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Quantum theory of light interaction with a Lorenz-Mie particle:
Optical detection and three-dimensional ground-state cooling
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We analyze theoretically the motional quantum dynamics of a levitated dielectric sphere interacting with the
quantum electromagnetic field beyond the point-dipole approximation. To this end, we derive a Hamiltonian
describing the fundamental coupling between photons and center-of-mass phonons, including Stokes and anti-
Stokes processes, and the coupling rates for a dielectric sphere of arbitrary refractive index and size. We then
derive the laser recoil heating rates and the information radiation patterns (the angular distribution of the scattered
light that carries information about the center-of-mass motion) and show how to evaluate them efficiently in the
presence of a focused laser beam, in either a running- or a standing-wave configuration. This information is
crucial to implement active feedback cooling of optically levitated dielectric spheres beyond the point-dipole
approximation. Our results predict several experimentally feasible configurations and parameter regimes where
optical detection and active feedback can simultaneously cool to the ground state the three-dimensional center-
of-mass motion of dielectric spheres in the micrometer regime. Scaling up the mass of the dielectric particles
that can be cooled to the center-of-mass ground state is relevant not only for testing quantum mechanics at large
scales but also for current experimental efforts that search for new physics (e.g., dark matter) using optically

levitated sensors.
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I. INTRODUCTION

The interaction of light with a dielectric sphere is not
only a paradigm in optical physics [1-6] but a topic of cur-
rent research in the field of levitated optomechanics [7,8].
Particularly relevant are recent experiments achieving ground-
state cooling of the center-of-mass motion of an optically
trapped dielectric nanosphere using either the coherent cou-
pling to an optical resonator [9—11] or shot-noise-limited
optical detection and active feedback [12—-14]. These exper-
iments have been limited to ground-state cooling of one and
two center-of-mass degrees of freedom of subwavelength sil-
ica nanoparticles, that is, spheres with a radius R of around
100 nm (mass of 10° atomic mass units), thus much smaller
than the optical wavelength Ay of the laser light. At these
scales, where R/Ay < 1, the electrodynamical response of
the dielectric particle can be approximated by a point dipole.
Within this point-dipole approximation, the understanding
of how light interacts with the motion of the nanoparticle
(e.g., optomechanical coupling rates, laser recoil heating rates,
or information radiation patterns) [15-22] has been key to
predict, optimize, and understand ground-state cooling. This
theory is however rather limited and cannot be easily extended
to dielectric particles for which the point-dipole approxima-
tion is not valid [23,24]. Therefore, it has hitherto remained
unclear whether larger dielectric spheres with a radius compa-
rable to or larger than the laser light wavelength can be cooled
to the ground state and if so, how to achieve it.

In this article we develop a quantum electrodynamical the-
ory of the interaction between the electromagnetic field and a
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dielectric sphere of arbitrary refractive index and size. One
of the main results of this theory is to show that simulta-
neous three-dimensional center-of-mass ground-state cooling
of a dielectric sphere with a size ranging from a few hun-
dred nanometers to several micrometers is possible using
optical setups that are currently implemented in laboratories
[12—-14,25-28]: Shot-noise-limited optical detection of either
forward- or backward-scattered light of a focused laser beam
in a running- or a standing-wave configuration. Our results
are thus timely and create the opportunity to bring dielectric
spheres of masses ranging from 10° to 10'* atomic mass units
into the quantum regime using laser light at room temperature
[29-33]. Scaling up the mass of the dielectric spheres that
can be laser cooled to the ground state has applications in the
search for new physics (e.g., dark matter [34—42]). In addition,
in combination with nonoptical (e.g., electrostatic [43—45])
potentials, one could consider delocalizing their center of
mass to scales orders of magnitude larger than their zero-point
motion [46,47], thereby testing quantum mechanics at un-
precedented mass scales [48—52], comparable to current and
planned efforts with superconducting microspheres [53-57].
More specifically, our article contains five key results in
the field of levitated optomechanics [7,8] and is organized as
follows. (i) We analytically derive the optomechanical cou-
pling rates for arbitrary dielectric spheres (Sec. II). Crucially,
this is enabled by our previous work [58], where using the
techniques of Ref. [59] we quantize the electromagnetic field
in the presence of a nonmoving sphere in terms of normalized
scattering eigenmodes. (ii) Taking the small-particle limit,
we provide a rigorous justification for the phenomenological
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light-matter Hamiltonian, based on the point-dipole approx-
imation, used thus far in levitated optomechanics [15-22]
(Sec. IT A). (iii) We derive expressions for the recoil heat-
ing rates and the information radiation patterns [12,13,19],
two core ingredients in levitated optomechanics that we de-
fine here in the context of transition amplitudes of Stokes
and anti-Stokes processes, for arbitrary particle sizes, refrac-
tive indices, and an arbitrary configuration of laser fields
(Sec. III). Furthermore, we simplify their expressions ana-
lytically, which enables us to evaluate them efficiently. (iv)
We compute recoil heating rates and information radiation
patterns in two configurations of direct experimental interest
(Sec. IV), namely, a single focused Gaussian beam and two
counterpropagating focused beams in a standing-wave con-
figuration (Secs. IVB and IV C). We show results beyond
the point-dipole approximation and beyond the plane-wave
approximation for the illuminating beams and characterize
their dependence on particle radius and numerical aperture of
the focusing lens. (v) We show how the results of (iv) predict
a broad parameter regime where one-, two-, and even three-
dimensional center-of-mass ground-state cooling is possible
for dielectric spheres ranging from a few hundred nanometers
to a few micrometers (Sec. I'V). In the Conclusion (Sec. V) we
argue that the methods developed in this work could directly
be extended to other particle shapes and degrees of freedom
[60-70], thus providing a complete theoretical toolbox to de-
scribe the interaction of light with levitated dielectric objects
in the quantum regime.

II. FUNDAMENTAL HAMILTONIAN AND
PHOTON-PHONON COUPLING RATES

Let us consider a dielectric sphere of radius R and mass
M whose equilibrium center-of-mass position is by defini-
tion at the origin of coordinates. The center-of-mass position
fluctuations around the equilibrium position are described by
the quantum-mechanical position and momentum operators
f and P, respectively. They fulfill the commutation relations
[, pv] = ifi8,,,, where the indices u and v label the coor-
dinate axes x, y, and z; §,, is the Kronecker delta; and 7 is
the reduced Planck constant. The sphere is assumed to be
in vacuum, interacting only with electromagnetic fields. We
assume that the nonfluctuating part of the electromagnetic
field (e.g., optical tweezer) generates a conservative potential
for the center-of-mass motion given by V (r). We model the
electromagnetic response of the dielectric sphere as homoge-
neous, isotropic, and lossless. We assume that the dielectric
sphere interacts significantly only with electromagnetic field
modes in a sufficiently narrow frequency window so that its
electromagnetic response can be described by a single scalar
and real relative permittivity €. Assuming sufficiently small
center-of-mass displacements, that is, Ar, = (f”ﬁ — <;,M)2)1/ 2
smaller than any relevant length scale associated with the
electromagnetic fields, the total Hamiltonian describing the
interaction between the center-of-mass motion and the elec-
tromagnetic field can be expressed as

=2—+V(f>+ﬁem—5f.f. (1)

Here H., describes the free dynamics of the electromagnetic
field in the presence of a fixed dielectric sphere at the origin of
coordinates, the derivation and thorough discussion of which
are the focus of our previous work [58]. The last term, which
is the focus of this article, describes the interaction of the elec-
tromagnetic field with the center-of-mass position. Note that
the small-displacement assumption manifests in an interaction
term that is linear in the position operators and depends on the
specific form of the operator , which hereafter we call the
radiation pressure operator. As we show below, F depends
on the electromagnetic field degrees of freedom, is nonlinear
with the electromagnetic fields, and does not commute with
H.n, namely, [Hem, ]:—u] # 0 for any w. We remark that by
definition of V (r) we have that

VV()|r—o = (F). 2)

Here (F) represents the quantum-mechanical expected value
of F for a given state of the electromagnetic field and the time
average over the relevant timescale of the electromagnetic
field. The relevant electromagnetic timescale (e.g., optical
time period) is assumed to be much shorter than the mechan-
ical timescales associated with the motion of the dielectric
sphere. In the context of discussing center-of-mass cooling,
we will consider the potential V(r) to be a standard three-
dimensional anisotropic harmonic potential with harmonic
frequencies €2,,, namely,

Z Qz Az 3)

We write position and momentum operators in terms
of bosonic creation IQL and annihilation IQM operators,
namely, #, = rou (b, +b,) and p, = iMQr0, (B, — by),
where 1o, = [A/(2M2,)]"/? is the zero-point motion and
(b, b1 =6,,.

Let us now discuss the specific form of the radiation
pressure operator . Using Eq. (1), we can show that the
Heisenberg equation of motion for the © component of the
center-of-mass position operator of the dielectric sphere is
given by

Chy s _Tu
ot = (4)

We obtain an expression for the radiation pressure operator by
deriving the equivalent classical equation of motion accord-
ing to electrodynamics in the presence of a dielectric object,
promoting the dynamical variables (position, momentum, and
electromagnetic fields) to quantum operators, and comparing
the resulting equation with Eq. (4). The right-hand side of
such an equation is the radiation pressure exerted by the self-
consistent electromagnetic fields, which in electrodynamics
can be expressed by a surface integral of the Maxwell stress
tensor in the far field of the dielectric sphere [71,72]. Based on
this, we define the vector component of the radiation pressure
operator }-w written in terms of the electric field E(r) and
magnetic field B(r) operators, as

A

F, = _%‘) lim r? f dQ(e, - e, )[E*(r) + *B*(0)].  (5)
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Here r = |r|, dQ2 is the surface element in spherical coor-
dinates, e, is the radial unit vector, e, is the p-axis unit
vector, and €y and ¢ are the permittivity and speed of light in
vacuum. The expression (5) fully determines the fundamental
Hamiltonian in Eq. (1) describing the interaction of light with
the center-of-mass motion of a dielectric sphere of arbitrary
refractive index and size in the small-displacement regime.

