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Long persistent anticorrelations in few-qubit arrays
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We consider theoretically the mechanisms to realize antibunching between photons scattered on an array
of two-level atoms in a general electromagnetic environment. Our goal is antibunching that persists for times
much longer than the spontaneous emission lifetime of an individual atom. We identify two mechanisms for
such persistent antibunching. The first one is based on subradiant states of the atomic array and the second one
does not require any subradiant states. We provide two specific examples of array parameters with optimized
antibunching, based on an array in a free space and an array coupled to a waveguide.
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I. INTRODUCTION

Recent years have seen a revival of interest in the quantum
optics of arrays of natural and artificial atoms [1]. This has
been stimulated by the emergence of highly coherent and
ordered structures such as lattices of trapped atoms in free
space [2–5] or emitters coupled to a waveguide [6–10]. One
of the opportunities offered by ordered atomic structures for
quantum optics is the on-demand generation of quantum states
of light, including squeezed light [11], cluster states [12–14],
and antibunched photons [15].

While the photon antibunching, i.e., suppressed photon-
photon correlation function g(2)(τ ) for zero delay between
the photons τ = 0, is probably the simplest and the most
known example of quantum photon correlations, even the
antibunching optimization problem is not trivial, and there
is an extensive amount of work being done in this direction
[16–25]. Indeed, for practical applications it is desirable to
realize the antibunching that is not only strong, g(2)(0) � 1,
but also persistent, i.e., g(2)(τ ) � 1 for a considerable range
of delays between the photons τ . Currently, there is no gen-
eral universal scheme to realize such persistent antibunching.
Here we discuss two specific mechanisms for persistent anti-
bunching in atomic arrays. The first mechanism is relatively
straightforward and based on the formation of subradiant
states in the array, where the spontaneous decay is suppressed
by destructive interference [26,27]. Indeed, it is expected that
a resonant excitation of subradiant states can provide long-
living quantum correlations, including antibunching (see, e.g.,
Refs. [22,28–31]). The second mechanism for persistent anti-
bunching is somewhat more surprising. Specifically, we show
that it is possible to achieve g(2)(τ ) � 1 for the times τ that
are noticeably longer than the lifetimes of all the individual
eigenstates of the system. In other words, such a method
does not require any subradiant states to exist. Instead, the
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antibunching relies on the peculiar destructive interference
between single-excited states with different lifetimes, so their
contributions to the photon-photon correlations suppress each
other in a considerable time range, even though neither of
them is required to be subradiant. While we perform the
optimization for specific cases of an array in a free space and
an array coupled to a waveguide, the proposed approaches
are rather general and are not inherently restricted to par-
ticular geometries. Thus, we hope that our results could
provide useful insights for the design of future quantum
devices.

The rest of the paper is organized as follows. We start
in Sec. II by outlining a theoretical framework to calculate
the photon-photon scattering matrix (Sec. II A) and photon-
photon correlations (Sec. II B). In Sec. III we present the
results for optimized persistent antibunching in two different
geometries. Section III A considers a four-atom array in free
space [Fig. 1(a)] and Sec. III B is devoted to atoms coupled
to photons in a waveguide [Fig. 1(b)]. The results are summa-
rized in Sec. IV. The auxiliary theoretical details are given in
Appendixes A and B.

II. THEORETICAL FRAMEWORK

A. General formulas for two-photon scattering
in the frequency domain

A Green’s function approach for two-photon scattering on
an arbitrary array of atoms coupled to the waveguide has been
developed in Refs. [19,32–34]. The photon Green’s function,
defined by the vector equation

∇ × ∇ × G(r, r′, ω) − ω2

c2
ε(r, ω)G(r, r′, ω) = Iδ(r − r′),

(1)

can describe a linear response in an arbitrary electromagnetic
environment characterized by the dielectric permittivity tensor
ε(r, ω). Thus, it is straightforward to generalize the photon
scattering calculation from the waveguide to a more general
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FIG. 1. Two schemes considered in this work. (a) Four-qubit
system in free space arranged in a rectangle with nearest-neighbor
distance a. The two photons of frequency ω are incident normally
in the n direction. The outgoing photons are measured by two de-
tectors D1 and D2. The incident photon polarization ε and atomic
dipole moments d are parallel to each other and their orientation
is characterized by an angle θ . (b) One-dimensional periodic array
of qubits, asymmetrically coupled to a single guided mode with
forward (backward) emission rates �(f) (�(b)). The emission rate out
of a waveguide is �(r). The scattered photons are measured in the
reflection geometry.

setup. In this section we consider two-photon scattering for
an array of N atoms located at points ri (i = 1, . . . , N) in free
space, as shown in Fig. 1(a).

