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Quantum superresolution for imaging two pointlike entangled photon sources

Huan Zhang,1 Wei Ye,2 Zeyang Liao ,1,* and Xue-hua Wang1

1State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics,
Sun Yat-sen University, Guangzhou 510275, China

2School of Information Engineering, Nanchang Hangkong University, Nanchang 330063, China

(Received 24 June 2023; accepted 11 September 2023; published 22 September 2023)

We investigate the resolution for imaging two pointlike entangled sources by using the method of moments and
spatial-mode demultiplexing, where the pointlike entangled sources can be generated by injecting single-mode
sources with arbitrary quantum statistics distribution into an optical parametric amplifier (OPA). We demonstrate
that the separation estimation sensitivity is mainly determined by the photon distribution in each detected
mode and it can be enhanced by either increasing the squeezed parameter of the OPA or eliminating the relative
phase difference of the entangled sources. Furthermore, in the limiting case of infinitely small source separation,
the usage of entangled sources can have better resolution than those using incoherent and coherent sources. The
results here can find important applications for quantum super-resolution imaging and quantum metrology.
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I. INTRODUCTION

Due to Abbe’s diffraction limit [1,2], the minimum re-
solvable separation of a classical optical instrument is about
half the wavelength of the detection light source (i.e., dmin =
λ/2NA, where λ is the wavelength of light and NA is the
numerical aperture). How to further improve the resolution
of the optical instrument is always a hot research topic which
has attracted extensive interests in the past few decades [3,4].
In the past few decades, a number of methods have been
proposed to overcome the diffraction limit, such as stimulated
emission depletion microscopy [5,6], structured illumination
microscopy [7–10], single-molecule localization microscopy
[11,12], and stochastic optical fluctuation imaging [13]. These
methods have been widely used for biological imaging with
typical resolution being about 20–50 nm. Using quantum ef-
fects such as quantum entanglement [14–17], quantum coher-
ence [18–20], and quantum statistics [21–24], the diffraction
limit can also be in principle overcome. A natural question
arises: What is the ultimate limit of quantum imaging?

The above question may be addressed from the point
of view of quantum metrology [25–29]. The simplest task
for super-resolution optical imaging is discrimination of two
close pointlike sources [30–37]. According to the theory of
quantum metrology, the quantum limit for the separation d
estimation of pointlike sources is determined by the quantum
Cramér-Rao bound (�d )2 � 1/FQ, where FQ is the quantum
Fisher information (QFI), quantifying the sensitivity of the
quantum state of the point source to the change of separation
d [38–41], and (�d )2 = 〈d2〉 − 〈d〉2 is the mean-square error
of the separation d estimation. Based on this idea, Tsang
et al. showed that the estimation error is not diverging as
the separation between the two point sources becomes in-
finitely small and moreover they proved that the spatial-mode

*liaozy7@mail.sysu.edu.cn

demultiplexing method (SPADE) can saturate this quantum
bound [26,30,32,33]. In particular, the separation of two
equally bright light sources within the diffraction limit can
be estimated with high sensitivity by analyzing the signals on
different spatial modes, e.g., Hermite-Gaussian (HG) modes,
instead of direct intensity measurements, which has been
experimentally demonstrated [42–44]. This method has also
been generalized to the two- and three-dimensional cases
[45,46]. Recently, Zanforlin et al. experimentally demon-
strated the super-resolution imaging task for resolving two
sources with unequal brightness based on hypothesis testing
and quantum metrology techniques [36]. Another resolution-
enhanced measurement scheme based on the method of
moments has also been proposed, which enables us to an-
alyze and resolve bright unrelated thermal sources without
requiring the full measurement statistics [47–49]. Although
early research mainly focused on incoherent pointlike sources,
discrimination of mutually coherent pointlike sources has also
been studied [50,51].