Let us now expand the electric and magnetic field operators
in terms of the normalized eigenmodes for a fixed sphere at the
origin of coordinates, namely,

. how, N

B =13 [ Fwa ~ Hel (©)
N h
B(r) = Z /260% [V x F.(r)a, + Hec.]. (7

Here we denote by F,(r) the normalized scattering eigen-
modes in the presence of a nonmoving dielectric sphere,
whose calculation and quantization for arbitrary particle sizes
and refractive indices were the object of our previous work
[58]. The normalized scattering eigenmodes are defined by
the multi-index « = (g, k), where g = 1,2 is a polarization
index with associated polarization unit vector e, and k €
R3 is the wave vector. They are composed of a plane-wave
contribution with mode index « (i.e., wave vector k and
transverse polarization vector e,) and a scattered contribution
describing the elastic scattering of the plane-wave component
off the dielectric sphere. In essence, they are properly nor-
malized solutions of the Lorenz-Mie problem [1,2], which
allow us to fully include all the elastic scattering processes
(i.e., the scattering of light by the nonmoving dielectric par-
ticle) exactly. The mode frequency is given by w, = c|k|.
The associated creation and annihilation operators fulfill
the bosonic commutation rules [a,, ai/] = 8¢c.' In terms of
the normalized eigenmodes, the Hamiltonian H.,, describing
the free dynamics of the electromagnetic field for a fixed
sphere is diagonal, namely, H.,, = ZK th&Z&K, for spheres
of all refractive indices and sizes [58]. The expansion in terms
of normalized scattering eigenmodes is a crucial step to obtain
exact analytical expressions of quantities of interest and is in
contrast to the usual field expansion in terms of, e.g., plane
waves, for which the Hamiltonian is not diagonal. Such cases
require the use of approximative expansions which fail for
large enough particles [23].

We can now express the Hamiltonian (1) in terms of
bosonic creation and annihilation operators only, resulting
in a Hamiltonian that describes the dynamics of photons
interacting with center-of-mass phonons. Hereafter, we re-
fer to a photon as the excitation of an eigenmode of the
electromagnetic field in the presence of the dielectric sphere
at equilibrium. This Hamiltonian is obtained by introducing

"We remark that throughout the article we use the notation wherein
sums over a multi-index « must be understood as integrals over
continuous indices and sums over discrete ones, namely, Y =
Jdky" o A Kronecker delta of a multi-index must be understood as
a product of Dirac deltas for the continuous indices and Kronecker
deltas for discrete indices, namely, 8, = 8(k — k'), .

Stokes

anti-Stokes

FIG. 1. Feynman diagrams of the two fundamental interaction
processes as described by the third term in Eq. (8). Photons in mode
k' are inelastically scattered at a coupling rate g, into mode «
through generation (Stokes) or absorption (anti-Stokes) of a phonon
in mode w.

Egs. (6) and (7) into Eq. (5) and performing a rotating-wave
approximation that neglects all rapidly oscillating terms. The
rotating-wave approximation is valid in the standard weak-
coupling regime where the bare photon-phonon interaction
coupling rate is smaller than the phonon frequencies.? The
Hamiltonian (1) can then be written as

A= "1Qublb, + ) hocala,
" K

+ 1) gewnae (B, + by). ®)
KK' |

The third term describes the two fundamental processes de-
scribing the interaction of light and center-of-mass motion as
illustrated in Fig. 1, that is, (i) Stokes processes, in which a
photon in mode «’ is inelastically scattered into a photon of
lower frequency in mode « by generating a phonon in mode
W, and (ii) anti-Stokes processes, in which a photon in mode
k' is inelastically scattered into a photon of higher frequency

in mode x by absorbing a phonon in mode .
The physics of the photon-phonon interaction is encoded
in the coupling rates g, of Eq. (8), which can be written as

c kk'

lim rzfdQ(e,-eM)

’ = ro
Sew'n " r—00

X (F:(r) -F.(r)+ %V x Fi(r) -V x F,(/(r)),

€))

with k = |k|. Specifically, they correspond to a surface
integral in the far field of a function that depends on
the normalized scattering eigenmodes [58]. As shown in
Appendix A1, the far-field expression of the scattering
modes can be written in terms of vector spherical harmon-
ics with angular momentum mode indices [ = 1,2, ... and
m=—Il,—1+1,...,1, which can be mapped to the angular
distribution of the electromagnetic fields radiated by electric
and magnetic multipoles. The angular integrals (9), containing
products of vector spherical harmonics, can be analytically
performed using the results of [73]. This means that the cou-
plings gy, for a dielectric sphere of arbitrary refractive index

Note that the rotating-wave approximation also requires the fre-
quencies of the electromagnetic field to be large compared to the
phonon frequencies. This condition is satisfied for the narrowband
and high-frequency optical modes considered in this work.
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and size can be analytically expressed as a sum over discrete
angular momentum and polarization indices that can be ef-
ficiently evaluated [see Eq. (A19)]. This is one of the main
results of this article. Let us remark that we have explicitly
confirmed that the Hamiltonian (8) with the coupling rates
(9) can also be obtained applying perturbation theory to the
electromagnetic Hamiltonian, as described in [74,75] in the
context of Brillouin scattering in photonic waveguides.

A. Coupling rates in the small-particle limit

As a consistency check, one can show (details in
Appendix A 1) that in the small-particle limit \/ekR — 0, the
lowest-order term of the photon-phonon coupling rates (9) can
be written as

iropoe ckk’'
€0 2(27‘[)3

where o = 3¢pV (e — 1)/(e + 2) is the polarizability of the
dielectric sphere, V denotes the volume of the sphere, and ey
denotes the unit vector parallel to the wave vector k. The con-
sistently derived small-particle coupling rates (10) agree with
the coupling rates used in the current literature [15-18,20-23],
where they are heuristically derived by making a Taylor
expansion of the interacting Hamiltonian —aE?(#)/2 with
the electric field operator expanded in plane-wave modes
(point-dipole approximation). The latter can be obtained by
replacing the scattering normalized modes F, (r) in Eq. (6) by
plane-wave modes G, (r) = exp(ik - r)e,(27)~¥2. We find
this agreement an important result from a theoretical point of
view, as it provides a sound justification of the interacting
Hamiltonian —aEz(f')/Z used to describe the interaction of
light with a small dielectric particle in the quantum regime.
Furthermore, the comparison of Eq. (10) with Eq. (9) provides
a clear route to make predictions that go beyond the point-
dipole approximation and that could be observed in current
experiments, as we show in the rest of the article.

8rr'n = ( eg)(ek —ep)- €., (10)

B. Linearized Hamiltonian in the presence of a classical field

Let us consider the scenario where some of the electromag-
netic field modes are in a coherent state, that is, the quantum
state of the electromagnetic field in the presence of the non-
moving sphere at the origin is given by

W) = exp (Z(aK — o >|0>. (1)

Here «, is the coherent complex amplitude of the mode «,
thatis, @, |W¢) = o, |We). The distribution in k of &, specifies
the particular state of the electromagnetic field. The classical
electromagnetic field associated with this coherent quantum
state is given by

cl(r t)_

_’Z

Since in most of the experiments in levitated optomechanics
the classical electromagnetic field is generated by a quasi-
monochromatic laser light, hereafter we will assume that all

cl|E(r t)|\IJcl

[F Oage ™ —ccl.  (12)

the modes found in this coherent state have the same fre-
quency, labeled by wy. As it is common in optomechanics, we
can now derive the linearized Hamiltonian describing the dy-
namics of the fluctuations of the electromagnetic field above
|W.) caused by their interaction with the center-of-mass mo-
tion of the dielectric sphere. In a rotating frame with frequency
wyp, this linearized Hamiltonian is given by

Ay, = ZhA ala, + Zm}j);éu
K 123
+ 1Y (Gl + GL,a0)(b), + by, (13)

where we have defined the detuning A, = w, — wy for each
mode and the linearized coupling rate

GK/L = ZaK/gKK//L' (14)

We remark that the potential describing the center-of-mass
motion in the presence of the electromagnetic field |\W,) is
defined so that Eq. (2) is fulfilled, that is, it includes the
radiation pressure exerted by the classical electromagnetic
field. Indeed, in most cases the classical electromagnetic field
E.((r, t) represents the field used for optical trapping.

As we show in the next section, the fundamental coupling
rates g, [Eq. (9)] and the distribution of coherent ampli-
tudes o, for a given classical electromagnetic field [Eq. (11)]
are the key ingredients to analyze the quantum dynamics of a
trapped dielectric sphere interacting with light.

III. RECOIL HEATING RATES AND INFORMATION
RADIATION PATTERNS

As shown in the preceding section, the fundamental transi-
tions occurring during the interaction of light with a trapped
particle are given by Stokes and anti-Stokes processes (see
Fig. 1). These are the only processes that change the center-of-
mass state of the particle. In the presence of a highly excited
electromagnetic field, such as the classical electromagnetic
field given by |W) [Eq. (11)], Stokes and anti-Stokes pro-
cesses are significant, and the overall effective dynamics is
described by the linearized Hamiltonian (13). These effec-
tive dynamics yield two important phenomena: (i) dissipative
center-of-mass dynamics, namely, laser light recoil heating,
and (ii) the scattering of light carrying information about the
center-of-mass position fluctuations, the angular distribution
of which is called the information radiation pattern (IRP).

To better define and evaluate these two quantities, let us
consider the transition amplitude for the Stokes and anti-
Stokes process in the presence of a classical electromagnetic
field. The transition amplitudes associated with these pro-
cesses can be evaluated as [76]

), = (Wou|U(T /2, =T /2)| Win). 15)

Here the input state is given by |Wj,) = |ny, ny, n;) ® [We),
where |n,, ny, n;) (n, > 0)is a product Fock state for the three
center-of-mass degrees of freedom and the quantum state
of the electromagnetic field is given by |W) = D()|0)em,
as defined in Eq. (11), with the monochromatic coherent
amplitude o, with frequency wy. The output state is given
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by |WS,) = albl,| W) and |¥3) = alb,|Wy,) for the Stokes
(p=S) and anti-Stokes (p = aS) transitions, respectively.
The time-evolution operator in the Schrédinger picture is
given by U (t,1") = exp[—iH (t — t')/h), where H is our fun-
damental Hamiltonian (8). We emphasize that for t,fﬂ to be
nonzero, the incoming photon in the Stokes or anti-Stokes
transition, namely, the photon in mode «’ according to Fig. 1,
has to be in a mode excited by the classical electromagnetic
field, whereas the Stokes or anti-Stokes scattered photon in
mode « can be in any of the available electromagnetic field
modes, i.e., vacuum state or any mode excited by the electro-
magnetic field.