The wave function of the scattered photon pair � is related
to that of the incident pair � (0) via the two-photon scattering
matrix

�λ′
1,λ

′
2
= 1

2

∑
λ1λ2

Sλ′
1,λ

′
2;λ1,λ2�

(0)
λ1λ2

, (2)

where λ is the multi-index incorporating all of the quantum
numbers of the photonic eigenmodes, i.e., for the photons in
free space λ = (k, σ ), where k = kn is the wave vector, with n
the propagation direction, σ the polarization index, k = ωλ/c,
and ωλ the mode frequency.

The S matrix can be represented as a sum of the coherent
independent photon scattering term and the term responsible
for an inelastic scattering and photon-photon interaction

Sλ′
1,λ

′
2;λ1,λ2 = S(lin)

λ′
1,λ

′
2;λ1,λ2

+ S(nlin)
λ′

1,λ
′
2;λ1,λ2

,

S(lin)
λ′

1,λ
′
2;λ1,λ2

= (
S(1)

λ′
1,λ1

S(1)
λ′

2,λ2
+ S(1)

λ′
1,λ2

S(1)
λ′

2,λ1

)
,

S(nlin)
λ′

1,λ
′
2;λ1,λ2

= 4πδ(�′ − �)
∑N

i, j=1
s+
λ′

1,i
(ωλ′

1
)

× s+
λ′

2,i
(ωλ′

2
)Qi, j (�)s−

λ1, j (ωλ1 )s−
λ2, j (ωλ2 ), (3)

where S(1)
λ′,λ is a single-photon S matrix, Qi, j (�) is the

two-photon scattering kernel matrix, indices i, j = 1, . . . , N
enumerate atoms, � = ωλ1 + ωλ2 , �′ = ωλ′

1
+ ωλ′

2
, s−

λ,i repre-
sents the self-consistent excitation amplitude of atom j due to
the absorption of a photon λ, and s+

λ,i describes the amplitude
of the inverse process. The amplitudes s±

λ,i can be calculated
as

s−
λ,i(ωλ) =

N∑
j=1

Gi j (ωλ)d j · Eλ(r j ),

s+
λ,i(ωλ) =

N∑
j=1

E∗
λ(rj) · d∗

j G ji(ωλ), (4)

where Eλ is the electric-field amplitude of mode λ, d j is the
matrix element of the dipole operator between the ground and
excited states of atom j, and Gi j (ω) is the N × N matrix of
the single-excitation quantum-mechanical Green’s function,
which is readily calculated as G(ω) = (ω − H (eff) )−1, where
the effective Hamiltonian accounts for the transfer of excita-
tion between the atoms via the electromagnetic field and reads
[6,35,36]

H (eff)
i j =

{
− 4πω2

0
c2 d†

i G(ri, r j, ω0)d j if i �= j

ω0 − i �
2 if i = j,

(5)

where ω0 is the atomic transition frequency and � is the
spontaneous decay rate of the atomic excited state. We do
not restrict ourselves to the reciprocal systems, which means
that the matrix H (eff)

i, j and Gi j (ω) are of general form, neither
Hermitian nor symmetric. Moreover, in the definition of G(ω)
above we omitted h̄ as we regard it as equal to unity through-
out the paper.