In this paper, we study the super-resolution imaging for a
pair of pointlike entangled sources using the SPADE based on
the method of moments, where the pointlike entangled sources
can be generated by injecting quantum states with different
different photon statistics into the optical parametric amplifier
(OPA). We show that the sensitivity of separation estimation
in our scheme does not vanish even if the two entangled
sources are infinitely close, which renders the diffraction limit
irrelevant to the problem. We also show that the sensitivity
using the entangled sources is significantly better than those
using the incoherent and coherent sources and the sensitivity
can be enhanced by increasing the squeezing parameter. In
addition, we also show that smaller phase difference between
the entangled sources is favored for better sensitivity. The
results here can find important applications for the quantum
super-resolution imaging and quantum metrology.

The structure of the paper is as follows. In Sec. II, we illus-
trate the schematic setup and basic principle for the imaging
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FIG. 1. Left (gray box): Conceptual scheme for generating a general two-mode pointlike entangled light source based on an optical
parametric amplification with squeezing parameter r and a phase shifting element θ . Right (orange box): Optical scheme for the estimation of
the separation of the sources, where κ is a transmissivity of the imaging system, and photon counting is performed in the measurement modes
hm(r) with corresponding field operators âm.

of a pair of pointlike entangled sources. After introducing
the method of moments for estimating sources separation in
Sec. III, we investigate in detail the estimation sensitivity of
our scheme in Sec. IV. We summarize our results in Sec. V.

II. MODEL OF SOURCES AND IMAGING SYSTEM

In this section, we propose theoretically an optical scheme
for resolving a pair of pointlike entangled sources (corre-
sponding to the orthogonal modes with field operators ŝ1,2)
located at positions r1,2 = (±d/2, 0, 0). The light emitted by
these sources can be considered the result of a single mode
light source that is injected into the OPA, and then adds a
phase shifting element θ to one of the output modes (see the
left part of Fig. 1). The OPA can be described as a two-mode
unitary squeezed operator S2(r) = exp{r(ŝ†

0v̂
†
0 − ŝ0v̂0)} with a

real squeezing parameter r. In these situations, the transition
of the field operators from the incident field ŝ0 to the modes
of sources ŝ1,2 can be given by [52](

ŝ1

ŝ†
2

)
=

(
1 0
0 eiθ

)(
cosh r − sinh r

− sinh r cosh r

)(
ŝ0

v̂
†
0

)
, (1)

where v̂
†
0 is the creation field operator of the vacuum mode.

For any initial incident field (a single mode light ρŝ0 ), corre-
sponding to field operator ŝ0, the first-order coherency matrix
of the modes ŝ1,2 can be calculated as

〈ŝ†
i ŝ j〉 =

(
Ns1 C
C∗ Ns2

)
, (2a)

with

Ns1 = Ns cosh2 r + sinh2 r, (2b)

Ns2 = Ns sinh2 r + sinh2 r, (2c)

C = − 1
2 eiθ Tr

[
ρŝ0 ŝ2

0

]
sinh 2r, (2d)

where Ns = Tr[ρŝ0 ŝ†
0ŝ0] is the average intensity of the incident

field. In particular, the case of r → ∞ corresponds to equally
bright sources and r → 0 corresponds to all light in mode
ŝ1. Although theoretically we can achieve an arbitrary large

squeezing parameter, it is an impossible task experimentally.
Therefore, we only focus on finite squeezing parameter r ∈
[0, 1] of the OPA in the following discussion, as far as the
current technology is concerned, which means that it is easy
to generate entangled light sources experimentally for finite
squeezed intensity [53,54].

