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and continuous symmetries

Gaoke Hu ,1,2 Wen-Long You ,3,4 Maoxin Liu ,5 and Haiqing Lin2,6,*

1School of Systems Science and Institute of Nonequilibrium Systems, Beijing Normal University, Beijing 100875, China
2Beijing Computational Science Research Center, Beijing 100193, China

3College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
4Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing 211106, China

5School of science, Beijing University of Posts and Telecommunications, Beijing 100876, China
6School of Physics, Zhejiang University, Hangzhou 310058, China

(Received 7 March 2023; accepted 6 September 2023; published 21 September 2023)

We systematically investigate the excited-state quantum phase transition (ESQPT) in the anisotropic quantum
Rabi model, which interpolates between the quantum Rabi model with Z2 symmetry and the Jaynes-Cummings
model with U (1) symmetry. We calculate the model energy spectra and density of states (DOS) with the cumu-
lants in both analytical and numerical ways to describe the ESQPT by the singularities. In the Jaynes-Cummings
limit, its continuous U (1) symmetry presents different nonanalytic behaviors from the quantum Rabi model
with the discrete Z2 symmetry, and there exists a finite discontinuous jump at the critical energy. For the general
anisotropy case with Z2 symmetry, there are two types of ESQPTs characterized by the finite discontinuous
jump and the logarithmic divergence in the DOS, respectively. Different from the ground-state quantum phase
transition, the ESQPT of the anisotropic quantum Rabi model strongly depends on the anisotropy which leads to
a discontinuity even though the Z2 symmetry is still preserved.
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I. INTRODUCTION

Quantum phase transition plays a key role in understanding
the emergent behaviors in quantum many-body systems. Re-
cently, the concept of the quantum phase transition is extended
to the excited states, known as the excited-state quantum
phase transition (ESQPT) [1,2]. Different from the ground-
state quantum phase transition, which describes sudden
changes of the ground-state properties when a control pa-
rameter passes through the phase boundaries [3], the ESQPT
refers to the nonanalytic behavior of the density of state (DOS)
and gap closing among excited states at a critical energy [2].
ESQPTs have been theoretically investigated in a large variety
of many-body quantum systems [2,4], including the Lipkin-
Meshkov-Glick (LMG) model [5–8], the kicked-top model
[9], the Dicke model [10–12], the Tavis-Cummings model
[12–14], and the interacting boson model [15]. It has been
widely recognized that the dynamic behaviors of quantum
systems are strongly influenced by the occurrence of an ES-
QPT. Around the critical energy, the speed of the evolution for
a sudden quench becomes extremely slow due to a localization
of the quantum state [16,17]. The work probability distribu-
tion in the LMG model follows a Gaussian distribution when
undergoing quenches away from the excited-state critical
point. However, when encountering quenches near the critical
point of the excited state, its behavior becomes non-Gaussian
[18,19]. The ESQPT is related to the emergence of quantum
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chaos. An abrupt transition of the distribution distance from
the Wigner-Dyson statistics from a finite value to null (or an
abrupt emergence of level repulsion) is attributed to the pre-
cursor of the ESQPT [13,20]. In this respect, many physical
quantities are proposed to detect critical signatures of ES-
QPTs, such as out-of-time correlators [21], decoherence rates
[22,23], phase-space quasiprobability distributions [24], and
the multiple quantum coherence spectrum [25]. In parallel, the
experimental studies on ESQPTs, e.g., the singular behavior
of the DOS in microwave Dirac billiards [26] and spin-1 Bose-
Einstein condensates [27,28], have attracted considerable in-
terest. It is worth noting that the quench dynamics of a spinor
condensate can be used to probe the ESQPT [27]. A compre-
hensive review for the ESQPT can be referred in Ref. [2].

Recently, despite that the traditional quantum phase
transition needs to be restricted to the many-body system in
the thermodynamic limit, it has been recognized that several
systems with finite components may also undergo quantum
phase transitions when the ratio between the atomic transition
frequency and the cavity field frequency in the light-matter
system diverges [29–39]. More recently, the ESQPTs accom-
panied by the ground-state quantum phase transitions have
also been noticed in systems with few degrees of freedom,
e.g., the Kerr nonlinear oscillator [40] and the quantum Rabi
model [41]. Due to the intensive ongoing efforts on enhancing
and engineering light-matter interactions, the quantum
Rabi model, which describes a two-level system coupling
coherently with a bosonic cavity field [42], could be one of
the simplest experimental realizations to illustrate the physics
of the ESQPT in the light-matter systems [38,39,43,44].
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Notably, the low-energy spectra of quantum Rabi model
were measured in the circuit quantum electrodynamics
systems [45–47], thereby providing a promising opportunity
to directly observe ESQPTs. We notice that so far there was
only investigation of the ESQPT in the quantum Rabi model
for the infinite frequency limit [41], in which the ESQPT
is determined by the breaking of discrete Z2 symmetry.
We are thus motivated to explore the ESQPT in hybrid
light-matter systems with a higher degree of symmetry, ideally
a continuous symmetry. The phase transitions in systems with
U (1) symmetry are attracting significant interests, such as the
Bose-Hubbard systems exploiting ultracold atoms [48] and
the Jaynes-Cummings (JC) lattice systems [30,49,50].

The quantum Rabi model is closely related to the U (1)-
symmetric JC model [42]. Especially, we note that the study
on the ESQPT of the JC model is still absent. The JC
Hamiltonian possesses the continuous U (1) symmetry. Due
to the conservation of the polariton number, the JC model
is solvable and the exact energy spectrum and eigenstates
of the JC model can be obtained. In this work, we will
systematically study the ESQPT of the light-matter system
in a general scenario, namely, the anisotropic quantum Rabi
model, which interpolates between the quantum Rabi model
and the JC model. The anisotropic quantum Rabi model, pro-
viding tunable coupling strengths of both rotating term and
counter-rotating term, serves as the fundamental model for
light-matter interactions [32,42,51,52]. Through transcenden-
tal function extension techniques, the exact energy spectrum
and eigenstates of this model have been determined, re-
vealing regular and exceptional parts [53–57]. An accurate
quasienergy spectrum of the anisotropic quantum Rabi with
periodic drive can be obtained by directly applying the Flo-
quet theory [58]. In addition to conventional topological
transitions at gap closings, numerous unconventional topo-
logical transitions have been discovered, arising from level
anticrossings without gap closings [59]. Furthermore, it has
been unraveled that the first-order quantum phase transition in
the dissipative anisotropic quantum Rabi model, characterized
by the level crossing of the ground state and first-excited state,
is highly related to the giant photon-bunching feature [60].
In particular, the anisotropic quantum Rabi model has been
proposed to be experimentally implemented using various
quantum platforms, including circuit quantum electrodynam-
ics systems [61,62] and exchange-coupled spin qubits with
anisotropic ferromagnets [63].

