraction in a dissipatively coupled photonic
molecule may be useful for the enhancement of mode broad-
ening, which will be discussed in the following section.

III. SINGLE-LOSSY-NANOPARTICLE SENSOR

In this section, we investigate a single-lossy-nanoparticle
sensor with a dissipatively coupled photonic molecule, which
is depicted in Fig. 3. We must point out that the following
discussion of a lossy-nanoparticle sensor may be universal
with a generally dissipatively coupled photonic molecule
or dissipative backscattering in a single WGM microcavity
[12], which may be not restricted to our scheme in Sec. II.
By considering the clockwise (cw) and counterclockwise
(ccw) modes in each WGM microcavity, we can express the

FIG. 3. Schematic diagram of single-lossy-nanoparticle sensor
with dissipatively coupled photonic molecule, where iκ is the
strength of the dissipative coupling. The black sphere denotes the
lossy nanoparticle with the perturbation strength −iε.
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Hamiltonian of a photonic molecule sensor as follows:

Hs0 =
∑
j=1,2

∑
l=1′,2′

(
ω j − i

γ j

2

)
a†

jl a jl

+
j �= j′∑

j, j′=1,2

l �=l ′∑
l,l ′=1′,2′

iκa†
jl a j′l ′ . (10)

a†
jl , a jl are the creation and annihilation operators of l mode

in j( j′)th WGM microcavity where 1′(2′) stands for cw (ccw)
and κ is the strength of dissipative coupling. Without loss of
generality, we assume that a lossy nanoparticle is introduced
into the mode volume of microcavity μR1 and it may induce
the absorption loss and scattering loss of the cavity mode.
To reveal the enhancement mechanism of mode broadening,
we assume that the lossy-nanoparticle-induced backscattering
and forward scattering is negligible; thus the main contribu-
tion is the absorption loss [7], which can be labeled with
perturbation strength −iε(ε > 0). The perturbation Hamilto-
nian of the single lossy nanoparticle can be given by

Hs1 = −iε
∑

l,l ′=1′,2′
a†

1l a1l ′ . (11)

Thus the total Hamiltonian is H = Hs0 + Hs1 and we
can obtain the corresponding eigenfrequencies by solv-
ing the eigenequation det(H − ωI ) = 0 in the basis of
{a11′ , a12′ , a21′ , a22′ }. If the loss rates of two WGM microcav-
ities are identical, i.e., γ1 = γ2 = γ , the eigenfrequencies of
supermodes can be expressed as follows:

ω1± = (ω1 + ω2)

2
− i

γ

2
− iε ±

√
(ω1 − ω2 − 2iε)2

4
− κ2,

(12)

ω2± = (ω1 + ω2)

2
− i

γ

2
±

√
(ω1 − ω2)2

4
− κ2. (13)

From Eqs. (12) and (13), we see that the incoming lossy
nanoparticle lifts the eigenfrequency degeneracy of the su-
permodes: two supermodes experience both a frequency shift
and linewidth broadening, whereas the other two supermodes
are not affected and can serve as reference signals. Here, we
may define the sensing sensitivity as mode broadening of a su-
permode relative to its reference signal Im(�ω±)=Im(ω1± −
ω2±). From Eqs. (12) and (13) we can obtain

�ω± = −iε ± (√
(κc − iε)2 − κ2 −

√
κ2

c − κ2
)
, (14)

where the critical coupling strength can be obtained from
Eq. (13) with the expression κc = |ω1 − ω2|/2.

For a single WGM microcavity sensor with the same
perturbation, we can derive the eigenfrequencies of two su-
permodes from Eq. (12) by setting κ = 0 and then obtain
�ωsingle = −i2ε, which is just linear dependence of mode
broadening on the perturbation strength. Here, we thus define
an enhancement factor of mode broadening as follows:

η± =
∣∣∣∣ Im(�ω±)

Im(�ωsingle )

∣∣∣∣, (15)

FIG. 4. Enhancement factor η+ (blue solid line) and η− (red
dashed line) of mode broadening versus the coupling strength of dis-
sipatively coupled photonic molecule. The critical coupling strength
is set as κc = 8ε.

which can be explicitly calculated with the following expres-
sion:

η± = 1
2

∣∣1∓Im
[√

(κc − iε)2 − κ2 −
√

κ2
c − κ2

]
/ε

∣∣. (16)

We now can numerically analyze the influence of the
coupling strength κ on the enhancement factor of mode broad-
ening η± based on Eq. (16). In Fig. 4, we plot the enhancement
factors η+ (blue solid line) and η− (red dashed line) with
respect to the coupling strength of the dissipatively coupled
photonic molecule when κc = 8ε. From Fig. 4, we can see that
the enhancement factor of mode broadening exhibits a sudden
change in the nearby EP regime. Especially, the enhancement
factor can significantly increase in the regime of κ>κc.

For the non-Hermitian or anti-parity-time-symmetric sys-
tem, we are interested in the feature of the square-root
topology of the complex energy eigensurface at EPs [10–14].
We can exactly obtain the enhancement factor of mode broad-
ening for the sensor operating at EPs κ = κc with the simple
expression

�ωEP = −iε ±
√

−iε(ω1 − ω2) − ε2. (17)

When the lossy nanoparticle is sufficiently small, i.e., ε�κc,
we can find Im(�ωEP) ≈ −√

κcε and it shows the square-root
dependence of mode broadening on the perturbation strength
ε at EPs, which may be universal for the non-Hermitian sys-
tem at EPs [10–14].