The N × N scattering kernel matrix Qi j (�) for a collection
of two-level atoms can be expressed via the single-excitation
Green’s function as [32,33]

Q(�) = �−1(�),

�i j (�) =
∫

Gi j (ω)Gi j (� − ω)
dω

2π
. (6)

In cases when the effective Hamiltonian matrix H (eff)
i, j is di-

agonalizable, one can find �(�) as the expansion over its
right (v(R,ν)

i ) and left (v(L,ν)
i ) eigenvectors (enumerated by

ν = 1, . . . , N). By using the eigenexpansion of the single-

excitation Green’s function Gi, j (ω′) = ∑N
ν ′=1

v
(R,ν′ )
i v

(L,ν′ )
j

ω′−E (1,ν′ ) =∑N
ν ′=1

g(ν′ )
i, j

ω′−E (1,ν′ ) and taking the frequency integral by the
residue theorem, one can write

�i j (�) = −i
∑
ν1,ν2

g(ν1 )
i, j g(ν2 )

i, j

� − E (1,ν1 ) − E (1,ν2 )
, (7)

where E (1,ν) are the corresponding complex eigenvalues. Note
that there is a way to define Q(�) that is alternative to Eq. (6)
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which includes explicitly the two-excitation eigenstates of the
problem; we address this in Appendix A.

Now we have all the ingredients to discuss two-photon
detection, which will be covered in the following section.

B. Two-photon detection in the time-dependent correlations

In this work we consider a continuous-wave excitation
where the incident photons are infinitely delocalized in the di-
rection of propagation and described by well-defined quantum
numbers λ1,2. The quantum correlations for the scattered light
are then characterized by the probability to detect two photons
at times t1 and t2, which depends only on the time difference
t1 − t2. To calculate this probability, we perform a double
Fourier transform of the scattered-photon wave function (2)
and obtain the two-photon wave function in the time domain

�(t1, t2) = 1

8π2

∫∫
Sλ′

1,λ
′
2;λ1,λ2 e

−i(ωλ′
1
t1+ωλ′

2
t2 )

dωλ′
1
dωλ′

2
, (8)

where the integration is carried over the frequencies cor-
responding to modes with the fixed propagation directions
n′

1 and n′
2. The normalized second-order correlation func-

tion is given by g(2)(t1, t2) = |�(t1, t2)/� (lin)(t1, t2)|2, where
� (lin)(t1, t2) is obtained from Eq. (8) by replacing S with S(lin).

For the purposes of this work, we consider the case when
both incident photons and detected photons are pairwise iden-
tical in their quantum numbers: λ1 = λ2 = λ and λ′

1 = λ′
2 =

λ′. In this case the g(2)(t1, t2) function can be presented in the
form (see Appendix B for the derivation)

g(2)
λ′;λ(τ ) =

∣∣∣∣∣1 −
∑

ν

C(ν)
λ′;λe−i(E (1,ν)−ω)τ

∣∣∣∣∣
2

, (9)

where C(ν) are the constants determined by the residues of
the integrand in (8) at the resonances of singly excited states.
By a simple observation, one can see that in order to realize
antibunching at zero delay g(2)(0) � 1, one needs to achieve
|1 − ∑

ν C(ν)
λ′

1,λ
′
2;λ1,λ2

| � 1. It is not immediately obvious how
to satisfy such an inequality because the complex-valued
amplitudes C(ν) in the general case have a rather intricate
dependence on single- and double-excitation eigenstates, as
well as on the scattering setup, that is, propagation directions
and polarizations of the incoming and outgoing detected pho-
tons. The complexity of the explicit form of C(ν)

λ′
1,λ

′
2;λ1,λ2

makes
it hard to analyze for a general setup; however, for certain
few-atom systems the analysis can be insightful, as we will
show later.

In order to make the antibunching persistent at long times
τ > 1/�0 (�0 is the emission rate of an isolated qubit),
subradiant states need to be in resonance, that is, to sat-
isfy the condition |ω − ReE (1,ν)| � � while simultaneously
−2 Im E (1,ν) � �. We stress that these two conditions must
be simultaneously satisfied for all single-excitation states ν

that have a significant contribution to the detected signal
|C(ν)

λ′
1,λ

′
2;λ1,λ2

| ∼ 1. Designing an ensemble of qubits along with
the scattering geometry in such a way appears to be a non-
trivial problem in general. While we do not aim to explore
all possibilities, we suggest a straightforward solution to this
problem. One can set up the system in such a way that there is
a distinct subradiant single-excitation state that is spectrally