A comparative study of the ESQPT in two known limits
with distinct universal properties is conducted. Furthermore,
for the ground-state quantum phase transition, it has been
confirmed an equivalence of the criticality for anisotropic
quantum Rabi model with a finite counter-rotating-wave term
[32] since they share the same Z2 symmetry. Whether such
equivalence still holds for the ESQPT remains unanswered.
To this end, we will employ analytical and numerical methods
to calculate the critical behavior of the DOS, the integrated
DOS (IDOS), and the observables in the anisotropic quantum
Rabi model, permitting us to identify the phase diagram and
extract the critical behavior.

This work is organized as follows. In Sec. II, the exact DOS
of the JC model is derived in the large frequency-ratio limit.
The nonanalytic behaviors of the DOS and the expectation

values of observables are obtained from the DOS. The
finite discontinuous jump in the DOS unveils the presence
of an ESQPT in the JC model. In Sec. III, we perform an
analysis of the anisotropic quantum Rabi model in the large
frequency-ratio limit, deriving analytical expressions for both
the DOS and expectation values of observables. According
to the features of the energy surface, the parameter space is
divided into five zones, and the singularities of the DOS in
each zone are illustrated. The anisotropic quantum Rabi model
exhibits two types of ESQPTs, which are characterized by
the finite discontinuous jump and the logarithmic divergence
in the DOS at the corresponding critical energy. Singularities
arising from the ESQPT also appear in the expectation values
of observables. Finally, we conclude our work in Sec. IV.

II. JAYNES-CUMMINGS MODEL

In this section, we show that the ground-state quantum
phase transition in the JC model is accompanied by the
ESQPT, which presents different critical behaviors from the
counterpart in the quantum Rabi model. The JC Hamiltonian
reads as

ĤJC = �

2
σ̂z + ωb̂†b̂ + g(σ̂+b̂ + σ̂−b̂†), (1)

where b̂† (b̂) is the creation (annihilation) operator of a single-
mode cavity with the frequency ω, the Pauli matrices σ̂±
represent the two-level system, � denotes the energy split
of the two-level system, and g characterizes the coupling
strength. The JC Hamilton is invariant under a generalized
rotation operator, i.e., R̂(θ )ĤJCR̂†(θ ) = ĤJC, where the gener-
alized rotation operator is R̂(θ ) = exp[iθ (b̂†b̂ + σ̂+σ̂−)], and
θ ∈ [0, 2π ). The JC model undergoes a second-order quantum
phase transition from the normal phase to the superradi-
ant phase in the frequency-ratio limit, i.e., η = �/ω → ∞,
where the ground state is occupied by macroscopic popula-
tion of photons. The anomalous nature of the JC model has
been reflected in the ground-state quantum phase transition
[30,32]. Due to the conservation of the polariton number
N̂ = b̂†b̂ + σ̂+σ̂−, the JC model is solvable, and the eigen-
states correspond to polaritons consisting of both photonic
and atomic excitations. The rescaled energy spectra within the
two-dimensional subspace for n (� 1) polaritons are

εn
± ≡ En

±
�/2

= (2n − 1)

η
±

√(
1 − 1

η

)2

+ 4nξ 2

η
, (2)

where the rescaled coupling strength is ξ = g√
ω�

. Noting an
exceptional eigenenergy for the one-dimensional subspace
with polariton number n = 0 is

ε0
− ≡ E0

−
�/2

= −1. (3)

In the limit η → ∞, the parameter y ≡ n/η becomes a
continuous value, and the two-branch rescaled energy spectra
ε± are given by

ε±(y) = 2y ±
√

1 + 4yξ 2. (4)

The two-branch rescaled energy spectra ε± are plotted in
Fig. 1 for three values of different coupling strength, i.e.,
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FIG. 1. The two-branch rescaled energy spectra of the JC model
for the rescaled coupling strength ξ = 0.5, 1.0, 1.5. (a) The upper-
energy branch ε+ and (b) the lower-energy branch ε−. The energy
eigenvalues are normalized by �/2, and the rescaled two-branch
energy spectra ε± are dimensionless.

ξ = 0.5, 1.0, 1.5. The upper-energy branch ε+ always fea-
tures a unique minimum at y = 0, which will not bring forth
any singular behavior. As we focus on the ESQPT character-
ized by the singularity behaviors of the DOS, in the following
we are not concerned about the upper-energy branches.

For the lower-energy polariton branch ε−, the energy
has local minima at y = 0 for ξ � 1 with the ground-state
energy εg = −1, and y = (ξ 2 − ξ−2)/4 for ξ > 1 with the
ground-state energy εg = −(ξ 2 + ξ−2)/2. The distinct behav-
iors between the cases ξ � 1 with ξ > 1 reveal the existence
of a ground-state quantum phase transition.

The DOS represents an integration of the available phase-
space volume at a given rescaled energy ε [1,41]. In the limit
η → ∞, the DOS of the JC model can be obtained by

ν(ε) = 2

ω

∫
dy δ

(
ε − εn

±(y)
)

=
[
1 − �(ε − 1) + �

(
εc

0 − ε
)]

ξ 2

ω
√

ξ 4 + 2εξ 2 + 1

+ 1 + �(ε − 1) − �
(
εc

0 − ε
)

ω
, (5)

where �(x) is step function and δ(x) stands for the Dirac
function. Based on Eq. (5), we then analyze the singularity of
the DOS directly. In Fig. 2, we show the DOS as the function
of the rescaled energy ε and compare with the exact diagonal-
ization results. For the case of ξ < 1, ε−(y) has the minimal
energy at y = 0, which will not invoke any singularity, as is
shown in Fig. 2(a). In contrast, for the case of ξ � 1, the
nonanalytic behavior of the DOS appears at the critical energy
εc

0 = −1.
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FIG. 2. The DOS of the JC model for (a) ξ = 0.5, 1.0 and
(b) ξ = 1.2, 1.5. The solid lines correspond to the exact results in
Eq. (5), and the symbols represent the DOS obtained from the exact
diagonalization with η = 105. The vertical orange dashed line marks
the critical energy εc

0 = −1.

For the case of ξ = 1, the critical energy εc
0 corre-

sponds to the ground-state energy εg. We expand ε around
εc

0 with 0 < δε � 1, it is easy to show that the DOS
at the critical ground-state energy showcases a power-law
divergence as

ν
(
εc

0 + δε
) = (δε)−

1
2√

2ω
+ 1

ω
(for ξ = 1), (6)

which is shown in Fig. 2(a). This power-law diver-
gence with the exponent − 1

2 is different from that ob-
tained by the DOS in the quantum Rabi model with the
exponent − 1

4 [41].
This nonanalytic behavior changes in the case of ξ > 1,

where the critical energy εc
0 is much larger than the ground-

state energy εg. For the energy above the critical energy
ε = εc

0 + δε with 0 < δε � 1, the DOS converges to a finite
value,

ν
(
εc

0 + δε
) = 1

ω

2ξ 2 − 1

ξ 2 − 1
+ O(δε) (for ξ > 1). (7)
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While for the energy below the critical energy ε = εc
0 − δε,

the DOS converges to another finite value,

ν
(
εc

0 − δε
) = 2

ω

ξ 2

(ξ 2 − 1)
+ O(δε) (for ξ > 1). (8)

Thus, when ξ > 1 the DOS is discontinuous at the critical
energy εc

0 with a finite jump 1
ω

1
ξ 2−1 . The discontinuous behav-

iors of the DOS are presented in Fig. 2(b) with ξ = 1.2, 1.5,
and confirm the ESQPT in the JC model in the case of ξ >

1. In the quantum Rabi model, the DOS shows a logarith-
mic divergence [41]. Furthermore, for the energy ε = εg +
δε approaching the ground-state energy εg from above with
0 < δε � 1, the DOS diverges as

ν(εg + δε) ∝
√

2ξ

ω
(δε)−

1
2 (for ξ > 1). (9)

We note that this power-law divergence is absent in the quan-
tum Rabi model [41].

