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Einstein-Laub and Lorentz optical force densities with a planar interface
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A definitive theory for the optical or electromagnetic force density in condensed matter has remained elusive.
Integral in such a theory is how material interfaces are treated. To build collective understanding, a general
planar interface situation between vacuum and a semi-infinite, nonmagnetizable material medium is studied
analytically using two electromagnetic force density formulations and an obliquely incident, p-polarized plane
wave impinging on the material surface. A form of the Lorentz electromagnetic force density formulation and
the Einstein-Laub electromagnetic force density are shown to both predict a total pressure that agrees with
that predicted by the so-called “Maxwell-Bartoli” expression modified for oblique incidence. However, the two
formulations present different distributions of the total force between the surface and bulk of the material.
The quantification of this difference and of the implied outward surface pressure for this broadly applicable
field geometry offers opportunities for the experimental determination of a force density theory that accurately
predicts experiment.
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I. INTRODUCTION

Understanding the interaction between electromagnetic
fields and condensed matter is becoming increasingly im-
portant in modern physics. Despite years of theoretical
investigation [1–4] and experimental efforts [5–8], there still
remain open questions relating to how one should calcu-
late a force on condensed matter given a distribution of
electromagnetic quantities. Two formulations that have been
studied [9,10] include a particular interpretation of the well-
known Lorentz formulation in charge-neutral material, and
the Einstein-Laub formulation, first proposed in Ref. [4]. To
treat the fundamental physics of motion involving photons re-
quires concomitant understanding of the momentum exchange
between light and matter, hence the very great interest in a
theory that can be used to describe the relevant physics and
predict experimental results. One starting point for a theory
describing the optical force on an object is to consider the
total force as the spatial integral of a spatially and temporally
dependent force density. This invariably involves dealing with
interfaces as part of this formalism.

A review paper has provided a compilation of related con-
cepts and experiments [11]. One basic issue has been how
to interpret the photon momentum in a background material,
the so-called Abraham-Minkowski question [12–16]. In appli-
cations, calibration for optical forces on small particles [17]
is relevant in the use of optical tweezers [18,19], and opti-
cally trapped atoms have long been important in metrology
[20]. To predict how matter moves, the internal forces must
be accessed [21], as has been investigated for metamaterials
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[22]. Also, a theoretical study of the optical force on
“bilayer PT -symmetric structures” (structures having parity-
time symmetry), in this case a bilayer slab where one side has
loss and the other gain, has indicated the asymmetric behavior
of the optical force under illumination from both directions
[23]. This and other work motivates the understanding of key
optical force problems.

To provide more opportunities for experimental investi-
gation, we present an analytical investigation of multiple
formulations for the pressure due to radiation. We consider
the simple case of a plane wave incident on the planar surface
of a material (which may or may not be lossy), given the local
planar approximation’s usefulness and the relevance to inves-
tigations of electromagnetic interactions at material surfaces
[24,25]. Through the analysis of this simple field geometry,
we develop several key results that unify widely applied mod-
els. We demonstrate that the Maxwell-Bartoli expression for
normal incidence follows directly from the evaluation of the
Maxwell stress tensor in the case of counterpropagating plane
waves. For plane waves at oblique incidence with p polariza-
tion (having electric field in the plane of incidence, defined by
the incident field wave vector and the normal to the surface),
we show that an interpretation of the Lorentz formulation
(as previously applied to this field geometry [26]) and the
Einstein-Laub formulation agree in the total predicted pres-
sure when the force density is integrated in the bulk and across
the surface of the material, where the expectation of agree-
ment in total force between the two formulations has been put
forward previously [27]. Moreover, we demonstrate analyti-
cally that both formulations agree exactly with a form of the
Maxwell-Bartoli expression modified for oblique incidence.
Finally, although the formulations agree in the predicted total
pressure, their predictions of the distribution of electromag-
netic forces between the surface and bulk of the material are
shown to differ, and this difference is quantified. The current
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understanding of how electromagnetic forces are distributed
throughout condensed matter would continue to benefit from
further experimental investigation, and this analysis provides
a numerical difference between the predictions of the two
formulations under study against which empirical evidence
can be compared.

Section II provides a brief background on the interesting
history of the so-called “Maxwell-Bartoli” expression for ra-
diation pressure. Section III describes the material geometry
and electromagnetic field solution under study in the oblique
incidence situation of interest. The Lorentz and Einstein-Laub
force density formulations are applied to the field solution in
Secs. IV and V, both of which are shown analytically to pre-
dict the same total pressure as the Maxwell-Bartoli expression
in Sec. VI, despite differing in the predicted force densities
at the surface and in the bulk of the material. The derived
expressions for pressure are applied to several situations of
theoretical and experimental interest in Sec. VII. The results
presented and their relevance are summarized in Sec. VIII.

II. MAXWELL-BARTOLI EXPRESSION BACKGROUND

J. C. Maxwell [28] gave an electromagnetic field-based
line of reasoning in the case of a plane wave that predicted
the existence of a radiation pressure “in the direction normal
to the waves, and numerically equal to the energy in unit of
volume” [29]. Using this, he also gave a numerical prediction
of the pressure exerted by sunlight normally incident on a
material as “mean pressure on a square foot is 0.0000000882
of a pound weight” [29]. Around the same time, A. Bartoli
gave an argument based on the laws of thermodynamics for
the existence of a pressure exerted by any stream of energy
in space [2,3], considering in particular “radiant heat.” The
history of Bartoli’s publications and their role in the dis-
course surrounding the existence of radiation pressure is a
substantive topic in and of itself, as discussed in Ref. [30]. In
Bartoli’s theoretical investigation is an analytical expression
which predicts a pressure on a perfectly reflecting surface
equal to twice the energy delivered by the energy stream per
unit area per unit time, divided by the stream’s propagation
speed. He too gave a numerical prediction; his for sunlight
impinging normally on a perfectly reflecting surface. His pre-
diction was given as 0.84 milligrams of force per square meter.
Upon converting the units of Maxwell’s numerical prediction
(using modern conversion factors of 1 ft = 0.3048 m and
1 lbf = 453592.37 mgf), we find that Maxwell’s prediction
is equivalent to approximately 0.4306 milligrams-force per
square meter; about half of Bartoli’s prediction, implying that
Maxwell’s would hold for an absorbing surface. These two
investigations laid theoretical groundwork for quantifying the
pressure due to radiation.

Early experimental investigations of radiation pressure by
Nichols and Hull [31] and Lebedew [6] compared their ex-
perimental results with theory by citing what they called the
Maxwell-Bartoli formula, written originally in the previously
referenced works as

p = E (1 + ρ)

V
, (1)

where p is the radiation pressure, E is interpreted as the
intensity of the beam (energy delivered by the beam per unit

area per unit time), V is the propagation velocity of the beam,
and ρ is the intensity reflection coefficient of the medium. It
appears to be implied that any energy that is transmitted to the
medium is subsequently absorbed. It is also worth noting that,
in the case of a single plane wave, the intensity (E ) in free
space is equal to its energy volume density times the speed
of light (V ). It follows that the quotient E/V is equivalent to
“the energy in unit of volume” of the wave, as in Maxwell’s
phrasing. As can be seen, the expression (1) linearly interpo-
lates in reflected power between the numerical predictions of
Maxwell for a perfectly absorbing medium, and Bartoli’s for
a perfectly reflecting medium.

Equation (1) has been adapted to more modern notation, as
well as for oblique angle of incidence, as [32]

PMB = |〈Si〉|
c

(1 + |�|2) cos2 θi, (2)

where |〈Si〉| is the time-averaged magnitude of the incident
wave’s Poynting vector (where Si = Ei × Hi, with Ei and
Hi as the incident electric and magnetic fields, respectively),
equal to the time-averaged flux of electromagnetic power per
unit area, with the area measured in the plane perpendicular to
the direction of propagation; c is the speed of light in vacuum;
|�|2 is the power reflection coefficient; and θi is the angle of
incidence referenced to the surface normal. The factor of the
squared cosine of the angle of incidence has been included
previously [26,32,33], and can be thought of as accounting for
both the change in direction of the incident electromagnetic
momentum density, as well as the change in the direction
of the flow of that same momentum density, as the angle of
incidence changes. This momentum density with a direction
of flow can be considered as either momentum carried by
fields or, in terms of quantized momentum, as photon flux.
We note that for both (1) and (2), the assumption of a defined
direction of propagation implicitly assumes a single-plane-
wave geometry. The expression given in (2) in the case of
normal incidence can be shown to result from evaluation of
the Maxwell stress tensor, as is done in Appendix A.

In the case of a slab of finite thickness, where all photons
are not either absorbed or reflected and some are transmitted,
the expressions for semi-infinite media in (1) and (2) do not
hold. A variant has been derived from stress tensor principles
for a finite slab, including transmission, in the case of a nor-
mally incident plane wave (see the Appendix of Ref. [23]).