FIG. 2. (a) Plot of the g(2)(τ = 0) dependence for free-space ar-
rangement as a function of detuning of photons �ω and polarization
angle θ . Here the distance between neighboring atoms is a = 0.1λ0.
(b) Second-order correlation function g(2) versus the detuning of both
photons �ω and delay time τ . The inset shows the behavior of
g(2)(τ ) for �ω = 3.9�0 specified by an arrow. (c) Single-excitation
spectrum of the effective Hamiltonian (eigenfrequencies �ω(1,ν ) =
ReE (1,ν ) − ω0 and emission rates �(1,ν ) = −2 ImE (1,ν )). The color
encodes the contribution to the g(2) signal that is a constant C (ν ) given
in Eq. (9). (d) Temporal dynamics of g(2)(τ ) for different detunings:
�ω = 3.83�0 (thick red dotted line), �ω = 3.9�0 (thick purple solid
line), and �ω = 4.2�0 (thin blue dotted line).

well isolated in the single-excitation domain and provides
the main contribution to the signal [22]. In this case one
only needs to tune the frequency of both incident photons
to the frequency of this subradiant state ω = ReE (1,ν). The
only remaining required condition is then the presence of
strong anticorrelations at zero delay g(2)(0) ≈ 0. In the next
section we will provide a simple conceptual example of such
a procedure.

III. RESULTS AND DISCUSSION

A. Example 1: Four atoms in free space

Our first example is based on four two-level atoms that are
arranged in a square in free space, as shown in Fig. 1(a). The
atoms are at a strongly subwavelength distance between the
nearest neighbors a = 0.1λ0 ≡ 0.1 × 2πc/ω0. This condition
is required in order for subradiant states to arise in the system.
We assume that the transition dipole moments of the atoms are
linearly polarized in the plane and characterized by orientation
angle θ . The photons are incident normally on the system
(n1 = n2 = n ‖ ez) being polarized parallel to the dipole mo-
ments. We detect the backscattered photons, n′

1 = n′
2 = −n,

with the same polarization as the incident ones.
We begin by examining the equal-time photon-photon cor-

relations’ dependence on the incident photon frequency and
on their polarization [see Fig. 2(a)]. The results demonstrate
that by tuning the polarization angle θ and detuning from
resonance ω1 − ω0 = ω2 − ω0 ≡ �ω, it is possible to achieve
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g(2)(0) < 1 with different sets of parameters. The parame-
ters we want to focus on are indicated by a black arrow
for θ = 0.25π and �ω = 3.9�0. We can also observe the
map of g(2)(τ ) displayed in Fig. 2(b) versus both detun-
ings of photons �ω and time delay τ . One can see that, in
general, the second-order correlation function can demon-
strate a quite complicated dynamics that switches between
strong bunching and antibunching. What is especially inter-
esting is the dynamics for the aforementioned detuning value
�ω = 3.9�0 (black arrow), when the scattered photons re-
main antibunched for a long time. Indeed, as the inset shows,
the g(2) function exhibits a very slow growth towards unity,
achieving the value 0.5 only at a time approximately equal
to τ ≈ 18/�0. On top of this persistent antibunching there
are some oscillations with a small amplitude for τ�0 < 2.
This behavior can be clarified with the help of Fig. 2(c),
where the single-excitation spectrum of H (eff) is presented.
As can be seen, out of four collective eigenstates in total,
only two have a nonzero contribution to the signal. The
other two are antisymmetrically excited dimers consisting of
atoms on the two diagonals; such states cannot be excited
with the perpendicularly incident plane wave because of the
selection rules. One of the states that are coupled to light
is a subradiant state with �ω(1,−) ≈ 0.39�0 and �(1,−) ≈
0.12�0. There is also a nonzero overlap with the quasisu-
perradiant (bright) state that is strongly shifted in frequency:
�ω(1,+) ≈ −5.85�0 and �(1,+) ≈ 3.64�0. The corresponding
C(ν)

λ′,λ constants for these states are given by C(−)
λ′,λ ≈ 1.07ei0.91π

and C(+)
λ′,λ ≈ 0.115e−i0.485π , from which one can immediately

conclude that we are predominantly exciting the subradiant
state as |C(−)