The divergence and discontinuous behaviors of the DOS
lead to the corresponding singular behaviors of observables,
which could be explored in experiments. The expectation
value of an observable Â can be obtained in the microcanoni-
cal ensemble [6,10] as

〈Â〉(ε) = 1

ν(ε)

∑
n,±

〈n|Â|n〉δ(ε − εn
±), (10)

where |n〉 represents the eigenstate of the Hamiltonian. From
the Hellmann-Feynman theorem [64], if the Hamiltonian
linearly depends on the observable Â with a proportional
parameter β, i.e., Â = ∂βĤ , the expectation value 〈Â〉 can be
rewritten as

〈Â〉(ε) = − 1

ν(ε)

∂N (ε)

∂β
, (11)

where the IDOS N (ε) is defined as

N (ε) ≡
∑
n,±

�(ε − εn
±) = �

2

∫ ε

−∞
dε′ν(ε′). (12)

As the critical energy εc
0, where the singularity of DOS occurs,

is much lower than the minimum of the upper-energy branch,
we thus consider the sole contribution from the lower-energy
branch in the following calculation.

In the limit η → ∞, we get the rescaled IDOS N (ε)/η:

N (ε)

η
= 1

2

[√
ξ 4 + 2εξ 2 + 1 + ε + ξ 2�

(
ε − εc

0

)]

+ �
(
εc

0 − ε
)

2
(
√

ξ 4 + 2εξ 2 + 1 − ε). (13)

From Eq. (11), the photon number nb ≡ 〈b̂†b̂〉 and the
two-level system occupation ns ≡ (〈σz〉 + 1)/2 in the micro-
canonical ensemble can be obtained by

〈b̂†b̂〉(ε) = − 1

ν(ε)

∂N (ε)

∂ω
, (14)

〈σ̂z〉(ε) = − 2

ν(ε)

∂N (ε)

∂�
. (15)

FIG. 3. The expectation values of the observables in the JC
model. (a) The rescaled photon number 〈b̂†b̂〉/η. (b) The two-level
system occupation ns ≡ (〈σz〉 + 1)/2. The solid lines correspond
to the exact results in Eqs. (16) and (17), and the symbols rep-
resent the DOS obtained from the exact diagonalization with
η = 105. The vertical orange dashed lines mark the critical
energy εc

0 = −1.

Using the DOS ν(ε) in Eq. (5) and the IDOS N (ε) in Eq. (13),
we have

〈b̂†b̂〉(ε)

η
=ε

2
+ ξ 2 + εξ 2 + 1/2

ξ 2 + �
(
ε − εc

0

)√
ξ 4 + 2εξ 2 + 1

,

(16)

〈σ̂z〉(ε) = − 1

ξ 2 + �
(
ε − εc

0

)√
ξ 4 + 2εξ 2 + 1

. (17)

The results show that below the critical energy εc
0, the

rescaled photon number nb/η increases linearly with the
rescaled energy ε, and the two-level system occupation ns

is a constant. In Fig. 3, we show the analytical and nu-
merical results for the rescaled photon number nb and the
two-level system occupation ns, where the discontinuity of
the DOS leads to the discontinuity of the observables in the
case ξ > 1.

The finite-η effect is important to get the scaling behaviors
of ground-state quantum phase transition in light-matter sys-
tems [29,30,32,35]. For a large enough η, the DOS and the
IDOS N (ε) in the JC model can be analytically obtained. The
DOS is

ν(ε) = 1

ω

⎡
⎢⎣

[
1 + �

(
εc

0 − ε
)]

ξ 2√
(ξ 2 + 1/η − 1)2 + 2(ε + 1)ξ 2

+ 1 − �
(
εc

0 − ε
)]

(18)

and the N (ε) is

N (ε) = �

2

∫ ε

−∞
dε′ν(ε′) + �

(
ε − εc

0

)

= η

2

√
(ξ 2 + 1/η − 1)2 + 2(ε + 1)ξ 2

[
1 + �

(
εc

0 − ε
)]

+ η

2
ε
[
1 − �

(
εc

0 − ε
)] + η

2
(ξ 2 + 3/η)�

(
ε − εc

0

)
.

(19)
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FIG. 4. The IDOS N (ε) for the JC model. The results are de-
picted by the solid lines [Eq. (19)] with η = 20 and the dashed
lines [Eq. (13)] with η → ∞ at ξ = 1.0, 1.2, 1.5, respectively. Each
symbol is the numerical result obtained by Eq. (12) from the exact
diagonalization with η = 20.

The last term �(ε − εc
0) in Eq. (19) comes from the eigenstate

with the energy ε0
− in Eq. (3). The comparison between the

IDOS N (ε) with the η = 20 and the ones with the infinite η

is shown in Fig. 4. One can observe obvious finite-η effect.
These numerical results indicate that the approximation in
Eq. (19) is sufficiently accurate for a small η.

III. ANISOTROPIC QUANTUM RABI MODEL

As we have shown in the previous section, the JC model
undergoes a different type of ESQPT from the quantum Rabi
model [41]. Then it is interesting to study the ESQPT in the
anisotropic quantum Rabi model, which includes two known
limits as special cases, i.e., the JC model and the quantum
Rabi model. The Hamiltonian of the anisotropic quantum
Rabi model reads as [52]

Ĥ = �

2
σ̂z + ωb̂†b̂ + g[(σ̂+b̂ + σ̂−b̂†) + λ(σ̂+b̂† + σ̂−b̂)],

(20)

in which the rotating terms (σ̂+b̂ + σ̂−b̂†) and the counter-
rotating terms (σ̂+b̂† + σ̂−b̂) can be tuned independently. The
Hamiltonian [Eq. (20)] becomes the quantum Rabi model for
λ = 1, while reduces to the JC model with λ = 0. For generic
λ, the anisotropic quantum Rabi model obeys a discrete Z2

symmetry, i.e., [P̂, Ĥ ] = 0, where the corresponding parity
operator is P̂ = exp[iπ (b̂†b̂ + σ̂+σ̂−)].