III. FIELD SOLUTION AND MATERIAL GEOMETRY FOR
p-POLARIZED OBLIQUELY INCIDENT RADIATION

We now turn our attention to the case of monochromatic,
p-polarized plane-wave radiation obliquely incident on a pla-
nar interface with a semi-infinite, isotropic, nonmagnetic,
lossy material, as illustrated in Fig. 1. The fields can be written
using projected impedances, resulting in the field solutions
using an exp(iωt) time convention:

E = H0ie
−ikxx[x̂Zz0(e−ikizz

−�heikizz ) − ẑZx0(e−ikizz + �heikizz )], (3a)

H = ŷH0ie
−ikxx[e−ikizz + �heikizz], (3b)

for z < 0 (in free space), where Zz0 = Exi/Hyi = kiz/(ωε0) =
η0 cos θi is the z-projected wave impedance in free space
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FIG. 1. The geometry of material, fields, and forces under study
in Secs. III–V. P-polarized radiation is obliquely incident on a lossy
material, with the interface modeled using the piecewise-constant
model [24], which simply models the interface as an abrupt change in
material parameters at z = 0. Forces are shown as blue arrows, with
solid arrows indicating electromagnetic forces confined to the surface
and dashed indicating force densities in the bulk of the material. The
decreasing dashed arrow size indicates the exponentially diminishing
force density into the material.

and Zx0 = −Ezi/Hyi = kx/(ωε0) is the x-projected wave
impedance in free space. Then, for z > 0 (in the material),
the phase-match condition and continuity of tangential fields
are satisfied by the fields

E = H0iThe−i(kxx+ktzz)(x̂Zzm − ẑZxm), (4a)

H = ŷH0iThe−i(kxx+ktzz), (4b)

where Zzm = Ezt/Hyt = ktzη/k = ktz/(ωε) = η0(εr −
sin2 θi )1/2/εr is the z-projected wave impedance in the ma-
terial and Zxm = Ezt/Hyt = kx/(ωε) is the x-projected wave
impedance. Here, H0i is the amplitude of the incident mag-
netic field, �h is the magnetic-field reflection coefficient (now
defined as Hyr/Hyi, with Hyi and Hyr being the complex
incident and reflected y-directed magnetic-field amplitudes,
respectively), Th = 1 + �h is the magnetic-field transmission
coefficient [resulting from the required continuity of the tan-
gential magnetic field across the interface seen in (3b) and
(4b)], k0 = ω

√
μ0ε0 is the free-space wave number, η0 =√

μ0/ε0 is the free-space wave impedance, εr = ε′
r + iε′′

r =
1 + χE is the complex relative dielectric constant of the lossy
medium, χE is the complex electric susceptibility of the
medium, ε = εrε0 is the complex permittivity of the medium,
kx = k0 sin θi is the x component of the wave vector in both
free space and the medium (due to the phase-match condi-
tion), kiz = k0 cos θi is the z-component of the wave vector
in free space, k = k0

√
εr is the complex wave number in the

material, ktz = (k2 − k2
x )1/2 is the z-directed complex wave

number in the material of the transmitted wave (from the
dispersion relation), and η = η0/

√
εr is the complex wave

impedance in the material. The magnetic-field reflection co-
efficient �h is formed as

�h = Zz0 − Zzm

Zzm + Zz0
. (5)

From Th = 1 + �h, it also follows that

Th = 2Zz0

Zzm + Zz0
. (6)

Equations (3a), (3b), (4a), and (4b), with (5) and (6), will be
used throughout this paper.

IV. LORENTZ PRESSURE EVALUATION

We now introduce the first force density formulation of
interest, whose name and precise definition here in the context
of condensed macroscopic media are worthy of some expla-
nation. Known commonly as the “Lorentz force,” it can be
expressed in terms of the force on a point charge moving in
an electromagnetic field distribution. It is given in one of its
common forms by [34]

FL = q(E + v × B), (7)

where FL is the electromagnetic force exerted on a point
charge q moving with velocity v, and B is the magnetic
flux density (also called magnetic induction). This form has
been claimed [35] to be attributed to Lorentz due to an 1895
publication [36–38] of his in which he writes the total elec-
tromagnetic force on a charged particle due to both electric
and magnetic fields. A force expression of this form provides
a definition of the fields E and B [39].

Concerning the expression’s history, it is worthy of note
that Lorentz in fact wrote a form of this expression in terms
of a continuum of charge density even earlier, in 1892 [40,41]
[similar to (8) below]. The forms of the forces on a charge due
to the individual fields were at that time not new, however.
As noted in Ref. [42], Thompson theoretically deduced the
form of the force on a charge moving through a magnetic
field in 1881 [43], and Heaviside subsequently corrected an
erroneous factor of one half in 1889 [44,45]. Even before that,
it can be argued that Maxwell effectively deduced this general
form himself in 1861 [46], by including the magnetic field’s
contribution to the electromotive force in a moving body.

Separate from the history of the name of the expres-
sion, one can still occasionally find in more recent literature
differing approaches to applying this expression inside
charge-neutral materials [47], which can lead to some ambi-
guity in the term’s meaning. For this reason, we review the
formalism used here.

Equation (7) can be written based on volume densities as
[39,48]

fL = ρE + J × B, (8)

where fL is the Lorentz force volume density, ρ is the charge
volume density, and J is the current density. For a system
of free charges and currents in free space, it can be shown
through manipulation of (8) using Maxwell’s equations that
fL is related to the Maxwell stress tensor by the momentum
conservation equation [48]

fL = −
(

∇ · TM + ∂g
∂t

)
, (9)

where the Maxwell stress tensor TM has the form [48,49]

TM = 1
2

(
ε0E · E + μ−1

0 B · B
)
I − ε0EE − μ−1

0 BB, (10)
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with I the identity tensor and the electromagnetic momentum
density g in free space having the form [48]

g = 1

c2
E × H. (11)

Our interest is how one might apply the force density (8)
to charge-neutral materials and as considered previously
[10,26,47,50,51]. For this purpose, we apply (8) in the fre-
quency domain.

In phasor form, Ampere’s law in our context becomes

∇ × H = iωD = iω(ε0E + P), (12)

with complex polarization P, and Gauss’s law for the electric
field is

∇ · ε0E = −∇ · P. (13)

Drawing upon previous interpretations [10,26,50,51], and in
reference to (8), one might consider the assignments J =
iωP and ρ = ρP = −∇ · P, with ρP the complex polarization
charge density.

Because we wish to compute the time average of the
force density, which involves the products of quantities with
sinusoidal time dependence, we will express the time aver-
age of a product between time-harmonic position-dependent
scalar quantities a(r, t ) = Re[a(r) exp(iωt )] and b(r, t ) =
Re[b(r) exp(iωt )] as

〈a(r, t )b(r, t )〉 = 1

2
Re[a(r)b∗(r)], (14)

where 〈·〉 is the time-average operator, Re[·] is the real part
operator, and b∗(r) is the complex conjugate of b(r). With
this frequency domain interpretation in nonmagnetic materials
where B = μ0(H + M) with M = 0, the time-average force
density, assuming sinusoidal steady state conditions in (8) and
applying (14) to each term, leads to

〈fL〉 = −ωμ0

2
Im[P × H∗] − 1

2
Re[(∇ · P)E∗], (15)

where we are using a subscript “L” to denote quantities associ-
ated with what we are here calling the “Lorentz force density.”
We will apply these terms individually to the field geometry
given in Sec. III, with the goal of computing a pressure.

By applying the point form of the electric portion of the
Lorentz force (Fe = qE) to two separated charges in a dipole
[52], one can arrive at what is sometimes called the “Kelvin
polarization force” [53–58], resulting in the expression fL,e =
(P · ∇)E. For clarity, we will specify here that this notation
is to be interpreted as (P · ∇)E = Px(∂E/∂x) + Py(∂E/∂y) +
Pz(∂E/∂z). As opposed to viewing the electric interaction as
the electric field exerting force on individual bound charges
in the material, this interprets the material as a continuum of
electric dipoles, each of which as a unit experiences a force in
a spatially varying electric field [47]. Some authors have used
this form in place of the ρE term in (8) [59], while still refer-
ring to the resulting expression as the “Lorentz force.” It will
be seen later in Sec. V that the other formulation considered
here, that of Einstein and Laub, will differ from (15) in our
situation of interest only in that it uses the “Kelvin polarization
force” rather than the electric force on polarization charge.
As the expressions resulting from the following mathematical

developments will demonstrate, the choice of viewing the
electric force as acting on the net charge (as in Lorentz here)
or on the material dipoles (as in Einstein-Laub) can affect the
predicted distribution of the force density throughout electri-
cally polarized material.

A. Cross term

To find a pressure, we begin by evaluating the z-directed
component of the first term of (15) in the bulk of the material
by substituting for P, using P = ε0(εr − 1)E, as

〈 fz〉bulk
× (z) = ẑ ·

(
−ωμ0

2
Im[P × H∗]

)
= ẑ · −ωμ0

2
ε0 Im[(εr − 1)(x̂Ex + ẑEz ) × (ŷH∗

y )],

(16)

where we are using a subscript “cross” (×) symbol to denote
the cross term’s contribution to the force.