As the lossy nanoparticle is small enough, the enhance-
ment factor η± ≈ √

κc/(4ε) may be sufficiently large in the
strong-coupling regime of photonic molecule κc � ε. It may
be pointed out that if a lossy nanoparticle is introduced
into the parity-time symmetric WGM photonic molecule, we
can calculate its mode broadening Im(�ω′

EP) = Im(−iε ±√|γ |ε) = −ε based on Ref. [14]. Therefore, the enhancement
of mode broadening for lossy-nanoparticle sensing may not
be realizable with the parity-time symmetric WGM photonic
molecule directly as that in Ref. [14]. On the other hand,
the enhancement factor η± in mode broadening is also larger
than that [η± = √|γ |/(8ε)] in mode splitting for the same
perturbation strength such that the strong-coupling condition
κc � γ could be satisfied [14]. In order to intuitively show
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TABLE I. Sensing sensitivity and enhancement factor for differ-
ent sensing mechanisms.

Mode splitting Mode broadening
Re(�ωEP) Im(�ωEP)

Single microcavity 2ε −2ε

Photonic molecule
√|γ |ε/2 Ref. [14] −√

κcε

Enhancement factor
√|γ |/(8ε) Ref. [14]

√
κc/(4ε)

the advantage of our scheme, we have summarized the sens-
ing sensitivity and enhancement factor for different sensing
mechanisms in Table I.

IV. EXPERIMENTAL FEASIBILITY AND CONCLUSION

We briefly discuss the feasibility of our sensing scheme
based on the experimentally accessible technology. First, we
analyze the potential construction of a lossy-nanoparticle
sensor, i.e., dissipatively coupled photonic molecule. Experi-
mentally, each WGM microcavity may be readily constructed
with microtoroid [18] and their eigenfrequencies can be tuned
with a microheater for thermal tuning [32]. The coupling
strength between microtoroids may be tunable with the pre-
cise manipulation of their relative distance, in which the
nanopositioning systems are indispensable [18,32]. To be con-
crete, three microtoroids can be fabricated at the edges of
separate chips placed on nanopositioning systems. Using a
10 nm step-resolution piezoelectric stage, each microtoroid
can be held on the nanopositioning systems that could be
manipulated relative to each other; thus the distance and hence
the coupling strengths κ13 and κ23 can be precisely controlled
[18]. The loss of microcavity μR3 may be induced by a
chromium-coated silica-nanofiber tip such that the highly dis-
sipative condition γ 0

3 � (γ 0
1 , γ 0

2 ) can be reachable [33]. On
the other hand, the active microcavity μR1 can be fabricated
from silica with Er3+ dopants and its gain ξ is adjustable with
the power of pump laser [18,34]; thus the loss of the micro-
cavity μR1 can be greatly suppressed. Therefore, the required
experimental platform for constructing a lossy-nanoparticle
sensor can be realizable with the experimentally accessible
technology [18,32,34]. It must be pointed out that for the sake
of enhancing mode broadening the accurate manipulation of
the coupling strengths κ13 and κ23, gain ξ and loss γ 0

3 in the
coupled microcavities is required, which may increase the
experimental difficulty in contrast to the schemes with a single
microcavity.

To discuss the performance of our lossy-nanoparticle sen-
sor, we can choose a 13 nm × 5 nm gold nanorod as the
analyte and the induced linewidth change for a single WGM

microcavity is about 4.05 MHz, which corresponds to the
perturbation strength of about ε = 2.03 MHz [8]. However,
the experimental parameters, e.g., the quality factor of mi-
crocavities and the wavelength of probe laser, in coupled
microcavities [18,33] are not consistent with those in mode
broadening sensing for lossy nanoparticles [8]. Nevertheless,
the coupling strength of microcavities, e.g., κc ≈ 16 MHz,
which is far larger than the perturbation strength ε [18,33],
can still be reachable; then the enhancement factor of 1.40 for
mode broadening is obtainable. In Ref. [13], the enhancement
factor of 2 for mode splitting has been realized at EPs of
a single microcavity with the perturbation strength of about
ε = 5 MHz. By considering the same perturbation strength for
absorption loss and loss rate of microcavity μR1 as Ref. [13],
we can theoretically obtain the enhancement factor of 5.6 for
mode broadening in the strong-coupling regime κc = 4γ .

In conclusion, we have proposed a feasible scheme for
realizing a single-lossy-nanoparticle sensor with a dissipa-
tively coupled WGM photonic molecule. It has been shown
that the square-root dependence of mode broadening on the
perturbation strength and significant enhancement in mode
broadening can be obtainable at EPs when compared with
a single WGM microcavity sensor subject to the same per-
turbation. The enhancement of mode broadening originates
from the complex-square-root topology near EPs and the
unique feature of level attraction in dissipative coupling and
we show that the enhancement factor in mode broadening is
larger than that in mode splitting when the dissipatively cou-
pled photonic molecule works in the strong-coupling regime.
Our scheme may be of great importance in not only the
sensitivity enhancement mechanism but also the practical ap-
plication of lossy-nanoparticle detection with a WGM sensor.
In the future, it may be useful to resolve smaller changes in
mode broadening and improve the detection limit of lossy-
nanoparticle sensing.
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