A quantity of interest in this context is the transition
probability rate in the asymptotic limit [76] of the Stokes
and anti-Stokes processes integrated over all «, namely,
limr— oo >, [T0u|?/T. As we show in Appendix A2, the
transition probability rates can be evaluated using first-order
perturbation theory (i.e., Fermi’s golden rule) and lead to

S 2
T
Jim % = (n, + DI}, (16)
.L.aS 2
pm ZEL an
where
[ =21 ) [Geul (@ — wo £ Q). (18)

The linearized couplings in free space are broadband over a
frequency window given by €2, i.e., they fulfill |I‘; -«
F; + I',, and hence we define the transition probability rate

Ty =27 Y |Geul*8( — wp). (19)

that is, '), ~ F; ~ T, in the broad coupling regime. In
this regime we can show using standard techniques in open
quantum system dynamics (e.g., Langevin equations and
Born-Markov master equation) that the reduced motional dy-
namics described by the fundamental Hamiltonian (8) leads
to

d ..

S BLbu) () =T, (20)
that is, center-of-mass recoil heating with a phonon heating
rate given by I', [77]. Let us emphasize that when the particle
is not in free space but in environments that change the mode
structure of the electromagnetic field (e.g., a particle inside an
optical resonator), the system is not in the broadband coupling
regime, leading to F:[ # I',,, and hence to the possibility of
passively cooling the center-of-mass motion of the particle
[9-11,20,78,79].

The photons scattered via a Stokes or anti-Stokes process
carry information about the center-of-mass motion, that is,
they are entangled with the center-of-mass motional degrees
of freedom. The knowledge of where they scatter, namely,
their angular probability distribution, is key to collect them,
measure them, and process the information to exert active
feedback to the particle. This knowledge is provided by
the (IRP) Iﬁ(&k, ¢r) associated to the center-of-mass motion
along the p axis, which is defined as the normalized angular

distribution of the transition probability rate in the asymptotic
limit, namely,

limy oo f5° dk k2 Y, |20]
limy_, o ZK |7:Kplj, |2

Note that, by definition, [ d6idey sin 6L} (6, ¢x) = 1. The
IRP 77 (6k, ¢r) provides the solid-angle probability distri-
bution of a photon scattered through either a Stokes or an
anti-Stokes process. Within the broadband coupling regime,
we obtain that

1)

I8 Ok, 1) =

Yoo Jo kPGS (@, — wo)
ZK |GK/.L|25(a)K — o) .

In this regime, the IRP is the same for a Stokes and an
anti-Stokes process, showing that these processes can be dis-
tinguished by measuring the frequency of the scattered photon
but not by its angular probability distribution.

Both the laser recoil heating rate I', and the IRP Z,, (6, ¢x)
are fully determined by the linearized coupling rate G,,, that
is, by the coupling rates g, [Eq. (9)] and the coherent ampli-
tude o, associated with a given classical electromagnetic field
[Eq. (11)]. In Appendix A 3 we show how Egs. (19) and (22)
can be expressed in an explicit form as a sum over discrete
angular momentum and polarization indices [see Eqgs. (A44)
and (A46)], which makes their evaluation numerically effi-
cient. Hence, our theory allows us to efficiently evaluate recoil
heating rates and IRPs for spheres of arbitrary refractive index
and size and in the presence of arbitrary combinations of
electromagnetic field modes in a coherent state. This is one
of the main results of this article.

The knowledge of the laser recoil heating rate I', and
the IRP Z, (6, ¢) is crucial to implement active feedback
cooling via optical detection [12—14,25,26]. In particular, the
minimum achievable mean phonon-occupation number reads
[12,13,19]

Z,Ok, ) =

(22)

1 1
n, = — —-1]. 23
iy, 2( = ) (23)

Here 1, = ’L‘i’l; 1, denotes the total efficiency and is deter-
mined by (i) the detection efficiency

i = [ dodgsineiT, 61, 40 @4)
Sa

where S; denotes the solid angle that is covered by the col-
lection lens; (ii) the efficiency associated with environmental
information loss

_ Iy
o Fu—i-l"ﬁ’

e

0 (25)

where the heating rate I'f; due to environmental gas at pressure
p and temperature 7T is given by

r2
r¢ — 0.619 0" g g2 | BkeT Mo, (26)
12 hZ T

where mg denotes the molecular mass of the environmen-
tal gas and kp is the Boltzmann constant [30,80] note that
we are assuming that other sources of environmental noise,
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e.g., displacement noise in the trapping potential, center-of-
mass coupling to internal acoustic phonons, and emission of
blackbody radiation, are negligible, namely, their associated
heating rates are smaller than I, + I'; and (iii) the efficiency
n;, associated with all other information loss channels in the
active feedback scheme, e.g., mode matching, detector noise,
and digital noise [12,13]. Hereafter, we consider ideal feed-
back, i.e., 77;(1 =1.

Equation (23) shows that a necessary condition to achieve
center-of-mass ground-state cooling along the u axis, defined
asii, <1,isn, > é ~ 0.11. We emphasize that our analysis
will be particularly relevant in experimental situations where
center-of-mass heating rates are dominated by I', + I'y and
for nearly ideal feedback schemes with 77, < 1. Finally, we
remark that with particles beyond the point-dipole approxi-
mation, recoil heating rates will be typically comparable to
or even larger than the mechanical frequencies, which will
require fast feedback schemes optimized to operate in these
regimes.

In the following section we will explicitly show how this
theory can be applied to study a case which is very relevant
to current experimental efforts [12—14,25-28]: A dielectric
silica sphere of arbitrary refractive index and size interacting
with a focused monochromatic laser, in either a running-
or a standing-wave configuration. Our analysis will show
in which regimes center-of-mass ground-state cooling of a
sphere could be achieved via active feedback cooling, that is,
in which regimes nﬁn; > % and hence 71, < 1. Remarkably,
we will predict several experimentally feasible configurations
in which simultaneous three-dimensional (3D) ground-state
cooling via active feedback is possible.

IV. CASE STUDY

Let us apply the theoretical methods developed in this arti-
cle to study a case that is of relevance to current experimental
efforts. In particular, we will evaluate the recoil heating rates
I'), and the information radiation patterns Z, (6, ¢i) for a
trapped dielectric sphere made of silica interacting with a
focused laser beam, either in a running-wave configuration or
in a standing-wave configuration (see Fig. 2). In both cases the
equilibrium position of the dielectric sphere is assumed to be
at the focus. In the standing-wave configuration, we will in-
clude a relative phase ® between the two counterpropagating
beams so that at focus one can have an intensity maximum
(® = 0), an intensity gradient maximum ($ = 7 /2), or an
intensity minimum (® = 7). In addition, we will evaluate
the detection efficiency nfL [Eq. (24)] and the phonon mean
number occupation #i,, [Eq. (25)] for backward and forward
detection and ideal feedback. These quantities will reveal in
which situations ground-state cooling of 1D, 2D, and even 3D
center-of-mass motion is possible.

We remind the reader [see Eq. (2)] that in this article we
assume that 3D harmonic trapping with an equilibrium posi-
tion at the focus with trap frequencies given by €2, is possible
when taking into account the optical forces generated by the
laser beams. We do not specify, however, how this is imple-
mented, i.e., whether using all-optical and gravitational forces
[29-33], hybrid schemes combining low-frequency electric
and optical forces [43—45], etc. In this way our analysis is

(a)
=
s
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=
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4
o3
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5| =
2 = -
1 ] ——
0.0 02 04 0.6 0.8 1.0

NA

FIG. 2. (a) Sketch of the optical configuration. We consider one
or two incoming x-polarized monochromatic Gaussian beams of
frequency w, propagating along the positive and negative z axes.
The beams are focused by an aplanatic lens, which is assumed to
be overfilled in order to achieve strong focusing at the focal point,
where a dielectric sphere of radius R is placed. In the two-beam setup
@ denotes the relative phase between the two counterpropagating
beams. The IRPs Z, (6, ¢) are defined with respect to the same
coordinate system, where 6, denotes the angle between the positive-z
axis and the detector. (b) Waist w as a function of the numerical
aperture NA of the lens. The insets show a sketch of the relative size
of the sphere and the waist of the beam for R/Ay = 1.

very general; it even includes nonlevitating scenarios, e.g.,
a dielectric particle attached to a cantilever. We also remark
that the IRPs and recoil heating rates calculated in this sec-
tion are also relevant in situations where the particle is not
harmonically trapped (e.g., in an inverted harmonic potential
[46,52,54,55]). This is the case provided the sphere’s center-
of-mass fluctuations are small enough to justify the coupling
linear with the center-of-mass position used at the starting
point of the theory [see Eq. (1)].

A. Coherent amplitudes

The first task in applying our theory is to derive an ex-
pression for the coherent amplitudes ¢, associated with the
optical configuration we are considering (see Fig. 2). This is
done by first deriving an expression for the classical electric
field and then inferring o, through Eq. (12). For notational
convenience, we will label the lens placed at negative z
values as left (L) and the lens placed at positive-z values
as right (R). The lenses can be used to focus and/or col-
lect the scattered light. We derive the classical electric field
of an incoming monochromatic x-polarized Gaussian beam
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Ein(r, 1) = Re[Ei, (r) exp(—iwgt)] with mode profile E,(r)
and frequency wy focused by an aplanatic lens (see Fig. 2 and
Appendix B for details). First, we focus on a single Gaussian
beam propagating along the positive-z axis (from the left) and
whose focus coincides with the origin of coordinates (i.e.,
with the equilibrium position of the dielectric sphere). As
shown in Appendix B, the corresponding coherent amplitudes
oe,f for each polarization g = 1, 2 read

af(k, Ok, ¢x) 4rkoP) cos 0| 8(k — ko)
ok O g |\ hesin 0, kG
‘2 .
X exp _s1'n—0k |:l s ¢k:|, 27
f2sin? 0k, || cosx

where ko = 2w /Lo = wp/c. The parameters that determine
the coherent amplitude are the optical power P of the focused
field, the numerical aperture NA = sin6na of the lens, and
the filling factor fy. We assume that the field overfills the lens,
fo > 1, to guarantee maximum focusing of the beam [72].
A similar calculation enables us to compute the amplitudes
for a beam propagating along the negative-z axis (from the
right), which can be written as af (k, O, ¢x) = ok (k, Ok, ¢r)
and o (k, O, ¢) = —ak (k, Ok, ¢r). By combining the am-
plitudes of the left and right incoming beams and adding a
relative phase ®, we obtain the coherent amplitude corre-
sponding to two counterpropagating focused Gaussian beams
in a standing-wave configuration, i.e., «t + of exp(i®). Here
the phase ® determines the intensity that scales as cos>(®/2)
at the particle position so that it lies at a node and antinode for
® = and & = 0, respectively. In Fig. 2(b) we show how
the waist w of the focused Gaussian beam depends on the
numerical aperture of the overfilled lens (see Appendix B 1
for details). As expected, the waist decreases rapidly with
increasing numerical aperture and reaches a value on the order
of the wavelength X, which corresponds to the diffraction
limit [72].