After evaluation of the cross and dot products, only one
term remains in the argument of the Im[·] operator,

〈 fz〉bulk
× (z) = −ωμ0ε0

2
Im[(εr − 1)ExH∗

y ]. (17)

We substitute for Ex and H∗
y using (4), giving

ExH∗
y =

[
H0iTh

ktzη

k
e−i(kxx+ktzz)

][
H∗

0iT
∗

h ei(kxx+k∗
tzz)

]

= |H0i|2|Th|2 ktzη

k
e2k′′

tzz, (18)

where k′′
tz = Im[ktz] < 0. Now, substituting results from (18)

into (17) and simplifying, we arrive at

〈 fz〉bulk
× (z) = −ωμ0ε0

2
|H0i|2|Th|2 Im

[
ktzη(εr − 1)

k

]
e2k′′

tzz,

(19)

indicating an exponential decay of the force density into the
bulk of the material. To determine a pressure from a force
density as a function of z, we integrate from the material
boundary at z = 0 to infinity, as

Pbulk
× =

ˆ ∞

0
〈 fz〉bulk

× (z)dz. (20)

The evaluation of this integral using (19) is given in
Appendix C and results in

Pbulk
× = |〈Si〉|

c

|Th|2
2

(
1 − sin2 θi

|εr |2 + |εr − sin2 θi|
|εr |2

)
. (21)

As will be shown below, the nabla term in the Lorentz for-
mulation does not contribute to the bulk force, meaning (21)
gives the total force in the bulk of the material, as predicted
by the Lorentz formulation.

B. Nabla term in material

For the Lorentz formulation, we will now demonstrate that
the second term of (15) is zero within the bulk of the material.
This is readily seen since our model accounts for all current in
the complex dielectric constant εr = 1 + χE , and therefore all
charge motion is accounted for by the complex polarization
density, P = ε0(εr − 1)E. We can thus write Gauss’s Law
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using D = ε0E + P as

ρ = ∇ · (ε0E + P) = 0. (22)

This can be rewritten as

∇ · P = −ε0(∇ · E). (23)

Substituting for P = ε0(εr − 1)E, we have that

ε0∇ · [(εr (r) − 1)E] = −ε0(∇ · E). (24)

Since our field solution obeys Gauss’s law, it also obeys (24).
In a homogeneous lossy material, we have that the relative
electric permittivity εr is independent of position, and that
εr 	= 0. With these two conditions, the only way (24) can be
satisfied is if ∇ · E = 0, meaning that the divergence of the
electric field must be zero in the material.1 It then follows
from (23) that ∇ · P = 0 in the material, which shows that
the second (nabla) term of (15) is zero in the lossy dielectric
(and in free space).

C. Nabla term at boundary

The above line of reasoning does not hold across the sur-
face of the material, however. In our piecewise-constant model
for material parameters, εr (r) is modeled as a step function in
z at z = 0, and as such ∇ · εr (r) 	= 0 at z = 0. This results
in both ∇ · P and E∗ being nonzero from z = 0− to z = 0+,
meaning that the second term of (15) must be evaluated in this
infinitesimal region.

We note here that the “surface” and “bulk” contributions
described in this paper are referring to those that arise only
for p-polarized obliquely incident radiation [26], whose field
geometry supports an abrupt change in the normal electric
field at the interface. This differs from other analyses of ra-
diation pressure for normal incidence [60], where “surface
contribution” is used to describe the momentum transfer that
takes place at the boundary between media of different mate-
rial parameters as the radiation moves from one medium to
another and its associated momentum changes accordingly.
Here, we use “surface” to refer to pressures due to the abrupt
change in normal electric fields and polarization densities at
the surface for obliquely incident, p-polarized radiation.

To handle the field discontinuity, we adopt an often-used
approach in field theory which uses the arithmetic mean of
the field quantities on either side of the discontinuity. This
approach was used by Maxwell to compute electrostatic force
on a conductive surface with surface charge [61] and has been
used by others (see Ref. [26], for example).

To find the total z-directed force due to the second term
in (15), we integrate the force density over the infinitesimal
surface region at z = 0, taking the dot product with ẑ as

Psurf.
L = ẑ ·

ˆ 0+

0−
−1

2
Re[(∇ · P)E∗]dz. (25)

The Lorentz interpretation of −(∇ · P) as a charge density
lends itself to the viewing of this surface interaction as the
result of the accumulation of surface charge, upon which

1This is also readily verified by direct evaluation of the divergence
of the plane wave in (4a).

the electric field exerts a force. Evaluation of this expression
using the field solution in (3) and (4), detailed in Appendix E,
results in

Psurf.
L = −|〈Si〉|

c

|Th|2
2

[
sin2 θi

|εr |2
(|εr |2 − 1

)]
. (26)

As will be shown in Sec. VI, the above (26) is precisely the
difference between the Maxwell-Bartoli expression (2) and
the bulk Lorentz term (21).

D. Total Lorentz pressure

Having evaluated both terms of (15), both in the bulk
(21) and across the boundary (26), we can arrive at the total
pressure predicted by the Lorentz force density formulation.
Adding together the results in (21) and (26), we find that

PL = |〈Si〉|
c

|Th|2
2

[
1 − sin2 θi

|εr |2 + |εr − sin2 θi|
|εr |2

− sin2 θi

|εr |2
(|εr |2 − 1

)]
, (27)

which simplifies to (using that 1 − sin2 θi = cos2 θi)

PL = |〈Si〉|
c

|Th|2
2

(
cos2 θi + |εr − sin2 θi|

|εr |2
)

. (28)

V. EINSTEIN-LAUB PRESSURE EVALUATION

We now evaluate the Einstein-Laub force density expres-
sion, given in its full form as [9,10]

fEL = ∂P
∂t

× μ0H − ∂μ0M
∂t

× ε0E + ρE + J × μ0H

+ (P · ∇)E + μ0(M · ∇)H. (29)

We note that (29) is more explicitly defined in material media
than the Lorentz formulation (8). Hence, it does not suf-
fer from the same possible ambiguities in its application to
charge-neutral macroscopic media. Note that the first term
listed above is (in nonmagnetizable materials) identical to
terms we have used in (15), upon time-averaging, and that
this formulation explicitly incorporates the so-called “Kelvin
polarization force” discussed in Sec. IV as the fifth term in
the above (29). The original reason for its inclusion in the
force density expression, as stated in Ref. [4], was because
it resulted from the calculation of the net electric force on
a volume density of infinitesimal electric dipole moments.
This is in contrast with the previous approach here called
the Lorentz formulation [discussed briefly after (13)], which
views the electric field as acting on the net charge density at
any point in the material.

The force density (29) obeys a momentum conservation
equation analogous to (9), where the Einstein-Laub stress
tensor has the form [4,62]

TEL = 1
2 (ε0E · E + μ0H · H)I − DE − BH, (30)

with associated momentum density [62,63]

gEL = 1

c2
E × H, (31)
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where this is the same momentum density form as (11),
also known as the Abraham momentum [63,64]. Further
discussion of this force density formulation and its associ-
ated energy-momentum tensor can be found in Sec. 1.2 of
Ref. [62].

Upon specification of a single frequency ω in the Fourier
domain and time-averaging over one cycle in a nonmagnetic
(M = 0), source-free (ρ, J = 0) medium, again using the
expression for the time average of the product of two time-
harmonic complex quantities given in (14), (29) simplifies to

〈fEL〉 = −ωμ0

2
Im[P × H∗] + 1

2
Re[(P · ∇)E∗]. (32)

We note that, in applying the full Einstein-Laub formulation
(29) to nonmagnetic, source-free media, the only remaining
difference between (32) and (15) is that the electric force is
applied as the force on a dipole in a spatially varying electric
field, rather than the force on bound charges in an electric
field. Hence, some might even consider this to be equivalently
an alternative application of the Lorentz force to dielectric
media [47]. However, in this work we will refer to (32) as the
Einstein-Laub force density and denote quantities associated
with it with a subscript “EL.”

A. Cross term

We note that the first “cross” term in (32) is exactly the
same as the first term of the time-averaged Lorentz expression
(15). Therefore for the same field geometry, the first term of
the Einstein-Laub expression is also given by (21) for the
p-polarized plane wave considered.

B. Nabla term in material

Unlike the Lorentz expression, the second “nabla” term of
(32) is nonzero in the bulk of the material. To evaluate for
the pressure, we begin by considering the ẑ component of the
term,

〈 fEL,z〉bulk
∇ (z) = ẑ · 1

2 Re[(P · ∇)E∗]. (33)

The evaluation and integration of this term is given in
Appendix F and results in

Pbulk
EL,∇ = −|〈Si〉|

c

|Th|2
2

{
sin2 θi

|εr |2
[
2
(
ε′

r − 1
)]}

. (34)

C. Nabla term at boundary

Now, to evaluate the nabla term of the Einstein-Laub
time-averaged force density given in (32) across the material
boundary (from z = 0− to z = 0+), we proceed in a manner
analogous to that in Sec. IV C. The surface term for the
Einstein-Laub formulation is

Psurf.
EL = ẑ ·

ˆ 0+

0−

1

2
Re[(P · ∇)E∗]dz. (35)

Rather than a viewing the electric field as acting on the net
charge, as the Lorentz form did, the (P · ∇)E term in the
Einstein-Laub formulation originally stemmed from viewing
the spatially varying electric field as acting on a dipole. The

evaluation of this term across the interface is viewed here as
the mathematical limiting case of the smooth functions P and
E being discontinuous across the boundary.