Energy surface. The Hamiltonian can be described by the
coordinate and momentum operators (x̂′, p̂′):

x̂′ = 1√
2

(b̂† + b̂), p̂′ = i√
2

(b̂† − b̂). (21)

The semiclassical Hamiltonian can be obtained, when the
coordinate and momentum operators are considered as

FIG. 5. Phase diagram in the (ξ, ξ ′) plane at fixed ξ � 0 and
ξ ′ � 0. The parameter space is split into five zones, and typical en-
ergy surfaces: with ξ = 0.5 and ξ ′ = 0.5 in zone I; with ξ = 2.0 and
ξ ′ = 0.5 in zone II; with ξ = 2.0 and ξ ′ = 1.5 in zone III. Energies
are in the units of �/2.

continuous variables (x̂′, p̂′) → (x′, p′) [10,12,41,65],

Ĥ (x′, p′)
�

= 1

2
σ̂z + g√

2�
[(1 + λ)σ̂xx′ − (1 − λ)σ̂y p′]

+ ω

2�
(x′2 + p′2) − ω

2�
. (22)

In the large-η limit, the constant energy shift of − ω
2�

can
be neglected in the following calculation. It is convenient to
rescale the coordinate and momentum as x = √

ω
�

x′ and p =√
ω
�

p′. After diagonalizing spin operators in the semiclassical
Hamiltonian [Eq. (22)], the effective Hamiltonian reads as

H±
eff (x, p)

�/2
= p2 + x2 ±

√
1 + 2ξ 2x2 + 2ξ ′2 p2, (23)

where ξ = (1+λ)g√
ω�

, and ξ ′ = (1−λ)g√
ω�

. The Hamiltonian

H±
eff (x, p) is invariant under ξ → −ξ and ξ ′ → −ξ ′, and

then we focus on the region ξ � 0 and ξ ′ � 0.
The upper-energy branch H+

eff (x, p) always has its global
minimum at x = 0 and p = 0 for any coupling strengths
ξ and ξ ′, which will not induce any critical behaviors in
the energy spectrum. In this work, we focus on the ESQPT
in the lower-energy branch H−

eff (x, p), which is much lower
than the upper-energy branch H+

eff (x, p). For the ground-state
quantum phase transition in the anisotropic quantum Rabi
model, the phase diagram contains three phases [32]. While
considering the full spectrum, the parameter space in the
(ξ, ξ ′) plane is split into five zones as displayed in Fig. 5,
which are characterized by different nonanalytic behaviors of
the DOS. The typical energy surfaces are also plotted in Fig. 5,
and the insights into the singularities of the DOS can be gained
by analyzing the singularities of the energy surface (e.g.,
maxima, minima, or saddle points) [6]. Here, we qualitatively
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describe the feature of the energy surfaces, which can help us
better understand the ESQPT in the anisotropic quantum Rabi
model.

In zone I (ξ < 1 and ξ ′ < 1), a typical energy surface
displays a minimum energy ε = −1 at x = 0 and p = 0. In
this zone, all energy eigenstates respect the Z2 symmetry, and
the DOS ν(ε) is a smooth function of ε.

In zone II, a typical energy surface is shown in Fig. 5 with
ξ = 2.0 and ξ ′ = 0.5, which displays a double-well bifurca-
tion. The energy surface has two global degenerate minima
localized at x̃± = ± 1√

2

√
ξ 2 − ξ−2 and p = 0, while the point

xs = 0 and ps = 0 becomes a saddle point, which determines
a critical energy

εc
0 = H−

eff (xs, ps)

�/2
= −1. (24)

When ε � εc
0, the allowed energy surface contains two dis-

connected regions and the classical orbit is restricted in one of
the double wells, signaling the breaking of Z2 symmetry. In
this sense, the energy eigenstates are doubly degenerate. For
ε > εc

0, the orbit will not be trapped in each well, implying
a restoration of Z2 symmetry. Thus, the trajectory along the
energy surface serves as a separatrix for ε = εc

0, across which
the abrupt change in the phase space leads to the singular
behavior of the DOS and observables.

The energy surface becomes more interesting in zone
III, which has two global minima localized at x̃± and
p = 0, two saddle points localized at x = 0 and p̃± =
± 1√

2

√
ξ ′2 − ξ ′−2�(ξ ′ − 1), and a local maximum localized

at x = 0 and p = 0. A typical energy surface is displayed
on the right side of Fig. 5 with ξ = 2.0 and ξ ′ = 1.5. The
saddle point with the critical energy εc

1 = − 1
2 (ξ ′2 + ξ ′−2) cor-

responds to the DOS singularity. Below the εc
1, the energy

eigenstates are doubly degenerate, while above the εc
1, the

system restores the Z2 symmetry and the energy eigenstates
are nondegenerate. The critical energy of the ESQPT in the
anisotropic quantum Rabi model changes from εc

0 to εc
1 in

zone III. Besides, the energy surface has the local maximum at
εc

0 = −1. Around this point, extra trajectories contribute to the
DOS, which is associated with the discontinuity of the DOS
[6]. The discontinuity indicates a different type of ESQPT
emerges in zone III with the critical energy εc

0, which is absent
in the quantum Rabi model [41].

Zones II and III correspond to the case of λ > 0 in Fig. 5.
The case in zones II′ and III′, where λ < 0, can be treated
in a similar way. In fact, under the Z2 mapping, {Ĥ (λ) →
Ĥ (−λ)}, and a unitary transformation Ĥ → U †ĤÛ where
Û = e−i π

2 b̂†b̂e−i π
4 σ̂z , the Hamiltonian in Eq. (20) remains un-

changed. As zones II′ and III′ have the same spectra as the
case in zones II and III, in the following we just consider the
situation λ � 0.

The analysis of the energy surface allows us to qualitatively
describe the phase diagram in Fig. 5. As two special cases
in the (ξ, ξ ′) plane, the JC model conforms to the diagonal
line (ξ = ξ ′), and the quantum Rabi model corresponds to
the horizontal line (ξ ′ = 0). In the JC model, the DOS is
discontinuous at εc

0, while the DOS has a logarithmic diver-
gence in the quantum Rabi model. The anisotropic quantum
Rabi model encompasses the JC model and the quantum Rabi

model, and the phase diagram is extended to the general
(ξ, ξ ′) plane, which contains two different types of ESQPTs
characterized by either divergence or discontinuity of the
DOS.