In the imaging system, the separation parameters d of the
sources ŝ1,2 are estimated from measurements of the diffracted
light. Now, let us consider that a pair of pointlike entangled
sources emits light, which passes through a diffraction-limited
imaging system with finite aperture that has a transmissivity κ

and a point spread function (PSF) u0(r) (see the right part of
Fig. 1). In general, for the case of the paraxial approximation,
the parameter κ does not depend on the positions of the light
source ŝ1,2. The evolution of the field operators through a
diffraction-limited imaging system can actually be described
as the following transformations [31]:

ŝ1,2 → √
κ b̂1,2 + √

1 − κ v̂1,2, (3)

where b̂1,2 = ∫
d3ru0(r − r1,2)b̂r are the image operators and

b̂r is the canonical annihilation operator for the field at lo-
cation r on the image plane. v̂1,2 are the field operators of
auxiliary environmental modes of a diffraction-limited imag-
ing system, which are assumed to be in the vacuum state. Due
to the diffraction limit, the image profile functions u0(r − r1)
and u0(r − r2) are usually overlapped when the distance be-
tween the two point sources is small. Hence, it should be noted
that the image operators b̂1 and b̂2 do not satisfy the usual
canonical commutation relations.

In order to obtain the ultimate sensitivity of separation
parameter d estimation, we can apply the moment-based
estimation technique and here we use the SPADE method
to measure the light in the image plane [30,47,55]. The
SPADE can be described as measurements over some field
modes hm(r) with corresponding operator âm, where hm(r) are
general nonlocalized modes (such as the Hermite-Gaussian
modes [47] which can saturate the QFI for the estimation of
the separation between equally bright thermal sources). The
input-output relation of the field operators of the measurement
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modes is given by [50]

âm = Amŝ0 + ˆ̃vm, (4)

where Am are complex coefficients and ˆ̃vm are non-normalized
nonorthogonal combinations of the field operators of vacuum
modes that are orthogonal to the mode ŝ0. By using the
SPADE method, the separation parameters d can in principle
be estimated from the measured numbers of photons Nm =
〈â†

mâm〉 in the image plane. The average number of detected
photons in the mth measurement mode reads

Nm = |Am|2Ns, (5)

and for our scheme as shown in Fig. 1 the complex coefficient
Am is given by

Am = √
κ

∫
d3rh∗

m(r)

× [u0(r − r1) cosh r − u0(r − r2)eiθ sinh r]. (6)

From Eqs. (5) and (6), we can see that the average photon
number in each measurement mode contains the information
of source separation d , the phase difference θ of source modes
ŝ1,2, the transmissivity κ , the PSF u0(r), and the shapes of the
Hermite-Gaussian modes hm(r).

III. THE METHOD OF MOMENT
AND SPATIAL-MODE DEMULTIPLEXING

In this section, we derive the measurement sensitivity using
the method of moments [56,57]. For a given observable Ô,
an estimator d̂ of the separation parameter d can be obtained
from the sample mean oτ = ∑τ

i=1 oi/τ of τ independent mea-
surements of Ô. After performing enough measurements, i.e.,
τ 	 1, according to the central limit theorem, oτ presents the
normal distribution with the mean value 〈Ô〉 and the variance
(�Ô)2 = 〈Ô2〉 − 〈Ô〉2. The estimation error of the separation
parameter d can be calculated by

(�d )2 = (�Ô)2

τ (∂〈Ô〉/∂d )2
, (7)

which also determines the sensitivity of estimating the separa-
tion parameter d in the method of moments. According to the
Cramér-Rao lower bound,

(�d )2 � 1

τF (d, Ô)
, (8)

where F (d, Ô) is classical Fisher information. Finally, we
can obtain the ultimate sensitivity of separation parameter d
by calculating the QFI FQ(d ), i.e., maximizing the classical
Fisher information over any positive operator-valued measure
FQ(d ) = maxÔ F (d, Ô). Assuming that a set of parameters
{λi} is measured, the measurement sensitivity matrix is then
given by