The evaluation of (35) is given in Appendix G and results
in

Psurf.
EL = −|〈Si〉|

c

|Th|2
2

[
sin2 θi

|εr |2 (|εr |2 − 2ε′
r + 1)

]
. (36)

Similar to that at the end of Sec. IV C, (36) is also precisely the
difference between the Maxwell-Bartoli expression (2) and
the Einstein-Laub total bulk contribution [the sum of (21) and
(34)], as will be shown in Sec. VI.

D. Total Einstein-Laub pressure

To find the total surface pressure, we sum together the
contributions from the cross term of (32) in the bulk [given
earlier by (21)], that from the nabla term in the bulk (34),
and that from the nabla term across the boundary (36). Upon
summation, we find that the expression for the total predicted
pressure from the Einstein-Laub formulation is identical to
that found for the Lorentz formulation, given in (27) and (28),
so PEL = PL = P when both bulk and surface contributions
are summed.

VI. EQUIVALENCE OF LORENTZ AND EINSTEIN-LAUB
PRESSURES TO THE MAXWELL-BARTOLI PRESSURE

We now demonstrate analytically the equivalence of the
Lorentz [(28), found from (8)] and Einstein-Laub [shown to
be equivalent to the Lorentz form (28) at the end of Sec. V D]
pressures to the Maxwell-Bartoli expression (2). First, note
that the second term in the square brackets in (28) is equal to
|Zzm|2/η2

0, and that we can factor out cos2 θi to rewrite (28) as

P = |〈Si〉|
c

|Th|2
2

(
1 + |Zzm|2

η2
0 cos2 θi

)
cos2 θi, (37)

where the subscript has been removed since this expression
was previously shown to result from application of either the
Lorentz or Einstein-Laub formulations.

We now also note that η2
0 cos2 θi = |Zz0|2, absorb the one

in the brackets into the fraction, and by substituting for |Th|2
using (6), we have

P = |〈Si〉|
c

(
2|Zz0|2

|Zzm + Zz0|2
)( |Zz0|2 + |Zzm|2

|Zz0|2
)

cos2 θi. (38)

We modify this by making us of the result that for any two
complex numbers z1 and z2, it is true that |z1|2 + |z2|2 =
(|z1 + z2|2 + |z1 − z2|2)/2. This allows (38) to be written as

P = |〈Si〉|
c

(
2

|Zzm + Zz0|2
)( |Zz0 + Zzm|2 + |Zz0 − Zzm|2

2

)

× cos2 θi. (39)

After multiplying the two terms in parentheses, it is seen that
the first term of the product is 1, and that the second term
is |�h|2 [see (5)]. Therefore, we have shown analytically that
application of either the Lorentz force density formulation (8)
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or the Einstein-Laub formulation (29) results in

P = |〈Si〉|
c

(1 + |�h|2) cos2 θi, (40)

which is identical to the Maxwell-Bartoli formulation for
oblique incidence, given in (2) (now with a differently defined
but similar reflection coefficient �h).

VII. APPLICATIONS TO MATERIALS

With analytic expressions for the total, bulk, and surface
pressures from the Lorentz and Einstein-Laub formulations,
we now apply them to various materials to better under-
stand their behavior. All numerical computations and plots
in the following section were generated with MATLAB [65].
All plotted pressure results are normalized, so the expressions
developed are normalized (divided) by a factor of |〈Si〉|/c.

A. Force density in planar gold

We begin by considering a metal at a visible wave-
length as an example of a lossy material. Such plasmonic
material is of interest in optomechanics, in part because
of the metal-insulator surface waves that exist [66], and
in photon drag [67]. Figure 2 shows the angle-dependent
results of applying the force density expressions with the
material parameters (εr) of Au at wavelength λ = 650 nm,
where we use εr = −13.28 − i1.128 [68]. Both the Lorentz
and Einstein-Laub formulations provide the same total pres-
sure (the blue curve), as demonstrated above in Sec. VI.
However, as shown in Fig. 2, the bulk and surface con-
tributions for the two representations are quite different.
The Einstein-Laub formulation (32) predicts a higher mag-
nitude for both the surface and bulk terms than the Lorentz
formulation (15). Note also that the surface pressure is neg-
ative for all angles other than the endpoints, where it is
zero. See Appendix H for discussion on the direction of
the surface force. At θi = 0, there is no normal component
of the electric field, and at θi = 90◦, the normal component of
the incident Poynting vector goes to zero, so there is also zero
pressure from the bulk term.

B. Lossless materials

We now turn our attention to the case of lossless materials.
Although the developments in Secs. IV–VI required some
amount of loss in the bulk pressures to remain valid, we will
here consider perturbational loss (the limiting case as ε′′

r →
0). However, the expressions for outward surface pressure
require no amount of loss.

1. Total pressure from both polarizations

We will first consider the angle dependence of the pressure
on a lossless dielectric for both s and p polarizations by using
(2) and assuming the presence of perturbational loss. In this
limit, the bulk contribution to the pressure becomes spread
out over infinite depth into the material, but remains finite.

Figure 3 shows the angle dependence of the Maxwell-
Bartoli expression (2) for both p and s polarization
on a material with refractive index n = 4 (and hence
n2 = εr = 16).

FIG. 2. The bulk, surface, and total force contributions to the
radiation pressure due to λ = 650 nm p-polarized light obliquely
incident on planar Au as a function of angle of incidence, normalized
(divided) by a factor of |〈Si〉|/c. Dashed lines correspond to bulk
pressures, dash-dotted lines correspond to surface pressures; circular
markers indicate Einstein-Laub (32) predictions, and triangles in-
dicate Lorentz (15) predictions. The solid blue line corresponds to
the total pressure, plotted using the Maxwell-Bartoli expression (2).
The uppermost red dashed line with circular markers corresponds to
the bulk contribution, as predicted by the Einstein-Laub formulation
[computed as the sum of (21) and (34)], and the positive yellow
dashed line with triangular markers is the bulk pressure predicted
by the Lorentz formulation (21). The lower curves are the pre-
dicted outward surface pressures (hence the negative values), with
the lowermost dash-dotted red curve with circular markers being the
Einstein-Laub value (36) and the lower yellow curve with triangular
markers being the Lorentz surface pressure (26). Au material param-
eters for λ = 650 nm: ε ′

r = −13.28 and ε ′′
r = −1.128 [68].

We have not mathematically developed the case of s polar-
ization because the primary interest is in the confined surface
pressures that occur mathematically with abrupt changes in
the dielectric constant and for the case of p polarization. Since
s-polarized radiation has no component of its electric field
normal to the material interface, there is no abrupt change in
the field giving rise to a surface pressure term [26].

Whereas we defined the magnetic-field reflection coeffi-
cient for the case of p polarization (5), we use an analogous
definition of the electric-field reflection coefficient for the case
of s-polarized radiation (Ey, Hx, Hz, referring to Fig. 1),

�e = Zzm,e − Zz0,e

Zzm,e + Zz0,e
= Eyr

Eyi
, (41)

where Eyi and Eyr are the y-components of the incident
and reflected electric fields, respectively, and the z-projected
impedances are defined in free space as Zz0,e = η0/ cos θi and
in the material as Zzm,e = η0/(εr − sin2 θi )1/2. These differ
from the z-projected impedances that were used for p polar-
ization, described between (4) and (5). The squared magnitude
of this reflection coefficient maintains its interpretation as a
power reflection coefficient—in (2), for example.
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FIG. 3. Curves illustrating the various terms involved in the an-
gle dependence of the Maxwell-Bartoli expression for the case of
incidence from free space onto an n = 4 material. Solid lines cor-
respond to p polarization and dashed ones to s polarization. The
dash-dotted green curve shows the factor of cos2 θi alone. The reflec-
tion coefficients �h and �e (whose squared magnitudes are plotted
here with circular markers) are defined by (5) and (41), with the
subscript indicating which field quantity is entirely orthogonal to
the plane of incidence. The total expression for p polarization (solid
blue) is seen to meet the cos2 θi curve at the Brewster angle for n = 4,
θB = 75.96◦. It then remains slightly greater than the cos2 θi curve for
θB < θi < 90◦.

Figure 3 shows that, for all angles other than normal
incidence and 90◦, the p-polarization (blue solid line) and
s-polarization (red dashed curve) results for pressure deter-
mined from (2) are different. The angular dependence of the
reflection coefficient magnitude squared in plotted for each
polarization. This makes clear the Brewster angle condition
for p polarization.

