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The thin-film planar cavity implanted in the Mössbauer nuclei has been developed as a powerful platform
to study the light-matter interaction in the x-ray band. Herein the asymmetric and symmetric profiles of Fano
interference are studied by controlling the collective effect and modifying the cavity structure. It is found that the
asymmetric profiles in the overcritical and undercritical regimes are the Fano-Lorentz shape, and the asymmetry
of the profile is determined by cosϕ rather than cotϕ in the framework of the initial Fano theory with ϕ being
the phase shift of the continuum. In addition, the Fano-Lorentz profile not only can be controlled by the phase
difference of the two pathways, but also can be adjusted by the weight of the normal Fano resonance in the
Fano-Lorentz profile through regulating the collective effect of the nuclear ensemble. By varying the nuclear
abundance at the cavity mode angle, the transformation between the symmetric peak and valley is observed in the
overcritical regime, whereas the symmetric peaks are always presented in the undercritical regime. Furthermore,
a particularly interesting phenomenon of a flat reflectivity, as if the resonant nuclear ensemble is not excited,
is predicted in the nuclear ensemble at a critical nuclear abundance in the overcritical regime. The present
results will not only confirm the presence of the complex q, but also open up an avenue to study the decoherence
processes via the Fano-Lorentz shape in the thin-film planar cavity.
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I. INTRODUCTION

An ensemble of N static atoms can be excited into an
entangled state by the photon field, resulting in some intrigu-
ing effects caused by the resonant dipole-dipole interaction
(RDDI), such as directed spontaneous emission [1,2], sub-
radiance [3,4], as well as the collective Lamb shift (CLS)
[5–7] that arises from the surreal virtual process within the
atomic ensemble. Distinguished by the characteristic spatial
phase eik·r j , the entanglement of the atomic ensemble can
be classified into the symmetric Dicke state and the timed
Dicke state according to different wavelength limits, where r j

represents the position of the jth atom [5]. For the timed Dicke
state, the RDDI can be precisely controlled by the position of
the emitters, but the number of emitters is of course extremely
limited [7,8], i.e., the timed Dicke state is not suitable for
the strong collective effect. In order to exhibit the strong
collective effect, the symmetric Dicke state requires a longer
wavelength than the interatomic distance, such that each in-
dividual atom can be approximately regarded as identical and
the number of atoms can be greatly increased consequently by
the nanometer-thick atomic layer [6,9].

Except for the unique phenomena, the collective effect of
the atomic ensemble is also expected, because the enhance-
ment factor

√
N is important in various systems [10–14].

Benefitting from the enhancement of the collective effect,

*xinchao.huang@xfel.eu
†lfzhu@ustc.edu.cn

Rabi oscillation has been observed in the Rydberg atoms
bypassing the strong-coupling regime [15]. Additionally, the
enhancement can also speed up the spontaneous radiation,
resulting in the so-called superradiance (SR) that has been
observed widely in lots of subfields of physics including astro-
physics [16], cavity QED [9,17–19], quantum dots [20], Paul
trap [8], as well as Bose-Einstein condensates [21].

Over the past decade, x-ray quantum optics has thrived
with the development of high-brilliance synchrotron radiation
and the x-ray free electron laser (XFEL) [22–24]. Designed
with several nanometer-scale thickness layers and probed in
the milliradian grazing incidence as sketched in Fig. 1(a),
the thin-film planar cavity becomes one promising platform
to study the x-ray photons-matter interaction and opens an
avenue for x-ray quantum optics. Due to the small incident
angle, the field wavelength of the standing wave in the z
axis is significantly expanded, thus the effective symmetric
Dicke state can also be realized in the x-ray cavity, albeit the
short x-ray wavelength [9]. In addition, utilizing this artificial
system, a set of fundamental phenomena have been studied
such as CLS [9,25], electromagnetically induced transparency
[26,27], spontaneously generated coherence [28], and Rabi
oscillations [29], as well as controlling the core-hole life-
time [30], to name a few. In theory, Parratt formalism [31]
and layer formalism [32] have been used as benchmarks
for modeling the experimental results. In addition, the phe-
nomenological few-mode model [33,34], Green function [35],
as well as the ab initio quantum model [36] were also
developed in parallel to gain a deep understanding of the
mechanism.
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FIG. 1. The schematic design of the thin-film planar cavity. (a) The ensemble of the isotope (57Fe marked as the gray layer) is in the center
of the transparent guiding layer with the low-density material C. The cladding layers (purple) act as mirrors with the same high-electron-density
materials; for example, Pt is used for the overcritical regime and Pd is used for the undercritical regime in this work. Excited by the cavity
mode, the symmetric Dicke state of the nuclear ensemble has cavity-induced CLS and SR. (b) The reflectivity of the bare cavity with some
notable dips that represent the excited cavity modes. (c) At the energy scale of SR, the reflectivity of the bare cavity (rc) can be regarded as the
continuum, while the reflectivity of the nuclear ensemble (rN ) is the discrete state.