λ′,λ| 
 |C(+)
λ′,λ|, and the quasisuperradiant state gives

a rather small contribution giving rise to fast oscillations seen
in the inset of Fig. 2(b) owing to a large detuning �ω(1,−) −
�ω(1,+) 
 �0. After the contribution of the superradiant state
decays out due to its small lifetime, the excitation resides
in the remaining subradiant state and its long lifetime pro-
vides long-term anticorrelations. Finally, we also present in
Fig. 2(d) the temporal dynamics of the function g(2)(τ ) for
detunings around the discussed value �ω = 3.9�0 close to the
subradiant state. For the reasons already discussed before, as
one detunes from the frequency of the subradiant state, tem-
poral oscillations appear and the zero-delay value of g(2)(0)
is increased. The latter happens as by moving off resonance
with the state, the C(ν)

λ′,λ constants are altered [Eqs. (9) and
(B9)], making the destructive interference between the lin-
ear and nonlinear signals less prominent. Nonetheless, if the
detuning from the subradiant state is not too large, it is still
possible to see anticorrelations g(2)(τ ) < 1 that survive over a
few atomic lifetimes τ0 = 1/�0. The width of this frequency
window in which anticorrelations are observed can be very
roughly approximated by the linewidth of the subradiant state
being excited; however, it also depends on where spectrally
other states contributing to the signal are. For instance, as
there are no other states in the blue region of the subradiant
state, anticorrelations persist over larger blue detunings (up
to �ω = 4.2�0) rather than red ones (only around �ω =
3.83�0).

The demonstrated subradiance-induced antibunching in a
small array of atoms in a free-space has many similarities to

the one recently studied in Ref. [22]. There are however two
important differences. First, our theoretical approach allows
us to rigorously obtain an explicit expansion of the correla-
tion function over singly and doubly excited eigenstates. This
is a more suitable technique to identify the role of various
eigenstates in the correlation than the semiphenomenological
expansion in Ref. [22]. This could provide further insight
into the ongoing experimental investigations of the quantum
light scattering from the regular free-space arrays [1,14]. Sec-
ond, here we analyze the dependence of the correlations on
the azimuthal polarization angle of incoming photons, while
Ref. [22] focused on the specific case θ = 0. As shown in
Fig. 2(b), tuning the polarization angle to the value of θ =
π/4 significantly enhances the antibunching.

We would also like to discuss the linewidth of the ex-
citation source that is required in order to observe the
antibunching. Since the mechanism considered in this sec-
tion relies on a resonantly excited subradiant state, it is
reasonable to assume that the precision of the frequency tun-
ing has to be approximately equal to the emission rate of the
corresponding state. The linewidth of the optical transition for
Cs or Rb atoms is about 5–6 MHz [10]. Even commercially
available optical lasers allow for the stabilization on the order
of 1–10 kHz, which is smaller by three orders of magnitude
than the spontaneous emission linewidth, while modern se-
tups demonstrate hertz or even subhertz stabilization [37]. For
superconducting qubits the transition linewidth for the emis-
sion into the waveguide is typically two to three times larger
[10], while the microwave driving sources are much more
frequency stable with the subhertz frequency fluctuations.

So far we have discussed the case of a free-space four-qubit
ensemble, where the long persistent antibunching of photons
appears due to a single-excitation subradiant state that con-
trols the scattering, while all other states have way smaller
contributions. Even though this suggestion came naturally
from the form of Eq. (9), it turns out to be not the only way to
achieve the desired long temporal anticorrelations.

In the next section we will look at another system based on
waveguide setup, where the mechanism is different.

B. Example 2: Asymmetric waveguide QED

The photon mode propagating in a waveguide is charac-
terized by an intensity distribution across the waveguide [38],
polarization, and direction of propagation. The direction of
propagation, unlike the free-space case, is a discrete variable
(forward and backward directions) as the photons are re-
stricted to one dimension. This makes the whole scheme look
more realistic for an experimental realization (see the recent
review in [10]). In this case, the single-excitation effective
Hamiltonian reads [39,40]

H (eff)
i, j = −i ×

⎧⎨
⎩

�(f)eiφi, j if i > j
�(b)eiφi, j if i < j
�(wg)+�(r)