For a lossless dielectric (or in the limiting case of pertur-
bational loss), the condition for the Brewster angle can be
written as

sin2 θB = εr

εr + 1
, (42)

where θB is used to denote the Brewster angle. For n = 4, θB =
75.96◦, as shown in Fig. 3. At the Brewster angle, the pressure
from (2) becomes PMB|θi=θB = |〈Si〉| cos2 θB/c.

2. Surface pressure on water

We now turn our attention to the outward surface pressure
alone, whose predicted value requires no assumptions regard-
ing loss. We will consider the case of an air-water interface,
because a fluid that could deform in response to a pressure at
the interface is a natural choice for the study of such forces.
This has been noted, and a number of such experiments have

FIG. 4. Curves corresponding to the angle dependence of the
predicted outward optical surface pressure and the power reflection
coefficients for both p- and s polarizations for a free space-water
interface (with n = 1.331 at λ = 650 nm [79]). The solid blue curve
shows the angle dependence as in (43), the lower orange dashed
curve gives the power reflection coefficient for p polarization |�h|2
(5), and the yellow dash-dotted curve gives the power reflection
coefficient for s polarization |�e|2 (41). Vertical black dashed lines
are drawn at the Brewster angle (left, labeled “B”) at θB = 53.08◦,
and at the angle of maximum surface pressure (right, labeled “m”),
θm = 58.19◦.

been performed previously [7,69–75], with various accompa-
nying theoretical analyses [62,76–78].

We first note that both Psurf.
L (26) and Psurf.

EL (36) have the
same dependence on angle. That is,

Psurf. ∝ |Th|2 sin2 θi (43)

for p polarization. It is then simple to find the relationship
between the predicted surface pressures using (26) and (36)
assuming a lossless material (εr is purely real and >1), giving

Psurf.
L = εr + 1

εr − 1
Psurf.

EL , (44)

where for lossless media the dielectric constant is now simply
the square of the real refractive index, εr = n2. From here on
we speak primarily in terms of refractive indexes rather than
dielectric constants as we move to experimental considera-
tions with lossless dielectric materials.

Given its potential experimental value, we consider the
case of 650 nm p-polarized light obliquely incident on water.
At this wavelength, water has a (real part of the) refractive
index of approximately n = 1.331 and an extinction coeffi-
cient of 1.64 × 10−8 [79]. Since the extinction coefficient is
small this case, it is reasonable to treat this material as a
lossless dielectric when considering effects near the interface
(and having real refractive index n).

Figure 4 shows a plot of the angle dependence given in
(43), as well as the power reflection coefficients for both
p- and s polarizations using the optical refractive index for
water given above. In contrast to the previous dielectric fluid
experiments performed at normal incidence [7,69–71,73,75]
or oblique incidence with illumination from the side of the
fluid [72,74], the phenomenon under investigation here would
be the pressure confined to the surface caused by radiation
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obliquely incident from the air side of the air-water interface.
Moreover, this particular surface pressure is predicted to exist
only for p polarization. Hence, a difference in fluid surface
deformation between incident radiation polarizations may be
observable.

It is also worthy of note for experimental considerations
that to observe the deformation of a dielectric fluid such as
water, high intensities would likely be required. One way to
accomplish this would be to tightly focus a laser beam, whose
rapidly varying spatial profile could introduce radial forces
that have been claimed to explain the results of the Ashkin and
Dziedzic water experiment [10,59,76]. If the beam is focused
as such, these potential forces would need to be considered
in an experimental setting. Additionally, if observations were
to be made using the light reflected (or transmitted) at the in-
terface, the change in reflection and transmission coefficients
between polarizations would also need to be considered.
These are plotted in Fig. 4.

3. Maximum surface pressure

Given the form of the surface pressure’s angle dependence
seen in Fig. 4, one may be interested in the angle at which
the maximum surface pressure is expected to occur (θm) for
a lossless dielectric of arbitrary refractive index n > 1. This
angle at which maximum pressure is predicted to occur of
course can be found through direct numerical evaluation of
(43) and finding the maximum. Since it is seen in Fig. 4 that
there is a single point on the interval θi ∈ (0◦, 90◦) at which
the angle dependence (43) reaches a local maximum, we can
find a condition for this maximum angle by using that the
partial derivative of (43) evaluated at θm will be equal to zero
at the local maximum,

∂

∂θi

(|Th|2 sin2 θi
)∣∣∣∣

θi=θm

= 0. (45)

Evaluation of (45) for lossless media (real εr = n2) using (6)
and the definitions of Zz0 and Zzm can be shown to result in the
condition(

sec θm

√
n2 − sin2 θm + n2

)
cot θm = (n2 − 1) tan θm sec θm√

n2 − sin2 θm

.

(46)

Equation (46) can be manipulated to eliminate square roots as

n4[(tan2 θm − 1)2 − (n2 − sin2 θm) cos2 θm]

+ [tan2 θm sin2 θm − 2n2(tan2 θm − 1)] tan2 θm sin2 θm = 0.

(47)

The angle θm that satisfies (46) and equivalently (47) is the
angle of incidence at which the maximum outward surface
pressure due to p-polarized radiation is predicted to occur.

Figure 5 shows how θm behaves as a function of the refrac-
tive index n, as well as the behavior of the predicted maximum
surface pressures at θi = θm as a function of n. The angle θm

is seen to behave differently than the Brewster angle θB. In
fact, the only place where the two are predicted to coincide,
θm(n) = θB(n), is for a material of refractive index n = 1.554,
where θm = θB = 57.24◦.

FIG. 5. Behavior of the maximum outward surface pressure on a
lossless dielectric as a function of refractive index, n = √

εr . The left
blue vertical axis provides the angle scale for the blue curves without
markers and the right orange vertical axis provides the normalized
outward surface pressure magnitude scale for the orange curves with
circular markers. The solid blue curve gives the angle of maximum
surface pressure θm at each n, computed by numerically solving (47)
for θm at each value of n. It reaches its lowest value of θm = 57.06◦

at n = 1.757. The dashed blue curve is the Brewster angle θB at
each n, computed with (42). The dashed and solid orange curves
with circular markers are the normalized Lorentz and Einstein-Laub
maximum surface pressure magnitudes, computed from (26) and
(36), respectively, at incident angle θi = θm. We use “normalized”
to once again indicate that the specified expressions are divided by
a factor of |〈Si〉|/c. A vertical black dashed line is drawn at the
refractive index of water used in Sec. VII B 2, n = 1.331.

VIII. CONCLUSION

A key issue in determining a force density that allows
prediction of experiments relates to the material interface
problem treated analytically here and how this folds into the
external measure of pressure on condensed matter. In deriving
a general relation between the Maxwell-Bartoli pressure and
the free space stress tensor with counterpropagating plane
waves, we provide a rigorous link between two common
ways to describe optical pressure. By showing the equivalence
between the angle-dependent Maxwell-Bartoli, Lorentz, and
Einstein-Laub pressures, we establish a unified description in
terms of the electromagnetic fields external to the material
for three widely used models. The Lorentz and Einstein-Laub
formulations are shown to predict different distributions of the
electromagnetic force between the surface and bulk of the ma-
terial. The difference between the formulations’ predictions
can be understood as stemming from their differing respective
views of the electric force as acting on the local net charge
or on the material dipoles. Future theoretical investigations of
more general field and material geometries offer interesting
opportunities for insight, such as situations that allow for the
excitation of surface plasmons. New experimental studies of
angle-dependent optical forces at interfaces will help define
a theory. Of note is the opportunity space to experimen-
tally investigate surface pressures with a dielectric fluid for
p-polarized obliquely incident radiation.
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APPENDIX A: STRESS TENSOR DERIVATION OF
MAXWELL-BARTOLI FOR NORMAL INCIDENCE

Here we present a stress-tensor-based derivation of the
Maxwell-Bartoli expression for radiation pressure in the case
of normally incident plane-wave radiation. We consider the
case of a plane wave reflecting from a material boundary
whose position can be considered to remain fixed in space
over the timescale of interest. This could be simply due to
the inertia of a large object preventing substantial motion over
a short period of time, or to some external restoring force
that counteracts the radiation pressure (e.g., a mirror mounted
physically to a solid surface).

1. Field geometry

To model normally incident radiation reflecting from a
material boundary at z = 0 back into free space, we write the
electric and magnetic fields as superpositions of the forward
and backward traveling plane waves using an exp(iωt) time
convention as

E = x̂E0(e−ik0z + �eik0z ), (A1a)

H = ŷ
E0

η0
(e−ik0z − �eik0z ), (A1b)

where E0 is the incident peak electric-field amplitude, η0 =√
μ0/ε0 is the free-space wave impedance, ε0 is vacuum per-

mittivity, μ0 is vacuum permeability, and � is the electric-field
reflection coefficient at the material boundary.

To find the pressure on the surface, we introduce the
electromagnetic stress tensor formulation for computing elec-
tromagnetic forces. This involves the use of a tensor that
represents momentum flow through the electromagnetic field,
such that a statement of momentum conservation can be writ-
ten as [10,80]

∇ · T = −
(

f + ∂g
∂t

)
, (A2)

where T is the electromagnetic stress tensor (which may have
different formulations), f is the electromagnetic force density
in the material, and g is the electromagnetic momentum den-
sity in the fields.