Density of states. We use an analytical method to further
calculate the spectrum of the anisotropic quantum Rabi model
quantitatively and explore the asymptotic behavior for singu-
larities. The DOS presents the available phase space at the
fixed rescaled energy ε = E/(�/2) [1,41]. In the anisotropic
quantum Rabi model with the coupling strengths ξ and ξ ′, the
DOS is given by

ν(ε) =
∫

dx d p

πω
δ[ε − p2 − x2 +

√
1 + 2ξ 2x2 + 2ξ ′2 p2],

(25)

where (x, p) are the rescaled classical position and momen-
tum. In zones I and II, the DOS of the anisotropic quantum
Rabi model is given by

ν(ε) = 2

πω

∫ x2

x1

dx

p−(x, ε)

[
1 + ξ ′2

q(x, ε)

]
, (26)

where the function p±(x, ε) [Eq. (A3)], the function q(x, ε)
[Eq. (A4)], the lower limit of the integration x1 [Eq. (A6)], and
the upper limit of the integration x2 [Eq. (A7)] are presented
in Appendix A. In zone III, the DOS can be calculated by

ν(ε) = 2

πω

∫ x1

x3

dx

p+(x, ε)

[
ξ ′2

q(x, ε)
− 1

]
�

[
(ε − ε2)

(
εc

0 − ε
)]

+ 2

πω

∫ x2

x3

dx

p−(x, ε)

[
1 + ξ ′2

q(x, ε)

]
, (27)

where ε2 = (ξ ′4 − 1)/(2ξ 2) − ξ ′2, and the lower integrand
limit x3 is given by Eq. (A9) in Appendix A. Especially, in
the JC model (ξ = ξ ′), the DOS can be derived from Eq. (27),
which is the same as the exact results in Eq. (5). This result
confirms that the analytical method is applicable to studying
the ESQPT in the anisotropic quantum Rabi model.

The singular behaviors in the DOS are the key features
of the ESQPT. In the following, we quantitatively analyze
the singularities of the DOS in each zone and show that the
analytical results coincide with exact diagonalization results.

In zone I, i.e., ξ < 1 and ξ ′ < 1, the DOS can be calculated
numerically through the integral in Eq. (26). As the integrand
is well defined in this zone, the DOS is a smooth function of
ε and the ESQPT is absent. In Fig. 6, two typical DOSs as the
functions of ε are plotted for ξ = 0.5 with λ = 0.5, 1. At εc

0 =
−1, the DOS converges to a finite value ν(εc

0). Supposing a
little deviation away from the ε = εc

0 + δε with 0 < δε � 1,
the lower limit of integration is then x1 = 0. The upper limit
of integration x2 and the integrand p−(x, ε) in Eq. (26) can
be expanded in the power of δε, which gives x2 =

√
δε

1−ξ 2 +
O(δε) and p−(x, ε) =

√
δε−(1−ξ 2 )x2

(1−ξ ′2 ) + O(x4). The finite DOS
ν(εc

0) is obtained by

ν
(
εc

0

) = 1

ω

1√
(1 − ξ 2)(1 − ξ ′2)

. (28)

At the boundary between zones I and II, namely, ξ = 1
and ξ ′ < 1, the DOS diverges at the critical energy εc

0 in-
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FIG. 6. Typical DOS in zone I (ξ = 0.5) and at the boundary
between zones I and II (ξ = 1) for (a) λ = 0.5 and (b) λ = 1.0. The
solid lines correspond to the analytical results in Eq. (26), and the
symbols represent the DOS obtained from the exact diagonalization
with η = 2500.

stead of converging to a finite value. Two typical DOSs are
shown in Fig. 6 for ξ = 1.0 with λ = 0.5, 1. Here, the critical
energy εc

0 corresponds to the ground-state energy. Consider-
ing the energy ε = εc

0 + δε with small positive energy shift
0 < δε � 1, the lower limit of integration x1 = 0, and the
upper limit of integration at x2 can be expanded in the order
of δε, x2 = (2δε)1/4 + O[(δε)3/4]. As the x ∼ (2δε)1/4, the
integrand function p−(x, ε) can be expanded in the power of x,

which reads as p−(x, ε) =
√

δε− x4
2

(1−ξ ′2 ) + O(x6). Then, we carried

out the integration in Eq. (26) to the leading order of δε,

ν(εc
0 + δε)  25/4

√
πω

�(5/4)

�(3/4)

(δε)−1/4

(1 − ξ ′2)1/2
, (29)

where �(x) is the gamma function. Thus, the DOS at the
ground state diverges as a power law

ν
(
εc

0 + δε
) ∝ (ε − εc)−1/4 (for ξ = 1, ξ ′ < 1), (30)

which is different from the exact results in the JC model with
the exponent − 1

2 in Eq. (6).
Next, we focus on zone II, where ξ > 1 and ξ ′ < 1. In

this zone, the critical energy εc
0 is much larger than the

ground-state energy εg = − 1
2 (ξ 2 + ξ−2). The DOS has two

possible singular positions localized at x1 and x2, where
the integrand in Eq. (26) becomes infinity. The integral can
be split into three parts

∫ x2

x1
dx = (

∫ xm

x1
+ ∫ xn

xm
+ ∫ x2

xn
)dx, where

we require 0 < δx = x2 − xn � 1 and 0 < (xm − x1) � 1. In
Appendix B 1, we show that the first part induces a logarith-
mic singularity at ε = εc

0 [Eqs. (B7) and (B8)], while the other
two parts contribute a constant K [Eq. (B5)]. To sum up, the
singular part of the DOS is in the form as

ν
(
εc

0 ± δε
)  ln 4x2

m (ξ 2−1)
δε

πω
√

(ξ 2 − 1)(1 − ξ ′2)
+ K. (31)

Thus, in zone II, the DOS shows the logarithmic divergence
at εc

0 as

ν
(
εc

0 ± δε
) ∝ − ln |ε − εc

0|
πω

√
(ξ 2 − 1)(1 − ξ ′2)

. (32)

Two typical DOSs are shown for ξ = 1.2, 1.5 with λ = 0.5, 1
in Fig. 7. The logarithmic divergence around the critical en-
ergy εc

0 indicates that the anisotropic quantum Rabi model
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−1.4 −1.2 −1.0 −0.8 −0.6
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ξ = 1.2

FIG. 7. Typical DOS in zone II for ξ = 1.2, 1.5 with (a) λ = 0.5;
(b) λ = 1.0. The solid lines correspond to the analytical results in
Eq. (26), and the symbols represent the DOS obtained from the exact
diagonalization with η = 2500.

exhibits an ESQPT at εc
0. The quantum Rabi model belongs

to the case in zone II, which shares a similar logarithmic
divergence.

In zone III, where ξ > 1 and ξ ′ > 1, the DOS of the
anisotropic quantum Rabi model can be obtained by the in-
tegral in Eq. (27). Two typical DOSs are shown in Fig. 8 for
ξ = 2 with λ = 0.1, 0.2, which have two types of singular be-
haviors at critical energy εc

0 = −1 and εc
1 = − 1

2 (ξ ′2 + ξ ′−2).
The DOS is discontinuous at εc

0, which localizes at the local
maximum of the energy surface (cf. Fig. 5). The first term
of the integral in Eq. (27) disappears when ε > εc

0, but con-
tributes a finite value to the DOS when ε < εc

0, which causes
the discontinuity of the DOS. In Appendix B 2, we carry
out the discontinuity jump as 1

ω
1√

(ξ 2−1)(ξ ′2−1)
[Eq. (B10)].