In this work, the collective effect is employed to control the
Fano interference, which is investigated via intercalating reso-
nant Mössbauer nuclei (57Fe) with various nuclear abundance
in the thin-film planar cavity. Calculated by the benchmark
CONUSS package [37,38], the asymmetric profiles of the Fano
interference show inconsistency with the phase shift of the
two pathways in the framework of the real parameter q. By in-
troducing the complex q, this inconsistency can be explained
by treating the asymmetric profiles in the overcritical and
undercritical regimes as the Fano-Lorentz type viz. the inco-
herent superposition between the normal Fano resonance and
a Lorentz peak. In the framework of the Fano-Lorentz profile,
the weight and its range of normal Fano resonance are related
to the collective effect of the nuclear ensemble and cavity
regime, respectively. By adjusting the nuclear abundance, the
undercritical cavity always has the symmetric peak at the
cavity mode angle, while the transformation among the sym-
metric peak, flat line, and valley is observed in the overcritical
cavity. As for the flat line, it corresponds to a critical nuclear
abundance where the resonant nuclear ensemble seems to be
“unexcited” superficially. From the viewpoint of destructive
interference, this interesting phenomenon is explained self-
consistently by the controllable relative amplitude of the two
pathways [39].

II. MODEL

Containing different multilayer stacks of dielectric media,
the thin-film planar cavity is sketched simply in Fig. 1(a). The
ensemble of resonant Mössbauer nuclei is represented by the
gray layer and sandwiched between the transparent guiding
layers with low-density material. Cladding the purple layers
with the high-electron-density materials and thin thickness,

the external x-ray field can be coupled into the cavity evanes-
cently [40], and the reflectivity presents some notable dips
correspondingly at some grazing incident angles, as shown
in Fig. 1(b). As mentioned above, there are several methods
to study the properties of the thin-film planar cavity, such as
Parratt formalism [31] and the phenomenological few-mode
model [33,34]. Parratt formalism is convenient to calculate
the reflectivity of the multilayer system, but it cannot give
an analytic expression to understand the reflectivity behav-
ior deeply. As for the phenomenological few-mode model
[33,34], although it is not an ab initio method, it can explain
the reflectivity conveniently with the fitted cavity parameters
such as the coupling strength κR and cavity decay rate κ . It
should be noted that it is difficult to give a direct connection
between the cavity parameters in the phenomenological few-
mode model and the actual cavity parameters such as layer
thickness, because there is not an analytic expression for the
total reflectivity of a multilayer film by Parratt formalism.
In order to study the thin-film planar cavity deeply, the phe-
nomenological few-mode model is used in this work.

When the thin resonant layer is implanted at the antin-
ode of the cavity mode, according to the phenomenological
few-mode model, the nuclear ensemble can be excited to the
collective state

|E〉= 1√
N

N∑
n=1

|↓1 · · · ↑ j · · · ↓N 〉, (1)

where ↓ j and ↑ j are the ground and excited states of the
jth nucleus. For such a system, the total reflectivity is the
coherent superposition of two pathways, where rN is the con-
tribution from the nuclear ensemble and rc is from the bare
cavity without the resonant Mössbauer nuclei, and the spectral
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observation in reflectivity can be written by a general expres-
sion [34,41]

|R|2=
∣∣∣∣∣|rc|eiϕ + cN�s / 2

� − �LS + i
2 (N�s + γ )