Si j =
∑
m,n

	−1
mn

∂〈Ô〉m

∂λi

∂〈Ô〉n

∂λ j
, (9)

with 	mn = 〈ÔmÔn〉 − 〈Ô〉m〈Ô〉n being the covariance matrix
of the observables. It should be noted that this sensitivity
matrix is obtained by optimizing the linear combination of the

average values 〈Ô〉m of observable measurements {Ôm}. The
covariance of the estimator {λ̂i} is given by the inverse of the
sensitivity matrix, i.e.,

cov(λ̂i, λ̂ j ) = 1

τ
S−1

i j . (10)

In practice, we cannot measure all observables experimen-
tally. Fortunately, the method of moments allows us to avoid
estimating parameters from the full photon counting statistics.
We take photon number operators N̂m = â†

mâm in the mth
measurement mode as observables. By using the Sherman-
Morrison formula [58,59] and the method of moments, the
elements of the inverse covariance matrix in Eq. (9) can be
then calculated as

	−1
mn = δmnN−1

m − g(2) − 1

1 + (g(2) − 1)ND
, (11)

where g(2) = (�N2
s − Ns)/N2

s is the degree of second-order
coherence of the initial incident field and ND = ∑

m Nm is
the total average photon number in the image plane. In our
scheme, we assume that all parameters except the separation
parameter d of the pointlike entangled sources are known.
In other words, we only need to estimate the parameter d ,
which corresponds to single-parameter estimation. Then, by
substituting Eqs. (5) and (11) into Eq. (9), we can obtain the
sensitivity, i.e.,

Red = ND

∑
m

1

Nm

(
∂Nm

∂d

)2

+ 1

�N2
D

(
∂ND

∂d

)2

, (12)

where Nm = Nm/ND is the ratio of the photon number of the
mth Hermite-Gaussian mode to the total photon number of
the image plane, and �N2

D is the variance of the total average
photon number in the image plane, which can be calculated as

�N2
D =

∑
mn

	mn = ND[1 + (g(2) − 1)ND]. (13)

According to Eq. (8), the variance of the separation parameter
d can be derived as

(�d )2 = 1

τ

1

NDReN + ReD
, (14a)

where

ReN =
∑

m

1

Nm

(
∂Nm

∂d

)2

, (14b)

ReD = 1

�N2
D

(
∂ND

∂d

)2

. (14c)

From Eq. (14a), we can find that the total sensitivity of the
separation parameter only depends on the relative photon
number Nm and the total photon number in image plane ND.
ReN can be viewed as the sensitivity of the relative intensity
measurement (RIM), which only depends on the relative pho-
ton number Nm, while ReD can be viewed as the sensitivity of
the total photon number detection (TPD).

Next, we analyze the sensitivity of separation parameter
estimation in detail for different initial incident fields. For
this purpose, we consider that the spatial field distribution,
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FIG. 2. The normalized sensitivity as a function of r and d/2ω for symmetrical entangled sources (θ = 0): (a) the normalized RIM
sensitivity, (b) the normalized TPD sensitivity, and (c) the normalized separation estimation sensitivity.

in the diffraction-limited imaging system, is a Gaussian PSF
[30,60], i.e.,

u0(r) =
√

2

πω2
exp

(
−|r|2

ω2

)
, (15)

where ω is the width of the PSF. For this PSF, the quantum
Cramér-Rao bound can be approached by demultiplexing HG
modes [50]. The measurement HG modes can be defined as

hm(x, y) = 1√
2mm!

Hm

(√
2x

ω

)
u0(

√
x2 + y2), (16)

where Hm(·) is the Hermite polynomial. For ideal measure-
ment in the HG mode basis, combining Eqs. (6), (15), and
(16), the coefficients Am can be calculated as

Am = √
κ[(−1)m cosh r − eiθ sinh r]Gm

(
d

2ω

)
, (17)

where Gm(γ ) = γ me−γ 2/2/
√

m! with γ = d/2ω. Inserting
Eq. (17) into Eq. (5), one can achieve the mean photon number
in the measurement modes:

Nm = Nsκ[cosh 2r − (−1)mη]G2
m

(
d

2ω

)
, (18)

with η = cos θ sinh 2r, and the total mean photon number can
be calculated as

ND = Nsκ (1 +℘η), (19)

where℘ is the overlap function between the images of the two
point sources, which is given by [47]

℘ =
∫

u0(r − r1)u0(r − r2)dr = exp

(
− d2

2ω2

)
(20)

where we have used the PSF shown in Eq. (15).