With the determined expression of the coherent amplitudes
«, for the optical configuration of Fig. 2, we can now calculate
the recoil heating rates I', [Eq. (19)], the IRPs Z, (6, ¢x)
[Eq. (22)], the detection efficiencies nz [Eq. (24)] using the
left or the right lens to collect the light, and the corresponding
phonon mean-number occupation #i,, [Eq. (25)]. To do so, we
will consider the physical parameters listed in Table I.

TABLE I. Parameters considered throughout this article.

Parameter Description

€ =207 relative permittivity (silica)®
0 = 2200 kg/m? mass density (silica)®

Ao = 1550 nm laser wavelength

P =200 mW power per laser beam
fo=10 lens filling factor

my = 4.81x107% kg molecular mass (air)

p = 10~° mbar gas pressure

T =300K gas temperature

2Reference [81].
bReference [82].
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FIG. 3. Recoil localization parameter A, =T, /rj, for a single
focused x-polarized Gaussian beam propagating along the positive-z
axis as a function of the silica sphere’s radius R/A and the numerical
aperture of the lens NA = 0.10, 0.25, 0.50, and 0.75, for all three
axes (a) u = x, (b) u =y, and (¢) u = z. The values for the power,
wavelength, and relative permittivity are listed in Table 1. The inset
in (a) shows a detailed view of the small-particle regime for all three
axes at NA = 0.10 on a log-log plot. The vertical gray dashed lines
specity the radii for which the IRPs are shown in the last two columns
in Fig. 4.

B. Single focused beam

Let us first analyze the results for the running-wave con-
figuration, where the left lens in Fig. 2 acts as a focusing
and collection lens while the right lens acts as a collec-
tion lens only. In Fig. 3 we show A, =T,/rg ., which we
hereafter call the recoil localization parameter.’ The recoil

3In the context of position localization decoherence, the localiza-
tion parameter is very relevant to describe the decoherence rate of
quantum states that are spatially delocalized over scales larger than
the zero-point motion [49,83,84].
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localization parameter is the recoil heating rate divided by the
squared zero-point motion and it hence does not depend on
the trapping frequency €2, [cf. Eq. (A44) in Appendix A 3].
Moreover, since I'j is also proportional to réu [see Eq. (20)],
the phonon mean-number occupation 7, [Eq. (25)] does also
not depend on €2,,.

Figure 3 shows the recoil localization parameter for var-
ious numerical apertures NA and radii R ranging from the
small-particle regime R/1y < 1 to the Lorenz-Mie regime
R/Xy > 1. The inset in Fig. 3(a) shows the small-particle
regime for all three axes and NA = 0.1 in greater detail. As
expected, in the small-particle regime we recover the results
obtained using the coupling rates in the point-dipole approxi-
mation (10), where the recoil localization parameter scales as
Ay o (R/20)® [20,24]. Beyond the small-particle regime, A,
deviates from this polynomial scaling in size and transitions
into an oscillatory behavior after reaching a maximum. The
first maximum, which is not always global, is reached at
smaller radii as one considers larger numerical apertures. The
oscillatory features are most pronounced for 4 = z and NA =
0.75 and can be understood intuitively using the following
simple model (cf. Appendix C). For large numerical apertures
the waist of the focused beam is on the order of the wavelength
[see Fig. 2(b)]. For spheres of radii R/A¢ 2 1 the system can
therefore be modeled by a collimated beam that is normally
incident on a dielectric slab of thickness 2R, i.e., a Fabry-Pérot
interferometer. Note that this regime is very different from
the small-particle regime or from the case of small numerical
apertures, where a nonvanishing intensity is incident across
the whole surface of the sphere. Using this one-dimensional
toy model, involving only two electromagnetic modes, we can
show that the recoil localization parameter can be expressed in
terms of the reflectance and transmittance of the interferome-
ter (see Appendix C). These quantities oscillate with a period
(44/€)~" in R/Xq, which agrees with the oscillations observed
in Fig. 3. Note that the typical values for zero-point motion of
particles beyond the small-particle limit are in the picometer
scale, and hence Fig. 3 shows that recoil heating rates I";, of
several hundred kilohertz are expected. These recoil heating
rates will be typically comparable to and larger than typical
mechanical frequencies and hence feedback cooling schemes
should be optimized to operate in these regimes.

In Fig. 4 we show the IRP for all three axes, a left
lens with numerical aperture NA; = 0.75 in Fig. 4(a) and
NA,; = 0.10 in Fig. 4(b), a right lens with numerical aperture
NAg = 0.75 in both Figs. 4(a) and 4(b), and a wide range
of particle radii. Each panel contains the detection efficiency
nﬁ [Eq. (24)] for the left lens (lower left corner) and right
lens (lower right corner). All values for which the necessary
condition for ground-state cooling, i.e., nl“i > %, is met are
highlighted in blue (dark gray). The first column corresponds
to the known IRPs [19] in the small-particle regime where
almost all photons carrying information about the center-of-
mass displacement along z are backscattered, leading to a
large detection efficiency uf =0.55> é for the high-NA
configuration. The knowledge of the IRP in the small-particle
regime has recently enabled the achievement of ground-state
cooling along the z axis via active feedback [12,13]. While
for R/1p < 0.5 the IRPs in the low- and high-NA config-
urations are very similar, we observe that, for larger radii,

their shape strongly depends on the numerical aperture NA/,
of the focusing lens (left lens). For NA; = 0.1 the IRPs be-
come increasingly sharply peaked in the forward direction as
the radius increases. In contrast to the small-particle regime,
the detection efficiency in the forward direction is orders of
magnitude larger than the backward direction and exceeds the
ground-state threshold of é. For NA; = 0.75 the angular dis-
tribution of the IRPs show more complex features. Note that
for R/xy = 2.24 and 2.33 we observe a local minimum and
maximum for A, and NA = 0.75 along all three axes (recall
the gray dashed lines in Fig. 3). In the corresponding IRPs in
Fig. 4(a) we can see how a large recoil localization parameter
goes hand in hand with a large number of backscattered pho-
tons, i.e., large reflectance in the Fabry-Pérot interferometer.
For the z axis this leads to very high detection efficiencies of
up to nf = 0.8. As we show below, this trend is general since
we obtain detection efficiencies that exceed the ground-state
threshold for most radii in all other axes and for both forward
and backward detection.

In Fig. 5 we show the detection efficiencies nl‘i at the left
lens (dashed lines) and right lens (solid lines) as a function
of the radius for all three axes. The threshold r}ﬁ = é is
indicated with a horizontal dashed gray line. These detec-
tion efficiencies are then combined with the efficiency nj,
associated with environmental information loss due to gas
scattering [Eq. (24)] to obtain the minimum achievable mean
phonon occupation number 7i,, for ideal feedback [Eq. (25)]
for the physical parameters given in Table 1. The blue-shaded
area highlights the regions for which 7, < 1. Figure 5(a)
shows how a high detection efficiency nf in the backward
direction (blue, dashed, highest curve at R/Ag — 0) enables
the experimental realization of center-of-mass ground-state
cooling using shot-noise-limited optical detection and active
feedback [12,13]. While for u = x, y the detection efficiency
in the small-particle limit is much smaller, all three axes reach
comparably large values in the forward direction (solid) at
R/X)y >~ 0.5. The same can be said for the backward direc-
tion (dashed) for R/1y > 1.0, where one again encounters the
periodic features of the recoil localization parameter. Remark-
ably, this shows that there exists a broad range of parameters
where simultaneous three-dimensional ground-state cooling is
possible for the high-NA configuration. Similar conclusions
can be drawn for the low-NA setup (NA;, = 0.10 and NAy =
0.75) in Fig. 5. We observe how the detection efficiency in
the forward direction (solid) quickly grows with increasing
radius. In fact, the values oscillate around a value so large that
three-dimensional ground-state cooling is also within reach
for all three axes and R/Ag > 0.5.

C. Standing wave

Let us now analyze the results for two focused x-polarized
Gaussian beams counterpropagating along the z axis, where
the lenses in Fig. 2 act as both focusing and collection lenses.
Here we focus on the high-NA case, namely, NA; = NAg =
0.75. The results for NA; = NAr = 0.10 are shown in
Appendix D.

In Fig. 6 we show the recoil localization parameter for
three values of the relative phase ® =0,7 /2, w (parti-
cle at the intensity maximum, intensity gradient maximum,
and intensity minimum, respectively) as a function of R/Ag
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FIG. 4. Information radiation patterns Z, (6, ¢x) of a silica sphere and a single focused x-polarized Gaussian beam propagating along the
positive-z axis (reference frame in the first row). The value of the IRP is encoded in both the radial distance from the center and the color
scale. The focusing lens has a numerical aperture (a) NA;, = 0.75 and (b) NA, = 0.10, while the collection lens has a numerical aperture
NAg = 0.75 in both (a) and (b). The detection efficiency for the focusing lens and collection lens is shown in each panel (highlighted in blue
for n/‘i > é). Across the panels the value of R/ is, for each column, constant and indicated below the last row.

ranging from the small-particle regime to the Lorenz-Mie
regime for all three axes. Each panel contains an inset that
shows the small-particle regime on a log-log plot in greater
detail. Figure 6 shares many features with Fig. 3. The recoil lo-
calization parameters reach a maximum before they transition
into an oscillatory behavior that is most pronounced for u = z,
where the lines for the different relative phases overlap (see
Appendix C for an explanation in terms of the model based
on the Fabry-Pérot interferometer). Let us remark that within
the point-dipole approximation and low-NA regime (e.g., two
counterpropagating plane waves), the recoil heating rates have
some features that have been discussed in the literature: (i)
The sum ) . Ay 1s independent of @ (namely, the position of
the particle in the standing wave) [85] and (i) A, = A, =0

at & = 7 (intensity maximum) [52]. Our theoretical treatment
goes beyond the point-dipole approximation and low-NA as-
sumptions and hence shows features beyond (i) and (ii). For
instance, for low-NA (see Fig. 9 in Appendix D) we observe
the expected A, o< (R/Ao)® scaling that can be derived using
the coupling rates in the point-dipole approximation. How-
ever, for u = x, yand ® = 7 we observe a polynomial scaling
of higher order, namely, A, & (R/A)'%. This is consistent
with the fact that the coupling rates in the point-dipole ap-
proximation vanish when evaluated at this point and as a
consequence the lowest-order term is the next nonvanishing
term in the small-particle expansion.