∣∣∣∣∣
2

. (2)

Here, |rc| is the magnitude of the bare cavity and ϕ is the
phase difference of the two pathways. c is the amplitude of the
discrete state. � = E − E0 is the energy detuning between the
external x-ray field E and the nuclear excited transition energy
E0. �LS is the cavity-induced CLS, and the spontaneous radi-
ation γ (4.7 neV) is broadened by N�s with the single-atom
broadening width �s and the nuclear number N . In the cavity,
due to the one-dimensional (1D)-standing waves driven by
the x-ray field, the number of the nuclei N is actually the
one-dimensional effective nuclear number N/A (area density
of the layer) [35,36] given by

N

A
= dρV fLMa (3)

Herein, A is the parallel quantization area. ρV is the density of
the Mössbauer nuclei, fLM is the Lamb-Mössbauer factor, and
d and a are the thickness and abundance of the resonant layer,
respectively [41].

Depending on the coupling strength κR of the external x-ray
field with the cavity mode, cavity decay rate κ , and cavity
detuning �c, the bare cavity fulfills rc = 2κR/(κ + i�c) − 1
in the phenomenological few-mode model [33,34], where the
cavity detuning �c reads

�c =
(

sin θth

sin θ
− 1

)
E0. (4)

Here, θth is the angle of the cavity mode and θ is the grazing
incident angle. In detail, the bare cavity has a large linewidth
(∼100 eV) owing to the low Q, which is far wider than the
broadened resonant width (∼μeV) [9]. In detail, κ > κR is
always present in the thin-film planar cavity due to incoherent
scattering and coupling between the cavity field and the out-
going modes [33]. Correspondingly, given by c = 2κR/κ , the
amplitude of the discrete state is relevant to cavity property.
Hence, c = 1 is the critical coupling condition and 1 < c < 2
(0 < c < 1) represents the overcritical (undercritical) regime
[33,34,42], which is similar to the magnon-photon system
[43].

Owing to the remarkably different linewidth, the reflec-
tivities from the bare cavity and nuclear resonance can be
regarded as the continuum and the discrete state, respectively.
As shown in Fig. 1(c), the interference between the continuum
and discrete state results in Fano resonance. Described by the
famous asymmetric parameter q, Fano resonance has been
studied widely in lots of fields [44–52]. Fulfilled q = cotϕ
quantitatively [53–55], the asymmetric parameter q depends
on the phase shift ϕ of the continuum, i.e., the profile of
the Fano resonance arises from the phase shift of the two
pathways essentially. For ϕ → nπ (n is an integer), q →
±∞, the Fano resonance will show the Lorentz shape. For
ϕ → (n + 1/2)π , q → 0, the Fano resonance will show the
symmetric “window resonance.” In general, the asymmetric
profile shows the right peak for the positive q and the left peak
for the negative q.

As for the collective effect of the nuclear ensemble, it
can be seen from Eq. (3) that the enhancement of collective
effect can be adjusted by the thickness or the abundance of
the resonant layer. However, for the different thickness of
the resonant layer the property of the cavity will be changed
concomitantly. Hence, the abundance of Mössbauer nuclei is
considered naturally, i.e., the weight of nuclear resonance pro-
cess in the resonant layer is changed by the nuclear abundance
without changing the absorption from electrons. Compared to
the electronic transition [30], changeable abundance of the
Mössbauer nuclei is also one of the advantages to the x-ray
quantum optics.

III. RESULTS AND DISCUSSION

A. Fano resonance with a complex q

In order to study the Fano resonance comprehensively,
different cavity regimes are designed in this work. The
overcritical, undercritical, and critical cavity structures are
Pt (0.5 nm) /C (20.8 nm) /56Fe (0.6 nm) /C (19.6 nm) /