Without yet specifying a particular form for any quantities
involved in terms of fields, we are free to integrate both sides
over a volume v bounded by closed surface s and apply
Gauss’s divergence theorem to the left side of (A2). This
results in ‹

s
T · n̂ ds = −

˚
v

f + ∂g
∂t

dv, (A3)

where n̂ is the outward surface normal unit vector, ds is
the differential surface area element of surface s, and dv is
the differential volume element of volume v. We are also
free to take the time-average of both sides of the equation,
resulting in

‹
s
〈T〉 · n̂ ds = −

˚
v

〈f〉 +
〈
∂g
∂t

〉
dv. (A4)

We now apply the general form in (A4) to the situation of
interest with time-harmonic fields. Since all fields of interest
are periodic in time (with a period length that will here be
denoted by Tp, with a subscript to differentiate it from stress
tensor components), it follows that Tp is also a period of any
quantities that are functions of the fields, including the electro-
magnetic momentum density g(t ). Because g(t ) is periodic in
time, and Tp is a period [although not necessarily the shortest
period of g(t )], it follows that the time-average over Tp of the
time derivative of the electromagnetic momentum density is
zero (〈∂g/∂t〉 = 0, see Appendix B for a proof). We note that
our material and field geometry are uniform in both x and y.
To find a pressure, we construct a closed integration surface
in the form of a rectangular prism. One face is parallel to the
xy plane of area A, located in free space outside the material
at z = z0, with z0 < 0. The four faces perpendicular to the
first, with surface normals along ±x̂ and ±ŷ, extend along
the z direction and into the material, out to z → ∞. The final
face of area A is located at z → ∞, and since our material
will be defined as having some amount of loss, the fields (and
therefore T) will have decayed to zero at that face.

Because of the uniformity of the fields in x and y, the pairs
of surface faces parallel to the xz and yz planes will have zero
contribution to the surface integral of T. It then follows that
the only nonzero contribution to the surface integral is that on
the face of area A at z = z0 < 0 with outward surface normal
−ẑ. Thus, the integral reduces to simple multiplication by the
face’s area A as‹

s
〈T〉 · n̂ ds = 〈T〉 · (−ẑ)A = −

˚
v

〈f〉 dv. (A5)

The volume integral of the time-average force density is
the time-average of the net force on the enclosed volume, F.
Simplifying the dot product on the left-hand side of (A5) as
well, we have that(

x̂〈Txz〉 + ŷ〈Tyz〉 + ẑ〈Tzz〉
)
A = F. (A6)

To find the pressure, we now take only the component of the
force normal to the surface (the z direction, in this case), and
divide it by the area of the surface, A. It follows from the above
that

Fz

A
= P = 〈Tzz〉. (A7)

Equation (A7) indicates that, in this case, the pressure is
determined by the time-average of the zz component of the
stress tensor.

2. Stress tensor evaluation

We now evaluate the electromagnetic stress tensor using
the field expressions given in (A1). The Maxwell stress tensor
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in free space is given here by [48,49,64,81,82]

T = 1
2 (ε0E · E + μ0H · H)I − ε0EE − μ0HH, (A8)

where AB denotes the dyadic product between two vectors A
and B, A · B is the usual dot product, and I is the unit dyadic.
It is worthy of note that this is also the form that the Einstein-
Laub stress tensor assumes in free space (P = 0 and M = 0).
Given time-harmonic fields, we can write the time-average of
T as

〈T〉 = 1
2 Re

[
1
2 (ε0E · E∗ + μ0H · H∗)I − ε0EE∗ − μ0HH∗].

(A9)

Using E = x̂Ex and H = ŷHy from (A1), we can write
(A9) as

〈T〉 = 1
2 Re

[
1
2 (ε0ExE∗

x + μ0HyH∗
y )(x̂x̂ + ŷŷ + ẑẑ)

− x̂x̂ε0ExE∗
x − ŷŷμ0HyH∗

y

]
. (A10)

With the given electric-field solution in (A1a), we can evaluate
the recurring term ε0ExE∗

x as

ε0ExE∗
x = ε0[E0(e−ik0z + �eik0z )E∗

0 (eik0z + �∗e−ik0z )],

(A11)

distributing and simplifying to

ε0ExE∗
x = ε0|E0|2(1 + 2 Re[�ei2k0z] + |�|2). (A12)

We can also evaluate the recurring μ0HyH∗
y , which similarly

simplifies to

μ0HyH∗
y = ε0|E0|2(1 − 2 Re[�ei2k0z] + |�|2). (A13)

Using these simplified forms, we can evaluate the term in
parentheses in (A10) as

1
2 (ε0ExE∗

x + μ0HyH∗
y ) = ε0|E0|2(1 + |�|2), (A14)

and upon substituting this back into (A10) with the simplifi-
cations from (A12) and (A13), we arrive at

〈T〉 = ε0|E0|2
2

[−x̂x̂(2 Re[�ei2k0z]) + ŷŷ(2 Re[�ei2k0z])

+ ẑẑ(1 + |�|2)]. (A15)

We can further simplify (A15) by writing |E0|2/2 = |〈Si〉|η0,
noting that η0ε0 = 1/c to manipulate coefficients, and con-
verting the real part of the complex exponential to a sinusoid,
giving

〈T〉= |〈Si〉|
c

[(ŷŷ−x̂x̂)2|�| cos(2k0z+φ� )+ẑẑ(1+|�|2)],

(A16)

where |�| and φ� are the magnitude and phase, respectively,
of the complex-valued � = |�|eiφ� . We note the presence of
x̂x̂ and ŷŷ components of the time-averaged stress tensor that
oscillate in z. However, they have no bearing on the pressure
on the material, since the pressure depends only on the ẑẑ
component of the stress tensor. Using the ẑẑ component of
(A16) in (A7), we find that

P = |〈Si〉|
c

(1 + |�|2), (A17)

which is the Maxwell-Bartoli expression (2) for normal inci-
dence.

APPENDIX B: TIME AVERAGE OF THE MOMENTUM
DENSITY TIME DERIVATIVE

Since g(t ) is periodic in time where Tp is a period, then by
definition, for any time t ,

g(t ) = g(t − Tp). (B1)

If we define a time average over the period Tp (denoted with
〈·〉) of any time-varying quantity as

〈 f (t )〉 = 1

Tp

ˆ t

t−Tp

f (τ ) dτ, (B2)

then the time average of the time derivative of g is〈
∂g
∂t

〉
= 1

Tp

ˆ t

t−Tp

∂g(τ )

∂τ
dτ. (B3)

By the fundamental theorem of calculus,

1

Tp

ˆ t

t−Tp

∂g(τ )

∂τ
dτ = 1

Tp
[g(t ) − g(t − Tp)], (B4)

and from the condition of time-periodicity (B1), the quantity
in parentheses on the right side of (B4) is zero, resulting in〈

∂g
∂t

〉
= 0. (B5)

Hence, the time average over a period of the time derivative of
g(t ) (and generally the time average over a period of the time
derivative of any time-periodic quantity) is zero.

APPENDIX C: BULK FORCE DENSITY INTEGRATION

Here we present the evaluation and simplification of the
integral in (20) in Sec. IV A. Since the only z dependence
in (19) is in the exponential function, this integral is easily
evaluated as

ˆ ∞

0
e2k′′

tzzdz = e2k′′
tzz

2k′′
tz

∣∣∣∣∣
∞

0

= − 1

2k′′
tz

(C1)

because the medium is passive and lossy (k′′
tz < 0).

Equation (C1) is used with the remainder of (19) to arrive at
an expression for the pressure due to the “cross term” of (15)
in the bulk of the material, resulting in

Pbulk
× = ωμ0ε0

4k′′
tz

|H0i|2|Th|2 Im

[
ktzη(εr − 1)

k

]
. (C2)

We can then eliminate dependence on ω by making multiple
substitutions, first by using

k′′
tz = Im[ktz] = Im

[√
k2 − k2

x

]
, (C3)

then by substituting k2 = k2
0εr and k2

x = k2
0 sin2 θi, and factor-

ing out k0 from the square root,

k′′
tz = k0 Im

[√
εr − sin2 θi

]
, (C4)

now assuming that θi ∈ [0, π/2].
We substitute the result in (C4) back into the denominator

in (C2), and make use of k0 = ω
√

μ0ε0 to eliminate the ω in
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the numerator, resulting in

Pbulk
× =

√
μ0ε0

4 Im[
√

εr − sin2 θi]
|H0i|2|Th|2 Im

[
ktzη(εr − 1)

k

]
.