In Fig. 7 we show the IRPs. For & =0, 7 the IRPs
are bound to be symmetric due to the symmetry of the
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FIG. 5. Detection efficiencies ”Z and minimum achievable mean
phonon occupation number 72, along x, y, and z for ideal feedback as
a function of R/X for p = 1072 mbar and T = 300 K, at the same
optical configuration as in Fig. 3. The dashed (solid) lines correspond
to the values at the left (right) lens. The blue shaded area highlights

the region where 71, < 1 and the gray dashed line shows ”Z = é.

problem. This is not the case for ® = 7 /2, where the IRPs
can show large asymmetries as shown by the detection effi-
ciency values in the lower left and right corners. Similar to the
running-wave configuration for NA; = 0.75 in Fig. 4(a), the
IRPs show a complex angular distribution and the ground-
state threshold detection efficiency "Z > L is reached for

9
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FIG. 6. Recoil localization parameter A, =T,/ rgu for two fo-
cused x-polarized Gaussian beams counterpropagating along the z
axis as a function of the silica sphere’s radius R/, for all three
axes (a) u = x, (b) u =y, and (c) p = z. The values for the power,
wavelength, and relative permittivity are listed in Table I. Each panel
shows the recoil localization parameter for ® =0, 7 /2, 7, and
NA = 0.75 and an inset with a detailed view of the small-particle
regime for all three relative phases on a log-log plot. The inset in
(a) maps the relative phase @ to the corresponding intensity at the
origin.

ation. This is explicitly shown in Fig. 8, where we show
the detection efficiencies at the left (dashed lines) and right
(solid lines) lenses as a function of the radius for all axes
and relative phases [® =0, 7 /2, and 7 in Figs. 8(a)-8(c),
respectively]. The detection efficiencies are then combined
with the efficiency n;, associated with environmental infor-
mation loss due to gas scattering [Eq. (24)] to obtain the
minimum achievable mean phonon occupation number 71, for
ideal feedback [Eq. (25)] and the gas pressure and temperature
in Table I. While in the small-particle regime the detection
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FIG. 7. Information radiation patterns Z, (6, ¢x) of a silica sphere, two focused x-polarized Gaussian beams counterpropagating parallel
to the z axis (reference frame in the first row), and relative phases ® = 0, 77 /2, 7 (the corresponding intensity at the origin is shown as an inset
in the first column). The value of the IRP is encoded in both the radial distance from the center and the color scale. The two focusing lenses
have a numerical aperture NA; = NAg = 0.75. The detection efficiencies for the left and right lenses are shown in each panel (highlighted in
blue for nﬁ > %). Across the panels the value of R/ is, for each column, constant and indicated below the last row.

033714-11



PATRICK MAURER et al. PHYSICAL REVIEW A 108, 033714 (2023)
5 M 1.0 i
(@ ' @) s [NA; —NAg
rightlens ([NA p = 0.75
0.8 —
P H Ty z
1
0.6
0.50
0.10
g
(b)
1 i
0.50 !
0.10 \ 4
5
(c)
1
0.50
0.10}
0.0
0.0 0.5 1.0 1.5 2.0 2.5°0.0 0.5 1.0 1.5 2.0 2.5
R/Xo R/ Ao

FIG. 8. Detection efficiencies ”Z and minimum achievable mean phonon occupation number 7, along x, y, and z for ideal feedback as
a function of R/Aq for p = 10~° mbar and 7 = 300 K, at the same optical configuration as in Fig. 7, and for (a) ® = 0, (b) ® = /2, and
(c) ® = m with an inset that maps the relative phase ® to the corresponding intensity at the origin. The dashed (solid) lines correspond to the
values at the left (right) lens. The blue shaded area highlights the region where 7i,, < 1 and the gray dashed line shows nﬁ = %.

efficiency along x and y lies below threshold for ® = 7 and
® =0, w /2 respectively, we see that for almost all the re-
maining parameters 3D ground-state cooling is possible for a
broad range of parameters. Interestingly, at & = /2 and for
the motion along the standing-wave axis (z axis), we observe
marked oscillations as a function of R/A( between very high
collection efficiency and hence low 7, alternating between
the left and right lens, something that one can understand
using the Fabry-Pérot interferometer toy model (Appendix C).
Finally, let us emphasize that the IRPs and recoil heating
rates (also called backaction noise rates) obtained at ® =
(intensity minimum) are particularly relevant in scenarios
where the inverted harmonic optical potential is used for ex-
ponentially expanding the center-of-mass position probability
distribution, which is of interest for enhancing optical position
detection [52,54,55].

V. CONCLUSION

In the first part of this article we developed a quantum
theory of light interacting with the center-of-mass degrees of
freedom of a dielectric sphere of arbitrary refractive index
and size. The theory assumes the fluctuations of the center
of mass to be small enough so that the light-matter coupling
is linear in the center-of-mass position. This theory makes use
of the quantization of the electromagnetic field in the presence
of a dielectric sphere of arbitrary refractive index and size,
a task thoroughly derived in [58] based on [59]. This point
is key, as the use of normalized scattering eigenmodes, as
opposed to plane-wave modes, clearly reveals the Stokes and
anti-Stokes processes which are responsible for describing
the optomechanical physics of the problem. Furthermore, the
spherical shape of the dielectric object allows us to perform an
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analytical treatment using many of the available analytical
tools in spherical coordinates, thereby leading to optomechan-
ical coupling rates, recoil heating rates, and information radi-
ation patterns, which can be efficiently evaluated. We empha-
size, however, that we expect the theoretical methods of this
article to be extendable to other shapes and other degrees of
freedom (e.g., rotations [60—70] and internal acoustic phonons
[86-89]). We expect the recipe to be the same: (i) Quantize the
electromagnetic field with the object at equilibrium (cf. [58]).
(ii) Obtain the equations of motion of the relevant degrees
of freedom driven by an electromagnetic force or torque [cf.
Eq. (4)], which can be derived from a Hamiltonian with a
linear coupling to the relevant degrees of freedom [cf. Eq. (1)].
(iii) Using classical electrodynamics express the electromag-
netic force or torque acting on the degrees of freedom of
interest written in terms of the electromagnetic fields [cf.
Eq. (5)]. (iv) Introduce the quantized electromagnetic fields
in the presence of the object at equilibrium [cf. Egs. (6)
and (7)] into the initial Hamiltonian to obtain a Hamiltonian
describing the interaction between bosonic modes [cf. Eq. (8)]
and the corresponding optomechanical couplings [cf. Eq. (9)].
(v) Linearize the theory using a classical electromagnetic field
of relevance [cf. Eq. (12)] to obtain a quadratic Hamiltonian
[cf. Eq. (13)] that can be used to evaluate recoil heating rates
and information radiation patterns.

In the second part of this article we showed how the de-
veloped theory can be used to evaluate the recoil heating rates
and the information radiation patterns for a focused beam in
either a running-wave or a standing-wave configuration. These
results are relevant since in situations where the recoil heating
rate dominates any other source of noise, the information ra-
diation pattern is key to enabling center-of-mass ground-state
cooling via active feedback. We have shown that in this ex-
perimentally feasible configuration, high collection efficiency
of the light carrying information about the center-of-mass
degrees of freedom can be achieved for particles comparable
to and larger than the optical wavelength. This is possible not
only in one degree of freedom as it happens for small particles,
but for the three degrees of freedom, thereby allowing for si-
multaneously three-dimensional center-of-mass ground-state
cooling.

Our work opens many research directions for further explo-
ration. (i) As mentioned above, one could extend the results
of this article to other shapes and degrees of freedom, such
as rotation and internal acoustic vibrations. (ii) Large parti-
cles support whispering gallery modes, which can potentially
enhance the coupling strength. These modes possess a high
angular momentum and can be excited by off-axis focused
Gaussian beams (see [90]). (iii) While we have focused on
silica particles, other dielectric particles have a much higher
refractive index (e.g., silicon) which enhances optical res-
onances that could be exploited for optomechanics [91]. It
would be particularly interesting to study and exploit the
optical interaction between several dielectric particles beyond
the point-dipole regime [7,92-95] and in the quantum regime.
(iv) The fact that dielectric particles beyond the point-dipole
regime experience large recoil heating rates, comparable to
and even larger than the mechanical frequencies, hints at
the possibility to enter the strong quantum optomechanical
regime [9,96,97] in free space, which could have applications

in generating quantum interfaces between light and center-of-
mass motion without the use of optical resonators. (v) Our
quantum theory allows us to consider the injection of vacuum
squeezing to modify the trade-off between imprecision and
backaction noise and obtain displacement sensitivities beyond
the standard quantum limit, as recently discussed in [98] in
the point-dipole approximation. This could be particularly
interesting in the context of using micrometer-size dielectric
spheres for the search of new physics, such as dark matter
[31,32,34-42].
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APPENDIX A: DERIVATION OF EXPLICIT EXPRESSIONS

In this Appendix we derive the explicit expressions for
the central quantities in the main text. First we derive in
Appendix A1 an explicit expression for the coupling rates.
Then we derive in Appendix A2 an explicit expression for
the Stokes and anti-Stokes transition amplitudes in the asymp-
totic limit. Finally, we combine these results in Appendix A 3
by deriving explicit expressions for the information radiation
patterns and recoil heating rates.

1. Derivation of the coupling rates
In this section we show how to derive an analytical ex-
pression for the coupling rates g, starting from Eq. (9),
that is,

VOB im rZ/dQ(e,-eM)
2

’ = }"0
Bric'n " r—00

x (F:(r) Fo(r) + %V x F(r) - V x FK/(r)>.
(A1)

In particular, we show that the coupling rates for a dielec-
tric sphere of arbitrary refractive index and size can be
expressed as a sum over discrete angular momentum indices
l=1,2,... andm=—I[,—-1l+1,...,] and polarization in-
dices p € {TE,TM}.

We proceed in three steps (see details below). First, we
insert in Eq. (Al) the explicit far-field expression of the
normalized scattering eigenmodes that can be written in
terms of the vector spherical harmonic Xj*(6, ¢). This leads
to an integrand that consists of a sum of products of
two vector spherical harmonics of different order / and
a p-dependent term, that is, e,-e,. As a second step
we derive an analytical expression for these angular in-
tegrals. Finally, we use trigonometric identities to further
simplify the analytical expression for the coupling rates

8! -

033714-13



PATRICK MAURER et al.