Pt (2.5 nm), Pd (3.5 nm) /C (20.8 nm) /56Fe (0.6 nm) /

C (19.6 nm) /Pd (2.5 nm), and Pd (4 nm) /C
(18 nm) /56Fe (1.2 nm) /C (18 nm) /Pd (14 nm), respec-
tively. As mentioned above, the asymmetric profile of Fano
resonance depends on the phase shift ϕ of the continuum.
Through calculating the reflectivities and fitting them with
the phenomenological few-mode model, the parameters in the
phenomenological few-mode model are obtained. The fitted
process and cavity parameters are shown in the Appendix,
and the fitted results are shown in Fig. 2(a). Given by ϕ =
arg(2κR − κ − i�c) + arg(κ + i�c) + π/2, the phase shifts
ϕ of the continuum versus the cavity detuning �c are calcu-
lated and shown in Fig. 2(b). From Fig. 2(b), it can be seen
that the phase shift of the Fano interference in the thin-film
planar cavity can be understood in three cases:

(i) When the incident angle is smaller than the mode an-
gle (θ < θth), the phase shifts in the overcritical and critical
regimes are in the range (0, π

2 ), while it is in the range
(−π

2 , π
2 ) in the undercritical regime. In the framework of the

initial Fano theory, there are positive q for the former, while
there are both positive and negative q for the latter.

(ii) When the incident angle is larger than the mode an-
gle (θ > θth), the phase shifts in the overcritical and critical
regimes are in the range ( π

2 , π ), which means negative q
in the framework of the initial Fano theory. In addition, the
phase shift of (−π,−π

2 ) ∪ ( π
2 , π ) in the undercritical regime

represents both positive and negative q.
(iii) When the incident angle is closed to the mode angle

(θ → θth), in the framework of the initial Fano theory, the
overcritical, critical, and undercritical regimes correspond to
the symmetric valley, peak, and valley, respectively.

The phase shifts of the Fano interference versus the inci-
dent angle in different regimes are summarized in Table I.
Summing up, in the framework of the initial Fano theory, the
overcritical regime will show the asymmetric profile with pos-
itive q (left valley and right peak), and the symmetric valley
and asymmetric profile with negative q (left peak and right
valley). The critical regime will show the asymmetric profile
with positive q (left valley and right peak), and the symmetric
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FIG. 2. (a) The reflectivities of different cavity regimes and fitted by the phenomenological model. (b) The phase shifts of the Fano
interference versus the incident angle in different regimes.

peak and asymmetric profile with negative q (left peak and
right valley). The undercritical regime will have more diverse
asymmetric profiles in the thin-film planar cavity.

Replacing 56Fe with 57Fe (abundance = 100%), the spectra
calculated by the CONUSS package [37,38] are shown in Fig. 3.
Obviously, it can be seen that the asymmetry in the reflectiv-
ities shows a consistency in the angle offset regardless of the
cavity regimes. Namely, the asymmetric profiles with positive
q, symmetric Lorentz profile, and asymmetric profile with
negative q are observed for the negative angle offset (�θ <

0), mode angle (�θ = 0), and positive angle offset (�θ > 0),
respectively. It seems intuitively that there is a “contradiction”
with the previous conclusions as mentioned above, especially
the profiles in Figs. 3(c)–3(d), 3(f), and 3(i), i.e., there should
be more variable asymmetric profiles in Figs. 3(c) and 3(i) and
symmetric valley in Figs. 3(d) and 3(f).

For the Fano resonance, the general expression can be
expressed as∣∣∣∣q + ε

ε + i

∣∣∣∣
2

=
∣∣∣∣1 + q − i

ε + i

∣∣∣∣
2

=
∣∣∣∣1 + |q − i|e−iϕ

ε + i

∣∣∣∣
2

, (5)

where the phase difference ϕ is the argument angle of the com-
plex number (q − i). The asymmetry of the Fano resonance

TABLE I. Three cases of the phase shift in Fig. 2(b).

Phase range
Incident angle Overcritical Critical Undercritical

θ < θth

(
0, π

2

) (
0, π

2

) (− π

2 , π

2

)
θ = θth

π

2
π

2 - π

2

θ > θth

(
π

2 , π
) (

π

2 , π
) (−π, − π

2

) ∪ (
π

2 , π
)

is mainly related to the sign of Re(q − i), i.e., the positive
Re(q − i) has the right peak and left valley, and negative
Re(q − i) has the left peak and right valley. From the expres-
sion mentioned above, the sign of Re(q − i) depends on the
phase difference ϕ obviously. In detail, the sign of Re(q − i)
can be given by |q − i| cos ϕ.