(C5)

Now, we can simplify the argument of the rightmost Im[·]
operator in (C5). Once again, we make the substitutions ktz =
(k2 − k2

x )1/2, k2 = k2
0εr , k2

x = k2
o sin2 θi, and η = ηo/

√
εr to

simplify as

ktzη(εr − 1)

k
=

√
εr − sin2 θi

εr
η0(εr − 1). (C6)

We substitute this result for the argument of the rightmost
Im[·] operator in (C5), factoring real coefficients outside the
operator and using η0 = √

μ0/ε0, to arrive at

Pbulk
× = μ0

4
|H0i|2|Th|2

Im

[√
εr−sin2 θi

εr
(εr − 1)

]
Im[

√
εr − sin2 θi]

. (C7)

With |H0i|2/2 = |〈Si〉|/η0 and μ0/η0 = 1/c, we can rewrite
some coefficients in a form reminiscent of (2), arriving at

Pbulk
× = |〈Si〉|

c

|Th|2
2

Im

[√
εr−sin2 θi

εr
(εr − 1)

]
Im[

√
εr − sin2 θi]

. (C8)

This may be rewritten (strictly assuming that ε′′
r 	= 0, although

it is valid asymptotically as ε′′
r → 0) using the result given in

Appendix D in (D8) to arrive at the result given in (21),

Pbulk
× = |〈Si〉|

c

|Th|2
2

[
1 − sin2 θi

|εr |2 + |εr − sin2 θi|
|εr |2

]
. (C9)

APPENDIX D: FRACTION EVALUATION

Here we begin by showing that, for two complex numbers
α and β,

Im[αβ]

Im[α]
= Im[α2β]

Im[α2]
+ |α2| Im[β]

Im[α2]
, for Re[α] 	= 0, (D1)

and demonstrate the use of this result in the simplification
of (C8).

We start by rewriting the Im[·] operator using that for any
complex number z, Im[z] = (z − z∗)/(2i), multiplying both
numerator and denominator by α + α∗ (here requiring that
Re[α] 	= 0), and simplifying as

Im[αβ]

Im[α]
= αβ − α∗β∗

α − α∗
α + α∗

α + α∗

= α2β − (α2β )∗ + |α|2(β − β∗)

α2 − (α2)∗
. (D2)

Although we require that Re[α] 	= 0 to prevent multiplying
by an indeterminate fraction, we note that the expression is
asymptotically correct as Re[α] → 0.

We now recognize the alternate form of the Im[·] operation
in both numerator and denominator in (D2), such that the

factors of 2i cancel, resulting in

α2β − (α2β )∗ + |α|2(β − β∗)

α2 − (α2)∗
= Im[α2β] + |α2| Im[β]

Im[α2]
,

(D3)

where we have used that |α|2 = |α2| to arrive at the desired
result.

We now use the relation given in (D1) to simplify the frac-
tion term in (C8), where we will define α = (εr − sin2 θi )1/2

and β = χE/εr = (εr − 1)/εr . With these substitutions, we
have that some individual terms present in (D1) evaluate as

Im[α2] = ε′′
r , (D4)

Im[β] = Im

[
εr − 1

εr

]
= Im

[
1 − ε∗

r

|εr |2
]

= ε′′
r

|εr |2 , (D5)

α2β = (εr − sin2 θi )

(
1 − ε∗

r

|εr |2
)

= εr − sin2 θi − 1 + ε∗
r sin2 θi

|εr |2 , (D6)

and hence

Im
[
α2β

] = ε′′
r

(
1 − sin2 θi

|εr |2
)

. (D7)

As for the requirement that Re[α] 	= 0, we note that this can
be rewritten equivalently as α 	= −α∗. Squaring both sides
results in the requirement that α2 	= (α2)∗. Substituting the
previous definition of α, we find that this is equivalent to
εr − sin2 θi 	= (εr − sin2 θi )∗, or ultimately εr 	= ε∗

r . This re-
sult matches the assumption of some amount of loss, ε′′

r 	= 0.
We note again here that this expression is still asymptotically
correct as ε′′

r → 0.
Using the simplified forms given above in (D4), (D5),

and (D7), and that α2 = εr − sin2 θi in the relation (D1), we
have shown that the fraction term that appears in (C8) can be
simplified as

Im

[√
εr−sin2 θi

εr
(εr − 1)

]
Im[

√
εr − sin2 θi]

= 1 − sin2 θi

|εr |2 + |εr − sin2 θi|
|εr |2 , for ε′′

r 	= 0. (D8)

APPENDIX E: LORENTZ BOUNDARY EVALUATION

Here we present the evaluation of the integral over the
infinitesimal boundary region in (25) in Sec. IV C. Noting
from our field solution [(3) and (4)] that the electric field,
E, and therefore the polarization, P, in this isotropic medium
have only x̂ and ẑ components, we can simplify (25) after the
dot product as

Psurf.
L = −1

2
Re

[ˆ 0+

0−

(
∂Px

∂x
E∗

z + ∂Pz

∂z
E∗

z

)
dz

]
. (E1)

Because both ∂Px/∂x and E∗
z remain finite along z, the first

term does not contribute. We see, however, that a derivative
of the discontinuous field component Pz is present in the
integral and hence this will contribute to the integral. Since Pz
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is modeled as a step function, from Pz(0−) = 0 to Pz(0+) =
ε0(εr − 1)Ez(0+), it follows that its derivative in z is in this
surface region modeled as a Dirac δ function in z, as

∂Pz

∂z
= Pz(0+)δ(z). (E2)

Substituting (E2) into (E1), we see that the integral becomes

Psurf.
L = −1

2
Re

[
Pz(0+)

ˆ 0+

0−
E∗

z δ(z)dz

]
. (E3)

Since Ez has a discontinuity at z = 0, varying from z = 0−
to z = 0+, but remaining finite, we use the arithmetic mean
of the field values on either side of the discontinuity when
evaluating the integral, which can be thought of as the δ

function selecting the midpoint value of E∗
z , resulting in

Psurf.
L = − 1

2 Re
[
Pz(0+) 1

2 [E∗
z (0+) + E∗

z (0−)]
]
. (E4)

We can further simplify by substituting Pz(0+) = ε0(εr −
1)Ez(0+) and by using the required continuity of the elec-
tric displacement field D across the boundary, which here
manifests as E∗

z (0−) = ε∗
r E∗

z (0+). Making both of these sub-
stitutions, we have

Psurf.
L = −ε0

4
Re[(εr − 1)Ez(0+)[E∗

z (0+) + ε∗
r E∗

z (0+)]].

(E5)

After factoring E∗
z (0+) out of the inner parentheses and dis-

tributing the (εr − 1), we have

Psurf.
L = −ε0

4
Re[|Ez(0+)|2(|εr |2 − 1 + 2i Im[εr])], (E6)

of which we can now trivially take the real part as

Psurf.
L = −ε0

4

∣∣Ez
(
0+)∣∣2(∣∣εr

∣∣2 − 1
)
. (E7)

We can incorporate a value for |Ez(0+)|2 by evaluating the
squared magnitude of the z component of (4a) at z = 0, re-
sulting in

Psurf.
L = −ε0

4
|H0i|2|Th|2 |η|2

|k|2 k2
x (|εr |2 − 1). (E8)

Substituting |η|2 = η2
0/|εr |, |k|2 = k2

0 |εr |, and kx = k0 sin θi,
and then using η2

0 = μ0/ε0, we can simplify this to

Psurf.
L = −μ0

4
|H0i|2|Th|2

[
sin2 θi

|εr |2 (|εr|2 − 1)

]
. (E9)

We can then apply the same simplifications to the coefficients
as in (C7) to arrive at the result given in (26),

Psurf.
L = −|〈Si〉|

c

|Th|2
2

[
sin2 θi

|εr |2 (|εr |2 − 1)

]
. (E10)

APPENDIX F: EINSTEIN-LAUB NABLA IN MATERIAL
EVALUATION

Here we present the evaluation and integration of (33) in
Sec. V B. We can simplify the z component of the argument

of the Re[·] operator in (33) by noting that Py = 0, giving

ẑ · (P · ∇)E∗ = Px
∂E∗

z

∂x
+ Pz

∂E∗
z

∂z
. (F1)

Now we substitute individual components of P using P =
ε0(εr − 1)E, differentiate with respect to z the complex expo-
nential spatial dependence of E∗

z [as given in (4a)], and factor
out iε0(εr − 1) to arrive at

Px
∂E∗

z

∂x
+ Pz

∂E∗
z

∂z
= iε0(εr − 1)(kxExE∗

z + k∗
tz|Ez|2). (F2)

Substituting for Ex and Ez using (4a), we find that

iε0(εr − 1)(kxExE∗
z + k∗

tz|Ez|2)

= iε0(εr − 1)k2
x |Hoi|2|Th|2 |η|2

|k|2 e2k′′
tzz(k∗

tz − ktz ), (F3)

where the difference in the parentheses evaluates as k∗
tz −

ktz = −2ik′′
tz. Substituting this result back into (F1), we have

that

ẑ · (P · ∇)E∗ = 2ε0(εr − 1)k′′
tzk

2
x |Hoi|2|Th|2 |η|2

|k|2 e2k′′
tzz. (F4)

Since all terms on the right side of (F4) are real except for εr ,
we can easily evaluate the Re[·] operator as