PHYSICAL REVIEW A 108, 033714 (2023)

Let us start now by deriving the explicit far-field ex-
pression of the scattering eigenmodes F,(r) in terms of
vector spherical harmonics. In [58] we derived an expression
for the scattering eigenmodes in terms of the spheri-
cal eigenmodes in spherical coordinates, namely, F,(r) =
k= Zlmp clmg(Ok, ¢k)Slmg(k' r). The spherical eigenmodes

lmg(k r) are characterized by the discrete angular momen-
tum indices / and m and polarization indices p and can be
mapped to the electromagnetic fields of electric and magnetic
multipoles. The coefficients Efmg can be shown to read

T 0> 1) = O — Im|)cy, (Ou, $1)

= 'O — [m)X]™ (6, 1) - €46, ¢),  (A2)

Cime Ok, d1) = O — |ml)eine(Bc, de)

=i'O( — [mDX]™ 6k, ¢r) - [e, x ex(0, P)],
(A3)

where X}"(6, ¢) denotes a vector spherical harmonic as de-
fined in [58,99], ®(x) denotes the Heaviside Theta function
with ®(0) = 1, and the two transverse polarization vectors
read e;(0, ¢) = ies(6, @) and ex(0, @) = ey(6, ¢). For nota-
tional convenience the sum runs over all / and m, where the
restriction to m = —I, =1l + 1, ..., [ is taken care of by the
expansion coefficients Ef’m g(Gk, ¢ ) that vanish for [ < |m].
The spherical eigenmodes S/ (k;r) are separable in the
radial and angular variables r, 0 and ¢. As shown explicitly
in [58], their dependence on the radial coordinate is given
by the spherical Bessel and Hankel functions j;(x) and
h;(x) of the first kind and order /. Their dependence on

J

Croy

2WZZ/dQ(e, e

Im I'm

8k’ =

X K 6, )X (0, ) + Y
+ (XD kr, 60, )X]' (0. 8) —

Img
[XTM

o (K7, 01, )X (0, ) —

the angular coordinates is given by vector spherical har-
monics. Using lim,_ o ji(kr) = (kr)~'sin(kr — I /2) and

lim, _, o0 1y (kr) = —i(kr)~" expli(kr — I /2)], it follows that
. 1 m
Jim F(r) =~ > X kr, 0, pOX]' (0. ¢)

Im

+ Y (kr, O, pOY](0, )],

Img

(A4)

Iim V x F.(r) =

r—00

ik
= D [Ximi k. 6, 90X 0. 6)
Im
— Yetkr, O, pOY]'(O, 9)]-
(AS)

The far-field expressions of the normalized scattering eigen-
modes are written in terms of a linear combination of
the vector spherical harmonics Xj'(6, ¢>) and Y}'(0,¢) =

—ie, x XJ"(0, ¢). The radial functions X,  (kr, 6, ¢r) and

YP (kr 6, i) = XJ, (kr —

l mg

/2, 6k, ¢r) read

2
XD (kr, O, ) = \/;zfmg(ek, ¢ sin(kr — I /2)
o)1}

The explicit expression for ¢/ in terms of the Lorenz-Mie
coefficients depend on the sphere’s radius R and relative
permittivity € and can be found in [58]. They can also be ex-
pressed in terms of the Mie coefficients in [100], namely, a; =
isin golTM exp(—igoITM) and b; = isin (pZTE exp(—itplTE). Insert-
ing Egs. (A4) and (AS) in Eq. (Al) and using w, = ck, we
arrive at

— (—i)' sin ¢} expli(kr — (A6)

(X (kr, 0, X0, ) + Yoo (kr, O, p)YT(0. )]

(K O, o)X (6, 9)]
Y (kr, O, $)Y[(0, $)]|

Img
Ve (KT, O )Y (0, )]} (A7)

In order to further evaluate Eq. (A7) we need to find an expression for the angular integrals containing the product of two
vector spherical harmonics and the u-dependent term e, - e, that is,

Iex = Iy = /S e, - €)X (0, 9) - X[ (0, 9),
Ly = /S e, €)X (0, ) - Y0, 9),

I = /Sz dQ(e, -, )Y™ (0, ¢) - X' (6, ),

where we have used that [Y}"(0, $)I* - Y (0, ¢) =
analytical expression for each of the above terms, namely,

(A8)
(A9)

(A10)

X7 (6, P)I* - X;’,”(Q, ¢). Using the results of [73], it is possible to derive an

U +2) +m +2) +m + 1) S 18mm 1

' LI+ 2)T —m' + 1) —m') 81510811
xx— QI+3)2I+1) 2042

g

QU+ 32U+ 1) 20+ 2

QU+ 3)Q2I + 1) 20 +2

\/ U+ 201 —m+ 1)U = m) 814 18m 1o

_ \/1(1 +2)((+m+2)(+m+ D) Sip1rdmiim

, (ALD)

QL +3)2l + 1) 20 +2
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A +Fm)(I—m+1) VU —=m)I+m+1)
I :I)r = — 811 Omm+1 — SOt 1 Al2
Xy 201D 1 11 201 1) 118m+1 (A12)

P I+ =m + DU =m) Si108mmw1 [T+ 2 +m' + )" +m' + 1) Sir418mm 41
XX QI+3)Q2I+1) 2il + 2i QU +3)2I' +1) 2il’ + 2i

U2 = m A4 DI —m) 841 8m1m I+2)T+m+2)1+m+1) 8518 mrim (AL3)
QU +3)2U +1) 2il’ + 2i Q1 +3)21 +1) 2il + 2i
, , VJT+m)T—m+1) VT=—m)T+m+1)

L,=0L,=— 811 Sy 81 Smes 1 Al4
YX XY 2+ 1) 1 +1+ 20+ 1) 11'Om+1 ( )
o= I +2)+m' + 1) —m' + 1) 81410 Smm U +2)U+m~+ 1) —m~+1) 81 118mm (AL5)

xx QI+3)2l+1) I+1 QU432 +1) UV+1 "
Ly = ————818mm = Iy (A16)

l(l +1)

Note that all integrals contain a Kronecker delta in I and m’. Thus, inserting Egs. (A11)—(A16) in Eq. (A7) leads to an
expression for the coupling rates g, that is written as a single sum over the discrete angular momentum and polarization
indices. For each u € {x, y, z} the sum runs over terms that are all proportional to one of the two following combinations of
products of the radial functions X, g(kr O, px)and Y, g(kr Ok, Pr):

lmg(kr Ok, dr)X mg(k 10, o) + Ylf,;kg(kr O, DY), g (K100, dr)
2 . _ .
= — Ok DIy O, ) exp [i(g]” = o) cos [(1 = 1D /2 + ¢ = 7], (A17)
lmg(kr Ok» D) ,,mg( T, O, Qi) — %ﬁ;(kh 9k7¢k)Xﬂ,/,,/g(k/V, O's D)

2 / / . /
= — Ok 90 O ) exp [ile — o) ]sin [ = )7 /2+ ¢ — g1 ] (A18)

These equations immediately follow from standard trigonometric identities. As expected, this leads to an expression for the
coupling rates that is independent of the radial variable .

Note that Eqs. (A17) and (A18) do in principle depend on k and k" independently through (p;" and golp Here we derive
coupling rates for processes where photons at frequency wy interact with center-of-mass phonons with frequencies 2, that are
many orders of magnitude smaller 2, < wp. In light of this and in order to simplify the notation, we therefore approximate
k >~ k’. Combining all these results, it immediately follows that the coupling rates can be compactly written as

l'CI"()M

S = 2 VK

Here we have used the fact that the sum runs over all [ € N and m € Z, which allows for a simple shifting of the summation
indices. The above representation is particularly advantageous for deriving an expression for the IRPs and the recoil heating
rates in Appendix A 3. The explicit form of almg(ek, ¢r) reads

Z e (O, d)aj,r, O, pio). (A19)

a0k, 1) —\/’(l U m Aot Dy s

(=D + DU —m){A—m— 1)
21 4+ 3)(21 + 1)(21 +2)? Clyim—1g1

P *
QL+ DL — 2Ly Cinrt (574)

WA Am+DA+m+ D), 5+ =D+ DU +md+m=1), (57
(21 +3)(21 + 1)(21 4 2)? CLemieS] (21 + )21 — 1)(21)? [=Im—1g\7I-1

NI +mI—m+1) VIt m+ DT —m)

211+ 1) clm—lng 2000+ 1) Im+lng (A20)
_ l(l+2)(l—m+2)(l—m+1) ) (L — DI+ DA —m)I —m 1)_p o
15Ok 1) = \/ A+l D2 S +\/ AT DG =D e (S0
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1(1+2)(l+m+2)(1+m+1) n (l—l)(l-i—l)(l—}—m)(l—}—m—l)ép (7.
(21 +3)Q2L+ )21 +2) ClaminSi (21 + 1)(21 — 1)(21)? I=Im—1g\7I-1

JTEmd —m+1) 5, 5 JT+m+ DU —m) _;
- Crm—1R Clm+1
211+ 1) 8 201+ 1) +lg

R, (A21)

I+ 20+ 12 —m?] (12— 1)(I2 — m?) _ . mo
O, ) = sp— [T T e gp Y TGP RP A22
s 0o 91) = \/(21+3)(21+ S @i -medS) = g Cine (A22)
where we have defined TE = TM, TM = TE, and
RM=—(R®) =1 —exp[-2i(p/™ — ¢")]. (A23)
SP=1—exp[—2i(¢], —¢])]- (A24)

For better readability we have chosen to not specify explicitly that sz depends on (6, ¢) in the above expressions. This
concludes the derivation of the coupling rates for spheres of arbitrary refractive index and size.

Small-particle limit

Finally, let us explain how to derive the small-particle limit of the coupling rates, that is, Eq. (10). The small-particle limit
J€kR < 1 is obtained by realizing that, through Rp and Slp , the contribution of the individual terms of different / € IN* in
Eq. (A19) to the total sum decreases exponentially W1th increasing I. For ¢ = kR — 0 we have R = O(¢* ™), S[® = 0(¢**?),
and S™ = O(g* ™). The leading-order terms read

STM ~ ﬁe — l(kR)3 _ k3

RTM ~ RTE
3e+2 3meg

) (A25)

where o = 3¢pV (e — 1)/(e 4 2) is the polarizability of the dielectric sphere and V the volume of the sphere. Retaining only
those terms (A19) directly leads to

irguo ckk'
S = T 22w

(€, -eg)(er —ey) - ey, (A26)

where e; denotes the unit vector parallel to the wave vector k. This expression agrees with the heuristically derived expressions
for the coupling rates (see Sec. II).