For the general case such as the results in Ref. [55] where
q is a real number, Im (q − i) always equals -1. In this case,
Re(q − i) has a simpler expression of q = cotϕ, where not
only the sign of Re(q − i) but also its value can be given
concurrently. In such a case, the phase range of ϕ is (0, π )
and it makes the same sign for cosϕ and cotϕ.

Indeed, q = cotϕ is valid only for the case where the
asymmetric q is a real value in the initial situation of the
Fano theory [44,45]. Recently, due to the broken time-reversal
symmetry (TRS), the asymmetry q has been extended to the
complex plane [56–61]. For the complex q number, Im(q − i)
can be any value, and the phase range of ϕ is not limited to
(0, π ). In this case, the sign of the Re(q − i) must be given
by |q − i| cos ϕ, and its value is not determined only by the
phase difference. Therefore, it can be seen clearly that besides
the phase range being expanded obviously for the complex
q number, q = cotϕ is only the special case for the real q
number.

Combining Eqs. (2) and (5), the complex asymmetry q in
the thin-film planar cavity reads

q = c

rc
�e−iϕ + i, (6)

where � = N�s/(N�s + γ ) is the collective resonant
strength (CRS) with values from 0 to 1. It can be seen that the
value of q is directly connected with the CRS. In the presence
of the complex q, the Fano resonance can be considered as an
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FIG. 3. The numerical reflectivities calculated by the benchmark CONUSS package [37,38] around the first cavity mode in different cavity
regimes.

incoherent superposition between the normal Fano resonance
and an extra Lorentz peak, viz. the Fano-Lorentz or Fano-
Liouville shape [50,58,62]:

|R|2 = [Re(q) + ε]2

ε2 + 1
+ [Im(q)]2

ε2 + 1
. (7)

Here, ε = 2(� − �LS)/(N�s + γ ) is the dimensionless en-
ergy.

Remarkably, the extra Lorentz peak is symmetric, and its
contribution to both sides of the Fano profile is symmetric,
due to the incoherent superposition between the two sides
of the Fano profile and the Lorentz peak. Hence, the asym-
metry of the Fano-Lorentz profiles in the general case will
not be changed, i.e., the asymmetric profile with positive q
(left valley and right peak) will keep its asymmetric contour
except for changing the height and width of the profile. In
Figs. 3(c)–3(d), 3(f), and 3(i), however, the profiles are all
changed according to the initial Fano theory. Frankly speak-
ing, there are not symmetric valleys in Figs. 3(d) and 3(f) and
are not more variable asymmetric profiles in Figs. 3(c) and
3(i).

In order to explain the contradiction as mentioned above,
the initial Fano formula and Eq. (7) are compared. For the
real q, the asymmetry of the profile depends on cotϕ. For the
complex q, the asymmetry of the profile depends on the Re(q),
which is determined by the cosϕ. Hence, the dependence
on phase difference of the asymmetry of the Fano profile is
different for the real and complex q. In the critical regime,
the complex q can be regarded as the real number owing to

Re(q) 
 Im(q) [42,63]. In the overcritical and undercritical
regimes, their real and imaginary components of q are compa-
rable, so the Fano profiles influenced by Im(q) can be studied
in such cavity regimes.

B. Fano profiles influenced by Im(q)

In Eq. (2), the reflectivity of the symmetric peaks at the
cavity mode angle can be simplified as

|R|2 = (c − 1)2

η

(
ηε2

ε2 + 1
+ 1 − η

ε2 + 1

)
(8)

with

η = 1

1 + (
1 − c

c−1�
)2 . (9)

Here η represents the weight of the normal Fano resonance
in the Fano-Lorentz shape. Remarkably, it is the “window
resonance” with q = 0 when η = 1, while a Lorentz peak
when η = 0. In detail, the range of η depends on the cavity
regimes (c) mainly viz.

η ∈ (
0, 1

2

] ∪ [
1
2 , ηmax

]
, overcritical regime (1 < c < 2);

η ∈ (
0, 1

2

)
, undercritical regime (0 < c < 1).