In this respect, the anisotropic quantum Rabi model has a
different type of ESQPT, characterized by a discontinuous

−2.0 −1.5 −1.0 −0.5

2
3

4
5

6
7

8
9

ε

ν(
ε)

λ = 0.1
λ = 0.2

FIG. 8. Typical DOS in zone III for ξ = 2 with λ = 0.1, 0.2.
The DOS is discontinuous at εc

0 = −1 and logarithmically diverges
at εc

1 = − 1
2 (ξ ′2 + ξ ′−2). The solid lines correspond to the analytical

results in Eq. (27), and the symbols represent the DOS obtained from
the exact diagonalization with η = 2500. The vertical orange dashed
line presents the critical energy εc

0 = −1.
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TABLE I. Singularity behaviors of the DOS at εc
0 = −1 and εc

1 =
− 1

2 (ξ ′2 + ξ ′−2).

Zone ν(εc
0 ) ν(εc

1)

Zone I 1
ω

1√
(1−ξ2 )(1−ξ ′2 )

Not singular

Zone II ln(δε) Not singular
Zone III Discontinuity ln(δε)
Boundary (I and II) (δε)−1/4 Not singular
JC (ξ = 1) (δε)−1/2 (δε)−1/2

JC (ξ > 1) Discontinuity (δε)−1/2

Rabi (ξ = 1) (δε)−1/4 Not singular
Rabi (ξ > 1) ln(δε) Not singular

jump 1
ω

1√
(ξ 2−1)(ξ ′2−1)

in the DOS at εc
0. We further analyze

the singularity of the DOS at the εc
1, which corresponds to the

saddle point in the energy surface (cf. Fig. 5). In Appendix B 2
[see Eq. (B15)], we demonstrate that the DOS presents the
logarithmic divergence at εc

1 as

ν
(
εc

1 ± δε
) ∝ − ξ ′2 ln

∣∣ε − εc
1

∣∣
πω

√
(ξ 2 − ξ ′2)(ξ ′2 − ξ ′−2)

. (33)

Therefore, in zone III, the anisotropic quantum Rabi model
exhibits two types of ESQPTs, characterized by the disconti-
nuity at εc

0 and logarithmic divergence at εc
1 of the DOS.

Besides, in the case of ξ > 1, the DOS at the ground-state
energy εg in the anisotropic quantum Rabi model (λ �= 0)
converges to a finite value, which is different from the power-
law divergence [Eq. (9)] in the JC model (λ = 0). The DOS
around the ground state εg are carried out in Appendix B 2,

which converges to a finite value ν(εg) =
√

2
ωx̃+

ξ 2√
ξ 2−ξ ′2 [see

Eq. (B19)].
We summarize the singular behaviors of the DOS at critical

energy εc
0 and εc

1 in Table I, which is the main finding of our
paper.

Expectation values of observables. The singularity in the
DOS leads to the critical behavior of physical quantities. The
expectation value of observables is related to the dynamics of
the corresponding classical trajectories [6,14,66], which can
provide a possible method for experimentally observing the
ESQPT. As we have shown in Sec. II, using the Hellmann-
Feynman theorem, the photon number nb and the two-level
system occupation ns for the anisotropic quantum Rabi model
in the microcanonical ensemble can be obtained by Eqs. (14)
and (15).

In zones I and II, the photon numbers 〈b̂†b̂〉 and 〈σ̂z〉 are
obtained as

〈b̂†b̂〉(ε) = �

πω2

1

ν(ε)

∫ x2

x1

dx

p−(x, ε)
[ε + 2ξ ′2 + q(x, ε)]

+ �

πω2

1

ν(ε)

∫ x2

x1

dx

p−(x, ε)

ξ ′4 + εξ ′2

q(x, ε)
, (34)

〈σ̂z〉(ε) = − 1

πω

2

ν(ε)

∫ x2

x1

dx

p−(x, ε)q(x, ε)
. (35)
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2
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ξ = 1.5
ξ = 1.2
ξ = 1.0

FIG. 9. Typical expectation values of the rescaled photon number
nb/η the in zone II (ξ = 1.2, 1.5) and at the boundary between the
zones I and II (ξ = 1.0) with (a) λ = 0.5; (b) λ = 1.0. The solid lines
correspond to the analytical results from Eq. (34), and the symbols
represent the DOS obtained from the exact diagonalization with
η = 2500.

In zone II, the analytical results for the rescaled photon num-
ber nb/η and the two-level system occupation ns are presented
in Figs. 9 and 10, respectively.

In zone III, the rescaled photon number 〈b̂†b̂〉 and 〈σ̂z〉 can
be calculated by

〈b̂†b̂〉(ε) = − �

πω2

1

ν(ε)

∫ x1

x3

g+(x, ε)dx �
[
(ε − ε2)

(
εc

0 − ε
)]

+ �

πω2

1

ν(ε)

∫ x2

x3

g−(x, ε)dx, (36)

〈σ̂z〉(ε) = − 1

πω

2

ν(ε)

∫ x1

x3

�
[
(ε − ε2)

(
εc

0 − ε
)]

dx

p+(x, ε)q(x, ε)

− 1

πω

2

ν(ε)

∫ x2

x3

dx

p−(x, ε)q(x, ε)
, (37)

where the function g±(x) is

g±(x, ε) = 1

p±(x, ε)

[
ε + 2ξ ′2 ∓ q(x, ε) ∓ ξ ′4 + εξ ′2

q(x, ε)

]
.

(38)
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FIG. 10. Typical expectation values of the two-level system oc-
cupation ns = (〈σ̂z〉 + 1)/2 in zone II (ξ = 1.2, 1.5) and at the
boundary between zones I and II (ξ = 1.0) with (a) λ = 0.5; (b) λ =
1.0. The solid lines correspond to the analytical results from Eq. (35),
and the symbols represent the DOS obtained from the exact diago-
nalization with η = 2500.
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FIG. 11. Typical expectation values in zone III for ξ = 2.0 with
λ = 0.1, 0.2: (a) the rescaled photon number nb/η; (b) the two-level
system occupation ns = (〈σ̂z〉 + 1)/2. The solid lines correspond to
the analytical results from Eqs. (36) and (37), and the symbols repre-
sent the DOS obtained from the exact diagonalization with η = 2500.
The vertical orange dashed lines mark the critical energy εc

0 = −1

and εc
1 = − (ξ ′2+ξ ′−2 )

2 .

The analytical results are plotted in Fig. 11, which is consis-
tent with the exact diagonalization results. The discontinuity
of the DOS leads to the sudden change of observables at εc

0.
Besides, the observable at the ground-state energy εg =

− 1
2 (ξ 2 + ξ−2) can be retrieved by

〈b̂†b̂〉(εg) =1

4

�

ω
(ξ 2 − ξ−2), (39)

〈σ̂z〉(εg) = − 1

ξ 2
, (40)

where the observable is independent of the ξ ′ at the ground-
state energy εg. As is shown in Fig. 11, the anisotropic
quantum Rabi model with different λ but the same coupling
strength ξ have the same value of the observable at the ground
energy εg.