2 if i = j,
(10)

where φi, j = kz|zi − z j | is the propagation phase, �(f) (�(b))
is forward (backward) emission rate, �(wg) = �(f) + �(b) is
the emission rate into the waveguide in both directions, and
�(r) is the radiation losses out of the waveguide [41]. The �(r)

is always present in the waveguide quantum electrodynamics
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FIG. 3. (a) Second-order correlation function g(2) versus the pho-
ton detuning �ω and delay time τ . The inset shows g(2)(τ ) for
�ω = 0.3�(wg) specified by an arrow. (b) Single-excitation spectrum
of the effective Hamiltonian. Color encodes the magnitude of the
corresponding constants |C (1,ν )|. The horizontal black dashed line in-
dicates the radiation losses out of the waveguide �(r), while a vertical
blue dotted line specifies the detunings of the two photons �ω =
0.3�(wg). (c) and (d) Normalized two-photon scattering amplitudes:
single-atom nonlinearity and contribution from the doubly excited
state of H eff for the (c) real and (d) imaginary parts of the two-photon
scattering amplitudes versus delay time τ . The colors are the same as
in (b). The parameters are the number of atoms N = 5, atom-atom
distance a = 0.22λwg, asymmetry parameter ξ = �(b)/�(f) = 0.01,
and radiation losses �(r) = 0.1�(wg).

(WQED) systems as there is always a chance that an ex-
cited atom will emit a photon in free space rather than into
the waveguide. For the state-of-the-art structures with natural
atoms coupled to a waveguide, such losses are on the order
of �(r) ∼ (10–100)�(wg), while in the superconducting qubit
platform or even quantum dots coupled to photonic crystal
waveguides one may have �(r) � �(wg) [10]. As is evident
from Eq. (9), the presence of large radiative losses leads to an
increase of the decay rate of all the single-excitation modes,
which makes persistent antibunching impossible (we do not
consider here long-period atomic arrays where some modes
can be immune to �(r) due to the Borrmann effect [30]).
In this work we consider the case of low radiation losses
�(r) � �(f), �(b). There also exist other approaches to achieve
anticorrelations that specifically rely on the opposite regime
of high losses �(r) 
 �(wg) [15,42].

Here, as in the preceding section, we focus on the reflec-
tion geometry, as shown in Fig. 1(b). We consider N = 5
atoms equally spaced with a separation of a = 0.22λwg (λwg

is the guided mode wavelength) and strong forward emission
asymmetry �(b)/�(f) = 10−2. Figure 3(a) shows the tempo-
ral dependence of the correlation function for backscattered
photons depending on the detuning. Despite the fact that here
we take the system that predominantly emits into the forward
direction, our calculation shows that the backward-scattered
photons can demonstrate a desired antibunching. Specifically,

for the detuning �ω = 0.3�(wg) (black arrow), the correlation
function remains g(2) < 0.1 for a time 0 � τ�(g) � 5 and af-
terward reaches the level 0.5 at approximately τ�(g) ≈ 10, as
can be seen in the inset. Figure 3(b) demonstrates that in con-
trast to the free-space case [Fig. 2(d)], all five single-excitation
eigenstates contribute significantly to the signal. Moreover,
none of these eigenstates are strongly subradiant; the small-
est emission rate is equal to �(1,ν=5) ≈ 0.45�(wg), which
is noticeably larger than the radiation losses �(r). Further
inspection of how the contributions from single-excitation
eigenstates evolve with τ [Figs. 3(c) and 3(d)] finds that long
temporal antibunching is a result of a peculiar interference
of all of the eigenstates, while the overall lifetime of these
correlations is fundamentally limited by the value of radiation
losses out of the waveguide �(1,ν) � �(r) = 0.1�(wg). We refer
to this effect as an accidental persistent antibunching as it re-
lies on the destructive interference between several scattering
channels.

Somewhat similarly to the case covered in the preceding
section, here the frequency window of the effect depends on
the spectral position of single-excitation states with respect
to the frequency of the incident photons. For instance, by
comparing Figs. 3(a) and 3(b), one can immediately see that
this window is rather narrow in the blue region due to the close
proximity of states 3 and 2 and much wider in the red region
as states 1, 4, and 5 are more spectrally distant.