IV. SENSITIVITY OF THE SEPARATION
PARAMETER d ESTIMATION

In this section, we theoretically and numerically calculate
the sensitivity of our scheme under different circumstances.
We have demonstrated above that the ultimate sensitivity of
parameter d estimation is determined by the RIM and TPD.
Here, let us first consider the case when the full HG bases are

measured (i.e., m → ∞). From Eq. 14(a), the RIM sensitivity
can be calculated as

ReN = κNs

ω2ND

(
cosh 2r +℘η − d2℘η cosh 2r

ω2(cosh 2r −℘η)

)
. (21)

For simplicity, we here define RN = ω2NDReN /Nsκ as the
normalized RIM sensitivity which is given by

RN = cosh 2r +℘η − d2℘η sinh 2r

ω2(cosh 2r −℘η)
. (22)

From the above equation, we can see that the normalized
RIM sensitivity depends on the source separation d , the phase
difference θ , and the squeezed parameters r of the OPA but
not on the property of the initial incident field ρ0.

On the other hand, for the TPD sensitivity, it is seen from
Eq. 14(b) that the TPD sensitivity does not depend on average
photon number of individual HG modes Nm but only depends
on the total average photon number detection ND. Substituting
Eqs. (13) and (19) into 14(b), we can obtain

ReD = N2
s κ2d2℘2η2

ω4ND[1 + Nsκ (g(2) − 1)(cosh 2r −℘η)]
. (23)

It is not difficult to find that the TPD sensitivity depends on the
quantum statistics distribution of the incident light field. The
incident light field with antibunching statistics (g(2) < 1) can
provide a better sensitivity than those with bunching statistics
(g(2) > 1). This is because the incident field with antibunching
statistics has a lower photon number variance. Similar to the
RIM sensitivity, here we also define RD = ω2ReD/Nsκ as the
normalized TPD sensitivity, which is given by

RD = ℘2η2d2(cosh 2r − η)−1

2ω2[1 + (g(2) − 1)Nsκ (cosh 2r −℘η)]
. (24)

Finally, we discuss overall sensitivity of the separation d
estimation, which is given by Eq. (14a), and its normalized
sensitivity can be obtained by combining the RIM sensitivity
Eq. (23) with the TPD sensitivity Eq. (24), i.e.,

Rd = RN + RD. (25)

We assume that the incident field ρ0 is in a coherent state
whose photon statistics is Poisson distributed and g(2) = 1. In
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FIG. 3. The normalized separation estimation sensitivity as a
function of the second-order coherence degree g(2) for a given com-
bined value Nsκ = 0.9 of the transmittance of the diffraction limit
system and the average photon number of the initial incident field:
(a) the separation parameter d/2ω = 0.5 with different squeezed
parameters and (b) the squeezed parameter r = 0.5 with different
initial incident fields. The blue region represents the nonclassical
light as the initial incident field, while the white region represents
classical light.

this case, we have

RD = ℘2η2d2

2ω2(cosh 2r − η)
. (26)

From Eqs. (25) and (26), we can find that, after propagation
through the diffraction-limited imaging system, the normal-
ized separation estimation sensitivity does not depend on
the source intensity of the coherent state. Especially, for a
given squeezed parameter, Eq. (26) can be reduced as RD =
C(d2/2ω2)exp(−d2/ω2), where C is a constant depending
on the squeezed parameter. By straightforward calculations,
we can readily obtain the maximum value of RD when d =
ω. Furthermore, when r = 0, Rd = 1, which corresponds
to the separation estimation sensitivities for the incoherent
sources [47,48]. When r → ∞, Rd → ∞, which indicates
infinite sensitivity. This is because, when r increases, the

FIG. 4. The asymptotic behavior (d → 0) of the normalized sep-
aration estimation sensitivity for the entangled sources (blue with
stars line), the incoherent sources (black with bars line), and the
mutually coherent sources (red with cross line).

entanglement between the two sources increases and the aver-
age input photon number also increases.