IV. CONCLUSION

In this work, we study the excited-state quantum phase
transition (ESQPT) in the anisotropic quantum Rabi model.
The anisotropic quantum Rabi model encompasses two fa-
mous models with different symmetries, i.e., the quantum
Rabi model with Z2 symmetry and the JC model with U (1)
symmetry. The anisotropic quantum Rabi model is described
by Eq. (20) with an anisotropic strength parameter λ, where
λ = 0 recovers the JC model and λ = 1 recovers the quan-
tum Rabi model. To characterize the ESQPT, we analytically
calculate and numerically confirm the model density of states
(DOS), from whose singular behaviors we are able to deter-
mine the phase transition properties and the critical behaviors
of the ESQPT.

We develop an analytical method which is able to calculate
the DOS of the JC model (λ = 0) in both the infinite-
frequency limit η → ∞ and the large-finite-frequency case.
Our method agrees well with the method suggested in
Ref. [41] and performs better accuracy in finite-frequency
ratio. We find that related to the continuous U (1) sym-
metry, there exists a different type of ESQPT in the
JC model characterized by a finite jump 1

ω
1

ξ 2−1 at the
critical energy εc

0 = −1 in the DOS, which is different

from the logarithmic divergence in the quantum Rabi
model [41].

For the general scenario, we systematically study the ES-
QPT in the anisotropic quantum Rabi model with nonzero
anisotropy, namely, λ �= 0, which exhibits a discrete Z2 sym-
metry. We apply the analysis in Ref. [41] to the anisotropic
quantum Rabi model and calculate its DOS. It is demon-
strated that the ground-state quantum phase transition of the
anisotropic quantum Rabi model is accompanied by an ES-
QPT in the broken-symmetry phase (ξ > 1). As extending
the concept of the quantum phase transition to excited states,
the symmetry-breaking phase is further divided into zones II
(ξ ′ < 1) and III (ξ ′ > 1). In zone II, the ESQPT is character-
ized by the logarithmic singularity at the critical energy εc

0,
including the case of the quantum Rabi model. Beyond the
singular behaviors in the type of the quantum Rabi model, a
different phase is obtained in zone III, where there exist two
types of ESQPTs represented by the discontinuity (εc

0) and
logarithmic divergence [εc

1 = − 1
2 (ξ ′2 + ξ ′−2)] of the DOS.

Interestingly, we notice that, considering the ESQPT, the crit-
ical behavior strongly depends on the anisotropy even though
the model symmetry is preserved. It has long been realized
that the universality of the ground-state quantum phase tran-
sition is relative directly to the breaking symmetry [32,67].
Our results suggest that the relation between symmetry and
critical behavior in ESQPT is quite different from the ground
state and should be more complicated. Due to the simplicity
of the model, we expect that the anisotropic quantum Rabi
model can serve as the paradigmatic model to understand the
relation between symmetry and ESQPT both theoretically and
experimentally.
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APPENDIX A: SIMPLIFICATION OF DENSITY OF STATES

In Sec. III, we have directly given the DOS of the
anisotropic quantum Rabi model [Eqs. (26) and (27)] in dif-
ferent zones. Here, we present the details.

The DOS can be calculated by Eq. (25), which can be
simplified as

ν(ε) =
∑

i

1

πω

∫
δ(p − pi )dx d p

2|∂pH−
scl(x, p)/�|p=pi

, (A1)

where pi is the root of the equation

ε − p2
i − x2 +

√
1 + 2ξ 2x2 + 2ξ ′2 p2

i = 0, (A2)

and the summation is over all the possible roots. In zones I and
II, Eq. (A2) has two roots p1 = p−(x, ε) and p2 = −p−(x, ε),
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FIG. 12. DOSs of the anisotropic quantum Rabi model for ξ = 1
and λ = 0.5 with different frequency ratios η = 10, 1000. The solid
line represents the semiclassical result obtained from Eq. (A5).

where

p∓(x, ε) =
√

ε + ξ ′2 − x2 ± q(x, ε), (A3)

q(x, ε) =
√

2(ξ 2 − ξ ′2)x2 + ξ ′4 + 2εξ ′2 + 1. (A4)

In zone III, when the rescaled energy ε satisfies ε2 � ε �
εc

0, Eq. (A2) has another two roots, p3 = p+(x, ε) and p4 =
−p+(x, ε), where ε2 = (ξ ′4 − 1)/(2ξ 2) − ξ ′2.

Then, in zones I and II, according to Eq. (A1), the DOS of
the anisotropic quantum Rabi model is given by

ν(ε) = 2

πω

∫ x2

x1

dx

p−(x, ε)

[
1 + ξ ′2

q(x, ε)

]
, (A5)

where the lower and upper limits of the integration are given
by

x1 =
√

ε + ξ 2 −
√

ξ 4 + 2εξ 2 + 1�
(
εc

0 − ε
)
, (A6)

x2 =
√

ε + ξ 2 +
√

ξ 4 + 2εξ 2 + 1. (A7)

Due to two more roots for the case ε2 � ε � εc
0 in zone III,

the DOS can be calculated by

ν(ε) = 2

πω

∫ x1

x3

dx

p+(x, ε)

[
ξ ′2

q(x, ε)
− 1

]
�

[
(ε − ε2)

(
εc

0 − ε
)]

+ 2

πω

∫ x2

x3

dx

p−(x, ε)

[
1 + ξ ′2

q(x, ε)

]
, (A8)

where the two terms of the integral have the same lower
integrand limit x3 given by

x3 =

⎧⎪⎪⎨
⎪⎪⎩

x1, ε � ε2√
ξ ′4 + 2εξ ′2 + 1

2(ξ ′2 − ξ 2)
�(εc

1 − ε), ε > ε2.

(A9)

In Fig. 12, we show DOSs of the anisotropic quantum
Rabi model for ξ = 1 and λ = 0.5 with different frequency
ratios, i.e., η = 10, 1000. It is clear that there is a significant

difference between semiclassical results and numerical results
for a small value (η = 10). The analytical results are suffi-
ciently accurate for a sufficiently large η, e.g., η = 1000. The
numerical comparisons confirm that the analytical method is
suitable for investigating the DOS of the anisotropic quantum
Rabi model for large values of η.

APPENDIX B: SINGULARITY OF DENSITY
OF STATES IN ZONE III

1. Logarithmic singularity in zone II

In the main text, we have argued that the DOS displays the
logarithmic singularity in zone II. Here, we present a detailed
derivation of this result.