For the undercritical regime cavity where the total cavity
decay rate is larger than the in- and outcoupling of light
from the cavity, the contribution from the dissipation channel
is larger than the resonant channel. Hence, η < 1

2 always
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FIG. 4. The Fano-Lorentz shapes adjusted by the nuclear abun-
dance in the overcritical and undercritical regimes.

means that the Lorentz peak is more significant than the
window resonance. In this case, the symmetric valley will
not be detected. On the contrary, for the overcritical regime
cavity where the total cavity decay is less than the in- and
outcoupling of light from the cavity, the contribution from
the dissipation channel is weaker than the resonant channel.
Hence, the Fano-Lorentz shape can show the symmetric valley
or peak, and the transformation depends on the weight factor
η. For a designed cavity, the weight η is only related to the
CRS(�) that can be adjusted by the nuclear abundance as
mentioned above. To this end, the profiles at the mode angle
with different nuclear abundances are calculated and shown in
Fig. 4. In the overcritical regime, the resonant peaks weaken
progressively and the symmetric valleys subsequently appear
as the abundance decreases, whereas there are always resonant
peaks in the undercritical regime.

More importantly, it should be noted that η = 1
2 , the

same weight factor between the window resonance and ex-
tra Lorentz peak, is a critical case in the overcritical regime
where the reflectivity is a constant that equals the value of the
bare cavity, i.e., the resonant nuclear ensemble seems to be
unexcited superficially. From Eq. (9), η = 1

2 corresponds to a
critical effective nuclear number Nc, which reads

Nc = 2(c − 1)

2 − c

γ

�s
. (10)

FIG. 5. The critical nuclear abundance in overcritical cavity with
different top-layer thickness. The red line represents the natural
abundance of 57Fe.

It can be seen that the nonzero effective nuclear number
requires the overcritical regime (1 < c < 2). It should be
noted that the flat line is not a particular case, but a com-
mon phenomenon in the overcritical cavity regime, i.e., the
critical nuclear abundance is different in different overcritical
cavities. For the thin-film planar cavity, the valid condition
of the overcritical cavity depends on the top mirror layer
mainly, and the critical nuclear abundance is very sensitive
to the top-layer thickness. In order to make it clear, several
overcritical cavities with different top-layer thicknesses are
designed. Considering the lattice parameter of Pt is 0.39 nm,
the top thickness is adjusted from 0.4 nm to 0.8 nm in turn, and
a series of critical nuclear abundances are obtained as shown
in Fig. 5, assuming the nuclear layer thickness is 0.6 nm [9].
In Fig. 5, it can be seen that the critical abundance decreases
obviously as the thickness of the top layer increases. In reality,
the control of the nuclear abundance can increase the tolerance
of the nuclear layer thickness, which is helpful to the sam-
ple preparation. On the other hand, manipulating the nuclear
abundance in this work has the unique advantage to adjust
the resonant channel without influencing the bare cavity char-
acteristic, i.e., the resonant scattering amplitude is controlled
individually. However, for the inner-shell system of Ref. [39],
adjusting the top mirror layer means the cavity geometry is
changed, where the cavity parameters and the resonant scat-
tering amplitude cannot be controlled separately. It should be
noted that transferring the experiment presented in Ref. [39]
to the case of Mössbauer nuclei is challenging with the cur-
rent third synchrotron radiation, due to the very low intensity
of nuclear scattering signals from the low nuclear abun-
dance and ultrathin layer. However, the forthcoming x-ray
sources such as the high-repetition-rate XFELs and the fourth-
generation diffraction-limited storage rings may provide this
possibility.

In addition, the difference between the overcritical and
undercritical cavities can also be understood from the per-
spective of destructive interference. At the cavity mode angle,
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Eq. (2) can be simplified as

|R|2 =
∣∣∣∣1 ± �

c

|c − 1| · i

ε + i

∣∣∣∣
2

(c − 1)2, (11)

where “-” and “+” represent destructive interference and
constructive interference for the overcritical and undercritical
regime, respectively. It can be seen that the relative amplitude
of the discrete state can be controlled by the CRS(�). To this
end, there are always symmetric peaks for the constructive
interference in the undercritical regime, while there are three
line shapes controlled by the nuclear abundance for the de-
structive interference in the overcritical regime. Moreover, the
critical effective nuclear number Nc can also be understood as
where the contribution of the nuclear ensemble is wiped out
by their cross term. This flat line has recently been observed
experimentally utilizing electronic transition [39], and the
present work indicates that this specific phenomenon can only
be observed in the overcritical cavity regime for the electronic
transition in the atomic ensemble.