In order to clearly see the effect of different parameters d
and r on the amount of the normalized sensitivity, we plot the
normalized sensitivity RN as a function of r and d when θ = 0
(Fig. 2). From Fig. 2(a), we can see that the improvement of
the normalized RIM sensitivity for a fixed d can be found by
increasing the squeezed parameters r of the OPA especially
when d approaches zero. Surprisingly, the optimal value of
the normalized RIM sensitivity appears in the range of d 

2ω which is completely different from that using the direct
imaging where the sensitivity approaches zero for very small
separation [Fig. 2(b)]. This indicates that the pointlike entan-
gled symmetric sources can still be distinguished by using the
SPADE method even when the separation d is much less than
the diffraction limit. Meanwhile, we also find that the total
sensitivity of the separation parameter d of symmetric sources
is mainly dependent on the RIM sensitivity [Fig. 2(c)]. This is
due to the fact that the sensitivity of RIM dominates over the
TPD sensitivity for most separations d especially when d is
very small or very large. In addition, when d/2ω � 0.5, there
is a peak in the sensitivity of TPD [Fig. 2(b)] which results
in the increasing of the total sensitivity around d/2ω � 0.5
shown in Fig. 2(c) compared with that in Fig. 2(a). However,
since the total sensitivity around d/2ω � 0.5 is still less than
the total sensitivity when d is very small or very large, we do
not see a peak around d/2ω � 0.5 in Fig. 2(c).

On the other hand, we also study the separation estimation
sensitivity for different second-order correlation g(2) of the
initial incident light field before OPA. From Eq. (24), we
can see that the quantum statistics of the incident field can
affect the separation estimation sensitivity. From Fig. 3(a),
we can see that the separation estimation is enhanced when
g(2) decreases for all the chosen squeezing parameters. This
indicates that antibunching of the incident field is beneficial
for the separation estimation when d/2ω = 0.5. In Fig. 3(b),
we compare the separation estimation sensitivity as a
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FIG. 5. The normalized sensitivity as a function of d/2ω for different phases θ when r = 0.5: (a) the normalized RIM sensitivity, (b) the
normalized TPD sensitivity, and (c) the normalized separation estimation sensitivity.

function of d for the coherent state (g(2) = 1), the thermal
state (g(2) = 2), and the antibunching state (g(2) = 0.5) as the
initial incident sources. We can find that the light sources with
different g(2) can give different estimation sensitivities when
d ≈ ω and the antibunching light source can improve the
sensitivity in this region. However, the separation estimation
sensitivity of the pointlike entangled sources generated by
the nonclassical source is not significantly improved com-
pared with that of the classical sources when the separation
d is much less than the diffraction limit (i.e., d → 0), which
can be also seen from Eqs. (21) and (24) from which it is
not difficult to find that the properties of the initial incident
sources before OPA only affect the sensitivity of TPD. When
d 
 ω, RD → 0 for any input light source and therefore the
photon statistics does not affect the total sensitivity. However,
when d ≈ ω, RD is maximum and therefore the nonclassical
properties of the sources have more significant impact on the
total sensitivity. Therefore, when the source separation is very
small, the pointlike entangled sources by injecting any initial
incident sources to the OPA can give similar sensitivity in
our scheme.