2. Derivation of the transition amplitudes

In this section we consider Stokes and anti-Stokes scattering processes as shown in Fig. 1 and derive the corresponding tran-
sition amplitudes in first-order perturbation theory in the asymptotic limit [cf. Eq. (15)]. These processes describe the scattering
of a single photon from a coherently populated tweezer mode into a mode « (not excluding the tweezer mode) by generatmg or
absorbing a center-of-mass phonon through the dynamics generated by the fundamental Hamiltonian A = Hy + Hy in Eq. (8).

The transition amplitudes for this processes read 'l:w(t t') = (¥, Ou[|U (t,1")|Win), with the input state |Wi,) = |ny, ny, 1) ®
|We) (n, > 0), the output states |W5 ) = a*b‘ |Win) and |U3) = a,fb |Win) describing Stokes (p = S) and anti-Stokes (p = aS)
processes respectively, the time-evolution operator in the Schrodinger picture U (¢, t'), and |Wq) = D(tc)|0)em as defined in
Eq. (11) with the coherent and monochromatic amplitude e, with frequency wy. We rewrite the transition amplitude t/,, with
p € {S,aS} as

77, = expl—i(w + Q)11 (Win| exp(—iHot /i), Ui (t, 1) exp(iHot' /1) Wiy), (A27)
25 = expl—i(we — Q)1 (Win| exp(—iHot /)a, b}, Un(t, 1) exp(iHot' /)| Win), (A28)

where Ui (t, 1) = exp(iHot /R)U (¢, t") exp(—iHot' /i) defines the time-evolution operator in the interaction picture.
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In the regime where the coupling rates g, are smaller than the trap frequencies €2,,, we expand Usn(, t') up to first order in
time-dependent perturbation theory and set ¢, t" = £7 /2, namely,

. AT/
On(T/2, -T/2) =1 — % / ds exp(iHos)Hin exp(—iHos) (A29)
-T2
=127 Y geepyae|budr (o — w0 — 2,) + bj,dr(wc — o0 + Q). (A30)
KK’

where 87 (w) = (27)~! f_Tﬁz dsexp(iws) defines a nascent delta function. This leads to

5, ~ —2im(n, + 1)exp (—i(a)K +Q,)T/2 - ivaQvT> > v

K1K2
X (Wl expl—iHoT /(2h))acay!, b, expl—iHoT /(20)]|We)7 (@, — @, + ), (A31)

for the Stokes process and

TS ~ — imn, exp (—i(wK - Q)T/2 - iZnUQvT> > G

K1K2

x (Wl expl—iHoT /(QM))aca), o, expl—iHoT /(20)]|We)S7 (@, — 0, — ), (A32)

for the anti-Stokes process, where we have used Bu |n,) = /nyln, — 1) and I;L|nﬂ) = /n, + 1|n, + 1). To further simplify the
expression we use that D' (a, )D () = 1, D (ot )a, D(at ) = ac + e, and @, |0)ern = 0. This leads to

D G (Wt expl—iHoT / (21)|ésetf, e, expl—iHoT /(21)]|War)S7 (w, — 0, & 1)
K1K2
= exp(—iwnT/2) Y Gy, (Wt expl—iHoT /(2h)aarf, expl—iHoT /()| Wa)S7 (i, — w0 £ Q). (A33)

K1

where we have defined G, = ZK, Q' 8wy Using [ay, az,] = 8¢ and €, > 0, we finally arrive at

I,;Q'M =—2im(n, + 1)exp |:—iT (wo + vaQv>:|GWST(a)K — wo + 2, (Pl exp(—iHoT /h)|Wy), (A34)
T2 = — 2imn, exp |:—iT (a)o + vaszv>]GwaT(wK —wy — ) (Vo | exp(—iHoT /1) |Wa). (A35)

3. Derivation of the IRPs and recoil heating rates

In this section we combine the results of the two preceding sections in order to derive explicit expressions for the recoil
heating rates (19) and the information radiation patterns (22) associated with the center-of-mass motion along the p axis.

Using the transition amplitudes 7/, in Egs. (A34) and (A35), we can derive the transition probability rates in the asymptotic
limit [76], namely,

S 2
T
Thj};o M = (n, + nrt, (A36)
2
DAL _
m =L (37

for Stokes (p =3S) and anti-Stokes (p = aS) processes, respectively, and Flf =27y, |G,(,L|28(a),( —wy £ 2,). For
coupling rates that are sufficiently broadband, i.e., |F;r -« F;[ +TI',, we define a single transition rate I'), =
27 ) |Gy |>8(w, — wp), which can be shown to correspond to the phonon heating rate due to laser recoil.

Inserting the expression for the linearized coupling rate G,,,, we arrive at

Iy =2r Z Zak’gxx/p_
K K’

2
8(we — wyp), (A38)
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where «, is the coherent amplitude of the monochromatic coherent state |v/) [Eq. (11)] with frequency w, = wy. Inserting

Eq. (A19), we arrive at

C’"ou

- Z Z Z / koclmg(ek’ ¢k)c[ mg(ek’ ¢k) A;;f(Alfp/)*

Imp U'm'p/

(A39)

where we have defined A|” = > aa)” <Ok ¢x). We can greatly simplify the expression (A39) by evaluating the expression in
large parentheses. Inserting Egs. (A2) and (A3), we have, e.g., for p = p’ = TE, that

Z f AT O, ST Or, 1) = (=)' O — Im))OW’ — |m']) / AUX] O 1) - D €50, 6) ® ey(6. §) - X1 * (Br. i)
8

(A40)

= (=)' - Ime’ - Im/l)/koX’z"(Qb ¢) - (1 —e ®e,) Xj™ (0, ¢x)  (A41)

= (=i — [m)HOU — |m'|) / dSuX Ok, i) - X Gk, dx) = O — |m|)S11 8y

To arrive at the third line we used the completeness relation
of the unit vectors, where ® denotes the dyadic product; to
arrive at the fourth line we used the fact that X7*(6, ¢) has
a vanishing radial component; and finally in the last step we
have used the orthogonality condition of the vector spherical
harmonics. Analogous derivations for all remaining combina-
tions of p, p’ € {TE,TM} lead to

3 / AUy O, DT Ok B1) = O = |m))ow Sy
8
(A43)

and hence

—

Crgu uwp 2
W= g 2 OU—ImblAY;

Imp

(A44)

where A)? depends, through a,, on the particular state of the
electromagnetic field.

The IRP I,’Z (6k, ¢r) is defined as the normalized angular
distribution of the transition probability rate in the asymptotic
limit, namely,

limy oo [ kK2, T2 ]
0 (6. 1) = '°°f0 ng A :
limre0 ), |1:,(M|

(A45)

with f dS2tZ, (6, ¢r) = 1. Within the broadband coupling
regime, we obtain Z,, (6, ¢x) = I, (k. %) = L2 (6r, dr)- In-
serting Eq. (A34) first and then Eq. (A19), it follows that the
IRP reads
Yoo Jo dki1Gp*8(w, — ax)

ZK |GK/L|28(a)K — wp)

_p* 2
_ Zg | Zlmp cﬁng(gk’ (bk)A;er
- 2

Z,(Ok, P) =

(A46)

(A42)

(

APPENDIX B: FOCUSED GAUSSIAN BEAM AS A LINEAR
COMBINATION OF PLANE WAVES

Both central quantities of this article, namely, the recoil
heating rate in Eq. (19) and the information radiation pattern
in Eq. (22), crucially depend on the coherent amplitude o
that specifies the particular state of the electromagnetic field.
In this Appendix we derive an explicit expression for «, for a
single focused Gaussian beam and a standing-wave configura-
tion of two counterpropagating focused Gaussian beams with
an arbitrary phase shift.

Let us start by deriving a general expression for the
electric field in the focal region of an aplanatic lens, i.e.,
a lens designed to minimize chromatic aberrations. We
can then use this expression to infer «, through Eq. (12).
We consider a monochromatic incoming field Ej,(r,t) =
Ein(r) exp(—iwpt) + c.c. of frequency wp and wavelength
Ao = 2mc/wyp. The aplanatic lens is characterized by its focal
length f and numerical aperture NA = sin fy4. Note that the
evanescent components of the incident electric field make a
negligible contribution to the focal field given that f > X,.
Using this approximation, we can show shown that the electric
field in the focal region reads [72,101]

Of + .

E(r )_ - dS2EL (f, Ok, ¢x) explikr cos 6 cos 0
2mi Dy

+ ikr sin 6 sin 0 cos(¢r — ¢)], B1)

where
EX(f. 0, 1)
= /| cos O |[Ein(f, O, 1) - €50k, dx)]ey Ok, i)

Ein(f, Ok, 1) - €,(0k, dr)]ea Ok, dx)
(B2)

| cos 6k|[

is the far-field angular spectrum of the refracted for an
incoming field propagating along the positive (4) or neg-
ative (—) z axis and e, and e, denote the unit vectors
of the corresponding cylindrical coordinate system. The
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corresponding integration domains depend on the numeri-
cal aperture and read Dy = {0, o € R | 0 < 6 < Ona, 0 <
¢or <2} and D_={6r,pr e R|m —Ona <O <7, 0K
¢r < 2m}. Note that Eq. (B2) is derived on the premise that,
upon refraction by the lens, the energy of the field is conserved
and that the angle between the polarization and propagation of
the field remains constant.

Inserting Eq. (B2) in Eq. (B1), we immediately see that we
can write E(r) = i), hw /200G (r) with the normal-
ized plane-wave mode G, (r) = exp(ik - r)eg/(Zn)3/2. Thus,
the focused field E(r) is given by a linear combination of
plane waves with coefficients that depend on the angular spec-
trum and the propagation direction () of the incoming beam,
namely,

4
o (k. O ) = — i | ”6‘)kof¢|cosek [Ein(f. 6k, 1)

Sk — k
e (00 1 "), (B3)
O
" dmey
@k, O, 91 = = || ko f /I cos 6l Ein( £ 6r. )
Sk — k
ey (0, g1 ) (B4)
0

where ky = wp/c. Note that in the presence of a dielectric
sphere of arbitrary refractive index and size, the focused
fields are obtained by simply replacing the plane-wave modes
G, (r) by the scattering eigenmodes F, (r) [58], that is, E(r) =
iy NIy 2e000F, (1).