〈 fEL,z〉bulk
∇ (z) = ẑ · 1

2
Re[(P · ∇)E∗]

= ε0(ε′
r − 1)k′′

tzk
2
x |Hoi|2|Th|2 |η|2

|k|2 e2k′′
tzz. (F5)

To find the pressure due to the force density, we now integrate
(F5) from z = 0+ (avoiding the boundary, which will be han-
dled separately) to z → ∞. Since this bulk force density has
the same spatial dependence as the Lorentz form in Sec. IV A,
the integration results in the same factor of −1/(2k′′

tz ), as in
(C1). Therefore, after integrating (F5), the pressure due to the
nabla term of (32) is given by

Pbulk
EL,∇ = −1

2
|Hoi|2|Th|2ε0k2

x

|η|2
|k|2 (ε′

r − 1). (F6)

With substitutions analogous to those made between (E8) and
(E9), (F6) becomes

Pbulk
EL,∇ = −μ0

4
|Hoi|2|Th|2

{
sin θi

|εr |2 [2(ε′
r − 1)]

}
, (F7)

and we can again manipulate the coefficients as was done
between (C7) and (C8) to arrive at the result given in (34),

Pbulk
EL,∇ = −|〈Si〉|

c

|Th|2
2

{
sin2 θi

|εr |2 [2(ε′
r − 1)]

}
. (F8)

APPENDIX G: EINSTEIN-LAUB NABLA
AT BOUNDARY EVALUATION

Here we present the evaluation of the integration over the
infinitesimal boundary region in (35) in Sec. V C. For the field
geometry of interest, (35) simplifies to

Psurf.
EL = 1

2
Re

[ˆ 0+

0−

(
Px

∂E∗
z

∂x
+ Pz

∂E∗
z

∂z

)
dz

]
. (G1)
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Because Px(∂E∗
z /∂x) remains finite over the interval z = 0− to

z = 0+, it does not contribute to the integral. Now, since Ez is
considered as a step function in our model, its derivative will
be represented as a Dirac δ function in the surface region, so

∂E∗
z

∂z
= [E∗

z (0+) − E∗
z (0−)]δ(z). (G2)

The integral in (G1) then becomes

Psurf.
EL = 1

2
Re

[
[E∗

z (0+) − E∗
z (0−)]

ˆ 0+

0−
Pzδ(z)dz

]
. (G3)

As in (E3), we will evaluate the integral using the arithmetic
mean of the values of Pz on either side of the boundary. Noting
that Pz(0−) = 0, we have

Psurf.
EL = 1

2 Re
[
[E∗

z (0+) − E∗
z (0−)] 1

2 Pz(0+)
]
. (G4)

Now we can again simplify, as was done for (E4), by sub-
stituting Pz(0+) = ε0(εr − 1)Ez(0+), and making use of the
boundary condition E∗

z (0−) = ε∗
r E∗

z (0+), yielding

Psurf.
EL = 1

4 Re[[E∗
z (0+) − ε∗

r E∗
z (0+)][ε0(εr − 1)Ez(0+)]],

(G5)

which reduces to

Psurf.
EL = −ε0

4
|Ez(0+)|2(|εr |2 − 2ε′

r + 1
)
. (G6)

We can substitute for |Ez(0+)|2 by evaluating the squared
magnitude of (4a) at z = 0+, once again making substitutions
analogous to those made between (E8) and (E9), and manipu-
lating the coefficients to arrive at the result given in (36),

Psurf.
EL = −|〈Si〉|

c

|Th|2
2

[
sin2 θi

|εr |2 (|εr |2 − 2ε′
r + 1)

]
. (G7)

APPENDIX H: CONDITIONS FOR OUTWARD
SURFACE FORCES

In Sec. VII, it was shown that for the cases of planar Au
and water, the surface force was always directed outward from
the material. Here we will show under what conditions the
two force formulations, Lorentz and Einstein-Laub, predict a
surface force directed away from the medium of interest. The
case of complex time-harmonic fields will be considered here,
although the development is also easily adapted to static fields
by making all quantities real and omitting the time averaging
{(1/2) Re[·]} operation.

We consider the situation of a planar interface between
two linear isotropic materials, where the interface lies in the
xy plane. We denote all z < 0 as Region 1 and all z > 0
as Region 2. These two regions will have complex relative
permittivities of εr,1 and εr,2, respectively. For example, in the
situation described in Sec. III and depicted in Fig. 1, εr,1 = 1
and εr,2 = εr . We denote the values of the z component of
the electric field (which is perpendicular to the interface) in
Regions 1 and 2 by Ez,1 and Ez,2, respectively. The values
of the z component of the polarization density in Regions 1
and 2 will be similarly denoted by Pz,1 and Pz,2, respectively.
We consider the source term of Gauss’s law to be zero in
this situation, such that the perpendicular D is required to be

continuous. This results in the boundary condition

Ez,2 =
(

εr,1

εr,2

)
Ez,1. (H1)

Additionally, because the media are linear and isotropic, the
polarization is related to the electric field in either region by

Pz,n = ε0(εr,n − 1)Ez,n = ε0χE ,nEz,n, (H2)

where n = 1, 2 denotes the region number.
With Region 2 defined as being the space where z > 0,

our goal of finding when the time-average surface pressure
is directed away from Region 2 now is equivalent to finding
when the time-average surface pressure is less than zero.

1. Lorentz

Using the approach taken in Sec. IV C, the time-average
Lorentz z-directed surface force in this situation is given by〈

Psurf.
L

〉 = 1
2 Re

[
1
2 (Ez,1 + Ez,2)(P∗

z,1 − P∗
z,2)

]
. (H3)

Using (H1) and (H2) to rewrite all quantities in (H3) in terms
of Ez,1 and the material parameters results in

〈
Psurf.

L

〉 = 1

4
Re

[
ε0|Ez,1|2

(
εr,1

εr,2
+ 1

)[(
εr,1

εr,2

)∗
− 1

]]
. (H4)

Further manipulation leads to

〈
Psurf.

L

〉 = ε0|Ez,1|2
4

Re
[∣∣∣∣εr,1

εr,2

∣∣∣∣
2

− 1 − 2i Im

[
εr,1

εr,2

]]
, (H5)

of which the real part can be taken to arrive at

〈
Psurf.

L

〉 = ε0|Ez,1|2
4

(∣∣∣∣εr,1

εr,2

∣∣∣∣
2

− 1

)
. (H6)

It follows from the term in parentheses in (H6) that 〈Psurf.
L 〉 <

0 if

|εr,2| > |εr,1|. (H7)

Using the boundary condition (H1) in the inequality (H7) also
results in a condition in terms of the electric fields in each
region,

|Ez,1| > |Ez,2|. (H8)

The Lorentz time-average surface force will be directed away
from Region 2 if the equivalent conditions (H7) and (H8)
are met.

2. Einstein-Laub

Paralleling the approach in Sec. V C, the time-average
Einstein-Laub surface force is given by〈

Psurf.
EL

〉 = 1
2 Re

[
1
2 (Pz,1 + Pz,2)(E∗

z,2 − E∗
z,1)

]
. (H9)

Use of (H1) and (H2) allows for the rewriting of (H9) as

〈
Psurf.

EL

〉 = ε0|Ez,1|2
4

Re
[

1 −
∣∣∣∣εr,1

εr,2

∣∣∣∣
2

+ 2εr,2

∣∣∣∣εr,1

εr,2

∣∣∣∣
2

− 2εr,1 + 2i Im

[
εr,1

εr,2

]]
, (H10)
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where evaluation of the Re[·] operator results in

〈
Psurf.

EL

〉 = ε0|Ez,1|2
4

[
1 − 2ε′

r,1 −
∣∣∣∣εr,1

εr,2

∣∣∣∣
2

(1 − 2ε′
r,2)

]
, (H11)

with ε′
r,n = Re[εr,n]. It follows from the contents of the square

brackets in (H11) that the condition for negative time-average
surface pressure (〈Psurf.

EL 〉 < 0) is

1 − 2ε′
r,2

|εr,2|2 >
1 − 2ε′

r,1

|εr,1|2 . (H12)

Using that |χE |2 = |εr − 1|2 = |εr |2 − 2ε′
r + 1, the numera-

tors in (H12) can be rewritten as

|χE ,2|2 − |εr,2|2
|εr,2|2 >

|χE ,1|2 − |εr,1|2
|εr,1|2 , (H13)

which can be simplified to the condition

|χE ,2|
|εr,2| >

|χE ,1|
|εr,1| . (H14)

If (H14) is satisfied by the material parameters, the Einstein-
Laub time-average surface force will be directed away from
Region 2. Once again, we can seek a condition in terms of
field quantities for more physical insight. Making use of (H1),
(H14) is equivalently

|Ez,2||χE ,2| > |Ez,1||χE ,1|. (H15)

Finally, because |Pz| = ε0|χE ||Ez|, the condition for 〈Psurf.
EL 〉 <

0 in terms of field quantities is

|Pz,2| > |Pz,1|. (H16)
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