In Fig. 4, we compare the normalized separation estimation
sensitivities for the incoherent sources [47,48], mutually
coherent sources [50], and entangled sources when d → 0.
From the figure, we can see that the normalized separation
estimation sensitivity Rinc

d = 1 for the incoherent sources and
Rmuc

d = 1 − 2
√

T (1 − T ) for mutually coherent sources gen-
erated by the optical beam splitter, where T = cos2 φ is the
transmissivity of the optical beam splitter used in Ref. [50]. It
is seen that the estimation sensitivity of the coherent sources
is less than that of the incoherent sources, and interestingly
the normalized sensitivity disappears for the equally bright
mutually coherent sources (T = 0.5). In contrast, the estima-
tion sensitivity of the entangled sources is always greater than
1 and increases as r increases (blue line with star symbols in
Fig. 4). This can be easily seen from the asymptotic behavior
of the estimation sensitivity when d → 0. When d → 0 and
θ = 0, RD → 0 which can be seen from Eq. (26) and Rd →
cosh 2r + sinh 2r which is always larger than 1 and clearly
increases with r. These results indicate that the estimation
sensitivity can be enhanced when the entangled light sources
are used instead of coherent and incoherent classical sources.

In Fig. 5, we discuss the impact of the phase differences
θ ∈ [0, π ] on the normalized sensitivity when given squeezed

parameters r = 0.5 and g(2) = 1. Our numerical results show
that increasing the phase difference θ of the pointlike entan-
gled sources can reduce the RIM sensitivity of our scheme
when d 
 2ω, but it can increase the sensitivity when d � 2ω

[see Fig. 5(a)]. For TPD sensitivity, when 0 � θ � π/2, RD

decreases as θ increases. In contrast, when π/2 � θ � π , RD

increases as θ increases. When θ = π/2, RD = 0. The optimal
normalized TPD sensitivity of resolving symmetric sources
(θ = 0) is about 1.75 times higher than that of antisymmetric
sources (θ = π ). From Fig. 5(c), when θ = π/2,
Rd = RN = cosh 2r/ω2 which does not depend on d . For the
small separation (i.e., d 
 2ω), Rd increases as θ decreases
and when θ = 0 (symmetrical entangled sources) we have the
largest measurement sensitivity. In contrast, when d ≈ 2ω,
Rd is the largest when θ = π . These results indicate that for
deep subdiffraction limit separation, the entangled sources
with zero phase difference can have the largest estimation
sensitivity.

Finally, we should mention that in our previous dis-
cussions we assume that the centroid position of the two
sources is known. However, in some cases, this centroid
information may be unknown which can cause a misalign-
ment problem. In the previous studies, several methods
have been proposed to mitigate this effect, e.g., by adap-
tively switching between demultiplexing and direct imag-
ing [61], or by optimizing the detection basis [35], or
estimating the source’s centroid simultaneously with the
separation [62,63].

V. CONCLUSION

In summary, we analyze the separation estimation sensi-
tivity of pointlike entangle sources, which is produced by
injecting a single-mode light source with arbitrary quantum
statistics distribution into an OPA. By using the method of
moments together with the SPADE, we show that the sep-
aration estimation sensitivity is completely determined by
the photon distribution in each detected mode and the total
photon number in the image plane. The results show that
the separation estimation error does not diverge even when
d → 0 when the light sources are the pointlike entangled
sources generated by the OPA. This indicates that Rayleigh’s
curse can be overcome in our scheme. Moreover, the de-
tection sensitivity in the case of symmetric entangled light
sources can increase with the squeezing parameter r when
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d → 0. In addition, we also compare the effects of the quan-
tum statistical distribution of different incident light sources
on the realization of super-resolution imaging. We find that
for the separation around the diffraction limit, the incident
light field with antibunching photon statistics has higher
measurement sensitivity, but when the separation is much
smaller than the diffraction limit, the pointlike entangled
light source generated by OPA with arbitrary initial incident
light field can achieve similar measurement sensitivity in our
scheme. The results here can find important applications in
quantum imaging and metrology with super-resolution and
supersensitivity.
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