Having derived a general expression for the focal field, let
us now consider a single incoming x-polarized paraxial
Gaussian beam of waist wg propagating along the

positive or negative z axis, that is, Ei(f, 6k, ¢x) =
Eyexp(—f? sin 7 /w3 )e,. This leads to
dme
i kB ) = | 2 CkofEov/I cos 6]
8(k — k
X exp (—f2 sin’ Qk/wé)i sin q&k%,
(BS)
4me
o5 (k, 0, ) = + | hwo“koon\Acoseu
. 3(k — ko)
x exp (—f? sin 6 /w) cos ¢kk—§0'
(Bo)

The coherent amplitude enters in the expressions for the recoil
heating rate and IRP through A?” =" aFa)’ (O, #1). The
Dirac delta in k — ko renders the integration over k trivial
and we only need to evaluate the sum over the polarizations
g and the integral over the angles 6; and ¢;. One can see
in Egs. (A20)—(A22) that the only quantity that depends on
these variables is ¢/ <Ok ¢1)- In order to further simplify the
computation of the recoil heating rate and IRP, let us therefore
derive an explicit expression for C, . = > aFc) «Orcs D).
With this quantity we immediately obtain an expressions for

AP, by replacing Elmg(ek, ¢r) by C  in Eqs. (A20)—(A22).
Inserting Egs. (A2) and (A3) in C lmi = ZK akiclmg(ek, o),
we have

4
CIE, =i = ImI)ko fEo, |~ / 4/ Tcos ]
Dy

X exp( £? sin? Gk/wo Xm*(Qk,¢>k)
- (—sin ¢y ey + cos Prey),

C%—z@(zamnkoon‘/ / 42 JTcostil
Dy

x exp (—f7 sin® O /w) X" 6k, ér)

- (sin g€y + cos ¢yey).

(B7)

(B8)

Integration over ¢ can be performed analytically and leads to

|43 “p
Clper = ilkOfEO o 0(Zlm ll Sm1 + L - u, ) Sm—1),

(B9)

where we have defined the two vectors ul® = e, + ies and
uM=e, — ieg and

ONa
Z,, =0 — |m|)/ df sinf./| cos 9|
0

x exp(—f%sin® 8/w?)X]™(8, 0). (B10)

Analogously, using XF!(7 — 6, 0) = (=)' [XE (6, 0],
we obtain

[ 4503
cr = —(—i)ko fEo ;:wéo (Z5, 0’8y + 25, - w8, 1),
0

(B11)

TE — ™ _—_

where we have defined u_® = —ey + ieg and u_" = —ey —
ieg. We have now derived an expression for sz . in the case
of focused Gaussian beams propagating along the positive (+)
or negative (—) z axis. For the standing-wave configuration we

combine both beams with a relative phase ®, which leads to
Im(cb) lm+ + exp(lq>) Im—> (B12)

where the intensity at the focus scales as cos?(®/2) with the
relative phase.

1. Characterization of the focused field

Note that we can relate the electric field amplitude Ey to
the power P that passes through a single lens, that is,

P=2us'f /D AUEno(f Oc. dOBL(f 6o 0] - €6 i)

=eocEqmw?[1 — exp (—27 sin® Oya/wp) |, (B13)

where o denotes the vacuum permeability and B(r,?) =
B(r) exp(—iwpt) + c.c. defines the magnetic field. In order to
achieve maximum focusing one needs to overfill the lens, that
is, fo > 1 with filling factor fy = wo/(f sinOna). In this case
we can approximate P ~ 2 egc(fEy)? sin? Ona. Throughout
the article we consider a filling factor fy, = 10.
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Let us now derive how the waist of the focused Gaussian
beam depends on the numerical aperture of the overfilled lens.
Using the electric and magnetic fields in the focal region [72],
we calculate, similarly to Eq. (B13), the power that passes
through a circular aperture with radius a centered at the focal
point and oriented perpendicular to the z axis, that is,

a 2

P@=2" [ dpp [ d9IE. .00 x B (5.9.0) ..
0 0

(B14)

Analogously to a Gaussian beam, we define the waist w of a
focused Gaussian beam as the radius of the circular aperture
for which P(w) = [1 — exp(—2)]lim,—,  P(a), that is, 86%
of the total power is transmitted through that aperture of
radius w. In Fig. 2(b) we show w/Ag for numerical aper-
tures NA > 0.1 and a single Gaussian beam. As expected,
the waist decreases rapidly with increasing numerical aperture
and reaches a value on the order of the wavelength A, which
corresponds to the diffraction limit [72].

APPENDIX C: FABRY-PéROT INTERFEROMETER

In this Appendix we provide a simple model for the recoil
localization parameter and the IRP for lenses of numerical
apertures NA > 0.75 and dielectric spheres or radius R > Ag.
For these large numerical apertures the waist of the focused
Gaussian beam is smaller than the wavelength [see Fig. 2(b)].
It follows that the system can be modeled by a collimated
beam that is normally incident on a dielectric slab of thickness
D = 2R and relative permittivity €, i.e., a Fabry-Pérot interfer-
ometer. In the following we derive both the recoil localization
parameter and the IRP for the subspace of two x-polarized
scattering eigenmodes propagating perpendicular to the slab.
These modes are given by F (r) = Agflf(z)ex, foro =L, R,
with normalization constant A7, eigenfrequency w{ = ck, and

fE(z) = exp(ikz + i®) + rexp(—ikz + i®d) forz < —D/2,

(&Y

fE(z) = texp(ikz + i®) forz > D)2, (C2)
fR() = texp(—ikz) forz < —DJ2, (C3)

&) = exp(—ikz) + rexp(ikz) forz > D/2. (C4)

Here @ is a relative phase between the L and R modes. The
reflection and transmission coefficients are given by

_ (1 — €)sin(/eq)
"= (€ + 1)sin(/eq) + 2i/€ cos(\/€q)’
P 2i/€
(€ + 1)sin(\/eq) + 2i /€ cos(\/€q)’
where g = kD. The coupling rates g, are determined, anal-
ogously to the main text, via the radiation pressure operator

[see Eq. (5)]. Due to the simple geometry, they can readily be
shown to read

(C5)

(C6)

(€7

8L X |”|2,

grr o —ilr|*Im(t /r) exp(i®), (C8)
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FIG. 9. Recoil localization parameter A, =T, /rj, for two fo-
cused x-polarized Gaussian beams counterpropagating along the z
axis as a function of the silica sphere’s radius R/A for all three
axes (a) u = x, (b) u =y, and (c) u = z. The values for the power,
wavelength, and relative permittivity are listed in Table I. Each panel
shows the recoil localization parameter for & = 0,7 /2, 7, NA =
0.10, and an inset with a detailed view of the small-particle regime
for all three relative phases on a log-log plot. The inset in (a) maps
the relative phase & to the corresponding intensity at the origin.

gre o< i|r|*Im(t /r) exp(—i®), (C9)

grr o —|r|% (C10)

First, let us assume the scenario where the L mode is in a
coherent state. In the absence of the slab this corresponds to
a plane wave propagating along the positive-z axis. It follows
that the recoil heating rate reads

T oy lgwsl* = lewel + lgerl?
o

= [r|*{1 + [Im(t/")1*} = gglrI*. (C11)
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FIG. 10. Information radiation patterns Z,(6y, ¢x) of a silica sphere, two focused x-polarized Gaussian beams counterpropagating parallel
to the z axis (reference frame in the first row), and relative phases ® = 0, /2, 7. The value of the IRP is encoded in both the radial distance
from the center and the color scale. The two focusing lenses have a numerical aperture NA; = NA; = 0.10. The detection efficiencies for the
left and right lenses are shown in each panel (highlighted in blue for ”Z > é). Across the panels the value of R/A is, for each column, constant
and indicated below the last row.
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FIG. 11. Detection efficiencies nﬁ and minimum achievable mean phonon occupation number 71,, along x, y, and z for ideal feedback as a
function of R/ for p = 10~° mbar and T = 300 K, at the same optical configuration as in Fig. 9, for (a) ® =0, (b) ® = n/2,and (c) ® =7
with an inset that maps the relative phase ® to the corresponding intensity at the origin. The dashed (solid) lines correspond to the values at
the left (right) lens. The blue shaded area highlights the region where 7, < 1 and the gray dashed line shows "Z = %.

The I' is maximal when the reflectance |r|? is maximal, which
happens periodically at /eq = 7 /2 + nw, with n € INp. Note
that these maxima also coincide with a maximal number of
backscattered photons.

Second, let us assume that both the L and R modes are in
a coherent state. In the absence of the slab this corresponds to
a standing wave with an intensity cos?(®/2) at the origin. It
follows that the recoil heating rate reads

T o> |80 + grol” = I8 + grel* + gLk + grrl*. (C12)

Inserting the coupling rates, one immediately obtains that the
two terms, which represent a left-oriented IRP and a right-

oriented IRP, respectively, are equal up to an interference term
proportional to =+ sin @, namely,

lgrr + grel? = |r* + 2|r[*Im(/r) sin @, (C13)

lgrr + grel* = 71> — 2|r|*Im(t /r) sin ®. (C14)

Therefore, the recoil heating rate, which is obtained by sum-
ming over the two terms, i.e., ' « 2|r|?, does not depend on
®. Furthermore, the left-oriented IRP and right-oriented IRP
are only different for ® # 0, w and they oscillate from left to
right as a function of D.

APPENDIX D: FIGURES

This Appendix contains Figs. 6, 7, and 8 for NA, =
NAg = 0.1, shown respectively in Figs. 9, 10, and 11. For
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FIG. 12. Normalized Lorenz-Mie differential scattering cross section o ~'do /d<; as a function of the radius for all optical configura-
tion under consideration in the main text, i.e., the running- and standing-wave setups with low- and high-NA lenses, and relative phase
® =0, 7 /2, 7. The value of the differential scattering cross section is encoded in both the radial distance from the center and the color scale.

Across the panels the value of R/, is, for each column, constant and indicated below the last row.

the low-NA standing-wave configuration the simple one-
dimensional model based on the Fabry-Pérot interferometer
(see Appendix C) does not hold and the IRPs again become
increasingly sharply peaked in the forward direction as the
radius increases. In contrast to the running-wave configuration
in Sec. IV C, the low-NA lenses lead to a much smaller detec-
tion efficiency which does not allow for ground-state cooling

for almost all axes, relative phases, and radii under consider-
ation. Note, however, that 7i,, > 10 appears to be feasible for
large enough spheres.

For completeness, we also show the normalized Lorenz-
Mie differential scattering cross section o ~'do /d; [100]
for all optical configurations discussed in this work in
Fig. 12.
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