IV. CONCLUSION

We have developed a general analytical expression for a
scattering matrix, characterizing two-photon scattering on an
ensemble of two-level atoms. The approach is based on the
electromagnetic Green’s function and is suitable for an arbi-
trary electromagnetic environment. In particular, we applied it
to atomic arrays in free space and atoms asymmetrically cou-
pled to a waveguide mode. We analyzed the photon-photon
correlations and suggested two mechanisms to achieve photon
antibunching that is persistent on large delay times. The first
mechanism is based on the resonance between the incident
photons and the single-excitation collective subradiant states
of the system, when only a single long-lifetime eigenstate
contributes significantly to the scattering amplitude. The sec-
ond mechanism relies on a destructive interference between
the contributions of at least several collective states, none of
which are required to be strongly subradiant. We provided
pictorial examples for both mechanisms. The first mecha-
nism was illustrated for a free-space array, where we tuned
the frequency and the polarization of the incident photons
to selectively excite a single subradiant state. The second
mechanism was illustrated for an array of atoms coupled to a
waveguide mode in the strongly asymmetric (almost unidirec-
tional) regime. Both proposed mechanisms are rather general
and will hopefully provide useful insights for the rapidly de-
veloping quantum optics of atomic arrays.

An interesting possible direction for future research is
the generalization of our results to a strongly driven or a
many-photon regime. The lifetime of the correlations in the
interacting quantum systems is an open fundamental problem.
Phenomena such as the formation of periodic time-crystalline
order [43,44] and accelerated decay to the stationary state [45]
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and the opposite effect [46] are now actively being studied.
They involve many-body dynamics, which is notoriously hard
to analyze. One of the useful approximations is to describe the
correlation decay by keeping just a couple of eigenstates of
the evolution operator with the smallest decay rates [47]. The
system considered in our work, where multiple relatively fast
decaying eigenstates provide substantial contributions to the
correlation dynamics, presents an instructive counterexample
to this two-state approximation.
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APPENDIX A: ALTERNATIVE REPRESENTATION OF THE
TWO-PHOTON KERNEL Q FOR GENERAL

HAMILTONIANS

The relations (7) and (6) for the operator Q(�) are suf-
ficient for efficient calculations; however, there exists an
alternative way to represent it as a sum over the two-excitation
eigenstates. An expansion of this kind has been done Ref. [33]
in the context of qubits symmetrically interacting with each
other. Here we present a more general expression that is
exactly valid for the most general Hamiltonian, including
nonreciprocal ones,

Q(�) = i(� + i�)I − 4i
∑

μ

d(R,μ) ⊗ d(L,μ)

� − E (2,μ)
,

d (R,μ)
i =

∑
j

H (eff)
i, j �

(R,μ)
j,i , d (L,μ)

i =
∑

j

�
(L,μ)
i, j H (eff)

j,i , (A1)

where ⊗ is a tensor (outer) product and � (R,μ) (� (L,μ)) is the
right (left) two-excitation eigenstate ν in a two-dimensional
representation, with the corresponding complex energy E (2,μ),
and normalized such that

∑
i, j |� (R,μ)

i, j |2 = 1. The first term
in the expansion above has the meaning of a single-atom
nonlinearity, while the second term is responsible for a col-
lective nonlinearity of an ensemble as it explicitly contains
information about the two-excitation sector of H (eff). One can
notice that by matching the total energy of two photons � to
some doubly excited state Re E (2,μ) it is possible to signif-
icantly enhance the collective nonlinearity of the system or
even observe doubly excited states in the spectrum [33].

Note that even though the expansion above is useful for
physical understanding, it is not efficient to compute numeri-
cally Q(�) using it; it is much more convenient to use Eq. (7)
instead, especially for large atomic ensembles.

APPENDIX B: TWO-PHOTON SCATTERING
IN FREE SPACE

We start with the definition of a single-photon S matrix

S(1)
λ′,λ = δλ′,λ − 2π iT (1)

λ′,λ(ωλ)δ(ωλ′ − ωλ), (B1)

where T (1)(ωλ) = V (ωλ − H (eff) )−1V is a single-photon T
matrix. The matrix elements are calculated on a state where
a single photon in mode λ is present, while all N atoms
are deexcited |g〉⊗N . Note that when the free-space case is
considered, δλ′,λ = (2π )3

V δ(ω′ − ω)δ(n′ − n)δσ ′,σ and there is
a singularity that formally appears for the forward scattering
direction (n = n′), and is not canceled out. From now on we
will only consider the case when n′ �= n. After evaluating the
matrix element of the T (1)(ωλ) matrix given by

T (1)
λ′,λ(ωλ) =

∑
n′,n

g∗
λ′,n′Gn′,n(ωλ)gλ,n, (B2)

one can readily obtain the linear part of the scattered unnor-
malized wave function in the time domain

� (lin)(t1, t2) = −4π2(T (1)
k′

1,σ
′
1;k1,σ1

(ω1)T (1)
k′

2,σ
′
2;k2,σ2

(ω2)e−iω1t1−iω2t2

+ T (1)
k′

2,σ
′
2;k1,σ1

(ω1)T (1)
k′

1,σ
′
1;k2,σ2

(ω2)e−iω2t1−iω1t2 ).