IV. CONCLUSION

In this paper, Fano interference controlled by the collec-
tive effect is studied by the thin-film planar cavity. With the
resonant Mössbauer nuclei embedded in such a setup, the
phase difference behaviors of the two pathways are different
in various cavity regimes. By analyzing the phase difference
and the asymmetric profiles in different cavity regimes, it
is found that the asymmetric profiles in the overcritical and
undercritical regimes can be considered as the Fano-Lorentz
type, and the asymmetry of the profiles depends on the cosϕ
owing to the complex q. On the other hand, when the profile of
the normal Fano resonance is symmetric (q = 0 or q → ±∞),
the extra Lorentz peak will affect the normal Fano profile
obviously. In the thin-film planar cavity, the weight factor η

of the normal Fano resonance in the Fano-Lorentz profile is
related to the cavity regime and the nuclear abundance. In
the undercritical regime, 0 < η < 1/2, whereas η can surpass
1/2 in the overcritical regime. Hence, the undercritical cavity
always has symmetric peaks versus the nuclear abundance,
while the transformation between the symmetric valley and
peak can be controlled by nuclear abundance in the overcriti-
cal regime. Additionally, there is a critical nuclear abundance
in the overcritical regime where the reflectivity has a flat line
and the nuclear resonance seems to be unexcited superficially.
The flat line can be considered as an alternative line shape
qualitatively in the complex q space, which is induced by
the controllable relative amplitude of the discrete state in the
frame of destructive interference. More recently, we note that
the transformation between the symmetric valley and peak is
also reported in the hybrid optomechanical system [64]. In
addition, different decoherence processes in the open quan-
tum system make the complex q show different trajectories.

TABLE II. The fitted parameters in different regimes.

Overcritical Critical Undercritical

A 0.76 0.94 0.93
β 0.00 -0.04 0.05
θ1st (mrad) 2.358 2.434 2.341
κR (10−2ω0) 1.78 0.32 0.28
κ (10−2ω0) 2.12 0.64 0.82
c = 2κR/κ 1.68 1 0.68

Specifically, the dissipation process causes the complex q
to be linear, while the unitary dephasing process is circular
[56]. Hence, the thin-film planar cavity would be one of the
candidates to study the different decoherence processes via
the complex q of Fano resonance.
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APPENDIX: FITTING PROCESS ABOUT THE
REFLECTIVITY

The reflectivity of the thin-film planar cavity is calculated
by CONUSS [37,38] using a Parratt-like method, and then fitted
using a phenomenological model to obtain the cavity param-
eters. However, when fitting the reflectivity of the bare cavity,
two additional effects from the top layer should be considered
[34]. The absorption from the top layer can weaken the reflec-
tivity intensity and introduce a tiny dispersion. To this end, the
reflectivity of the bare cavity can be fitted as follows:

rcfit = A

(
−eiβ + 2κR

κ + i�c

)
, (A.1)

where A and β are used to consider the absorption effect and
the dispersion, respectively. In the manuscript, the fitted cavity
parameters such as cavity mode angle θth, coupling strength
κR, and cavity decay rate κ are shown in Table II. The density
and refractive index of the layer are the basic input parameters
when calculating the reflectivity, which are listed in Table III.
Here, n is the refractive index of the layer. As for 57Fe, its
refractive index is not a constant around the resonant energy,
but it can be calculated by the nuclear scattering amplitude as
shown in the Supplemental Material of Ref. [26].

TABLE III. The used parameters of layers.

Density (g/cm3) Re(n) Im(n)

Pt 21.45 1.71×10−5 2.52×10−6

Pd 12.02 1.03×10−5 3.23×10−6

C 2.26 2.26×10−6 1.23×10−9

56Fe 7.8 7.26×10−6 3.31×10−7
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