In zone II, the DOS can be obtained by the integral in
Eq. (26), which has two possible singular positions localized
at x1 and x2, where the integrand becomes infinity. By denot-
ing ε = εc

0 ± δε with 0 < δε � 1, we derive the asymptotic
behavior for singularities of the DOS around the εc

0. To the
leading order of δε, the upper and lower limits of integration
can be expanded as

x1 
⎡
⎣

√
δε

ξ 2 − 1
+ O(δε)

⎤
⎦�

(
εc

0 − ε
)
, (B1)

x2 
√

2(ξ 2 − 1) + O(δε). (B2)

To derive the singularity of the DOS around the critical energy
εc

0 = −1, the integral can be split into three parts,
∫ x2

x1
dx =

(
∫ xm

x1
+ ∫ xn

xm
+ ∫ x2

xn
)dx, where we require 0 < x2 − xn � 1 and

0 < (xm − x1) � 1.
First, we show that the third part of the integral will not

introduce the singularity of the DOS. As we consider the case
0 < x2 − xn � 1, the integrand can be expanded in the order
of (x2 − x2

2 ) as

q(x, ε)  C + (ξ 2 − ξ ′2)

C

(
x2 − x2

2

) + O
[(

x2 − x2
2

)2]
,

(B3)

p−(x, ε) 
√(

1 − ξ 2 − ξ ′2

C

)(
x2

2 − x2
) + O

[(
x2 − x2

2

)2]
,

(B4)

where C =
√

ξ 4 + 2εξ 2 + 1 + ξ 2 − ξ ′2. The case ε → εg,
leading to C = ξ 2 − ξ ′2, is already considered in the main
text. Here, we consider the case ε > εg and C > ξ 2 − ξ ′2.
Then, the integral around the x2 is obtained as

2

πω

∫ x2

xn

dx

p−(x, ε)

[
1 + ξ ′2

q(x, ε)

]

 2

πω

(1 + ξ ′2/C)√(
1 − ξ 2−ξ ′2

C

)
(

π

2
− arcsin

xn

x2

)
. (B5)

When the energy ε is around the critical energy εc
0, it has

x2 →
√

2(ξ 2 − 1). According to Eq. (B5), the third part of the
integral

∫ x2

xn
dx will not induce any singularity but contribute a

constant. In the interval from xm to xn, the integrand in Eq. (26)
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does not involve any singular point, which also contributes
merely a constant.

Then, we analyze the singularity of the integral in the first
subinterval around the x1. As we require δε � xm � 1, the
integrand in Eq. (26) can be expanded in the order of x, which
gives

p−(x, ε) 
√

δε

1 − ξ ′2 + (ξ 2 − 1)x2

1 − ξ ′2 + O[x2, (δε)2, xδε].

(B6)

For the case ε = εc
0 + δε, the lower integral limit x1 = 0.

In zone II, it has ξ ′ < 1 and the integral around the x1 is
simplified as

2

πω

∫ xm

0

dx

p−(x, ε)

[
1 + ξ ′2

q(x, ε)

]

 1

πω
√

(ξ 2 − 1)(1 − ξ ′2)
ln

4x2
m(ξ 2 − 1)

δε
, (B7)

which brings forth the logarithmic divergence as δε → 0+.
For the case ε = εc

0 − δε, the integral limit x1 can be ap-
proximated as x1 

√
δε

ξ 2−1 + O(δε). In zone II, similar to the
preview case, the integral in the first subinterval around the x1

can be carried out

2

πω

∫ xm

√
δε

ξ2−1

dx

p−(x, ε)

[
1 + ξ ′2

q(x, ε)

]

 1

πω
√

(ξ 2 − 1)(1 − ξ ′2)
ln

4x2
m(ξ 2 − 1)

δε
, (B8)

which involves the logarithmic divergence as δε → 0−.
Therefore, for the energy around the critical energy ε =

εc
0 ± δε, we demonstrate that the DOS of the anisotropic

quantum Rabi model presents a logarithmic singularity in
zone II.

2. Discontinuity and logarithmic singularity in zone III

In zone III, the DOS of the anisotropic quantum Rabi
model is given by the integral in Eq. (27). Here, we show
that the DOS exhibits a discontinuity at εc

0 and a logarithmic
divergence at εc

1.
The first term of the integral in Eq. (27) disappears when

ε > εc
0, while it contributes a finite value to the DOS when ε <

εc
0, which leads to the discontinuity of the DOS. As a result,

the finite jump can be derived by carrying out the integral in
the first term of Eq. (27) around εc

0. Suppose a small energy
0 < δε < εc

0 − ε1, with ε = εc
0 − δε. Since εc

1 < ε < εc
0, the

lower integration limit x3 = 0 and the upper integration limit
can be expanded in the order of δε to yield x1 

√
δε

ξ 2−1 +
O(δε). As the x ∼ (δε)1/2, p+(x, ε) can be expanded in the
order of x,

p+(x, ε) =
√

δε − (ξ 2 − 1)x2

(ξ ′2 − 1)
+ O(x4). (B9)

Then, we can carry out the integral of the first term in Eq. (27)
in the limit δε → 0:

lim
ε→εc

0

2

πω

∫ x1

0

dx

p+(x, ε)

[
ξ ′2

q(x, ε)
− 1

]

= 1

ω

1√
(ξ 2 − 1)(ξ ′2 − 1)

. (B10)

Then, we analytically confirm the logarithmic singularity at
εc

1. Considering the energy around the εc
1 with ε = εc

1 ± δε,
the integrand limit can be expanded in the order of δε:

x1 
√

εc
1 + ξ 2 −

√
ξ 4 + 2εc

1ξ
2 + 1 + O(δε), (B11)

x2 
√

εc
1 + ξ 2 +

√
ξ 4 + 2εc

1ξ
2 + 1 + O(δε), (B12)

x3 =
√

ξ ′2δε
(ξ ′2 − ξ 2)

�
(
εc

1 − ε
)
. (B13)

To capture the singularity of the DOS, the integral can be split
into two parts, namely,

∫ x2

x3
dx = (

∫ xm

x3
+ ∫ x2

xm
)dx and

∫ x1

x3
dx =

(
∫ xm

x3
+ ∫ x1

xm
)dx, where the condition 0 < (xm − x3) � 1 is re-

quired. Similar to the case in zone II, the integral around x1

and x2 just leads to a constant K̃ and the remaining possible
singularity localizes at x = x3. The integrand can be expanded
in the order of δx = x − x3 around the x = x3, which gives

p±
(
x3, ε

c
1 ± δε

) =
√

ε1
c + ξ ′2 − x2

3 + O[δx, δε]. (B14)

This allows us to obtain the singular part of the DOS,

ν
(
εc

1 ± δε
)  2

πω

ξ ′2 ln
(

4x2
m (ξ 2−ξ ′2 )
ξ ′2δε

)
√

2(ξ 2 − ξ ′2)
(
ε1

c + ξ ′2 − x2
3

) + K̃ . (B15)

Finally, we show that the DOS does not involve singularity
at the ground-state energy εg. For the energy ε = εg + δε, both
the upper and lower integration limits can be expanded in the
order of δε, given by

x1  x̃+ −
√

2δεξ

2x̃+
+ O(δε), (B16)

x2  x̃+ +
√

2δεξ

2x̃+
+ O(δε). (B17)

As the integration limit yields (x − x̃+) ∼
√

2δεξ

2x̃+
, the function

p−(x, ε) can expanded in the power of (x2 − x̃2
+), which yields

p−(x, εg + δε) =
√

δεξ 2

(ξ 2 − ξ ′2)
− (x2 − x̃2+)2

2(ξ 2 − ξ ′2)
+ O[(δε)2].

(B18)

The DOS around the ground-state energy εg can be obtained
by Eq. (26) as

ν(εg) =
√

2

ωx̃+

ξ 2√
ξ 2 − ξ ′2 , (B19)

which will not lead to any singularity.
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