(B3)

As has been mentioned before, this answer is valid when n′
1 �=

n1, n2 and n′
2 �= n1, n2. From this expression it is already

obvious that if one allows the two incident photons to have dif-
ferent frequencies ω1 �= ω2, then, in principle, at certain time
difference |t1 − t2| this wave function might become zero,
� (lin)(t1, t2) = 0. Even though it is generally not a problem
and appears due to obvious destructive interference, when
calculating the normalized correlation function g(2)(t1, t2) it
might lead to somewhat artificial divergencies that appear
not due to quantum-mechanical bunching, but rather due to
a linear term being zero. In order to avoid this, from now on
we consider ω1 = ω2. For the nonlinear part we can write

� (nlin)(t1, t2) = +
∫∫

4πMσ ′
1,σ

′
2;σ1,σ2

× δ(�′ − �)e−iω′
1t1−iω′

2t2 dω′
1dω′

2,

Mσ ′
1,σ

′
2;σ1,σ2 = s+

σ ′
1,i

(ω′
1)s+

σ ′
2,i

(ω′
2)Qi; j (�)s−

σ1, j (ω1)s−
σ2, j (ω2),

(B4)

where the Einstein summation notation over indexes i, j is
assumed from now on, and for the matrix elements of s−(ω1)
introduced in the main text we can define

gk1,σ1; j = −i

√
2π h̄ωk1

V

(
deg

j · εk1,σ1

)
eik1·r j , (B5)

which is the coupling constant of an atom j with the plane
wave having a wave vector k1 and polarization εk1,σ1 .

Now we need to evaluate the double frequency integral in
Eq. (B4). One can notice that the frequencies of the outgoing
photons ω′

1 and ω′
2 only enter into the operators responsible

for the photon emission s+
σ ′

1,i
(ω′

1) and s+
σ ′

2,i
(ω′

2) and the delta

function δ(� − �′). These operators, as Eq. (4) suggests, de-
pend on the single-excitation Green’s function that has poles
at complex-valued eigenfrequencies E (1,ν ′ ) of the collective
single-excitation states of the ensemble, namely,

Gi, j (ω
′) =

N∑
ν ′=1

v
(R,ν ′

1 )
i v

(L,ν ′
1 )

j

ω′ − E (1,ν ′ ) =
N∑

ν ′=1

g(ν ′ )
i, j

ω′ − E (1,ν ′ ) .
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Using it, we can carry out the double integral∫∫
Ri(ω

′
1, ω

′
2)s+

σ ′
1,i

(ω′
1)s+

σ ′
2,i

(ω′
2)δ(ω′

1 + ω′
2 − ω1 − ω2)e−iω′

1t1−iω′
2t2 dω′

1dω′
2

=
∫

Ri(ω
′
1,� − ω′

1)
∑
i′1,i

′
2

g∗
k′

1,σ
′
1;i′1

g∗
k′

2,σ
′
2;i′2

∑
ν ′

1,ν
′
2

g
(ν ′

1 )
i′1,i

ω′
1 − E (1,ν ′

1 )

g
(ν ′

2 )
i′2,i

� − ω′
1 − E (1,ν ′

2 )
e−i�t ′

2−iω′
1(t ′

1−t ′
2 )dω′

1, (B6)

where Ri(ω′
1, ω

′
2) is the remaining part of Eq. (B4). The remaining integral over ω′

1 can be straightforwardly evaluated using the
residue theorem and on which half plane the contour should be enclosed depends on the sign of t ′

1 − t ′
2. For t ′

1 > t ′
2 we choose

the lower one (Im ω′
1 < 0), which contains poles at ω′

1 = E (1,ν ′
1 ), while in the opposite case the upper plane is chosen with poles

at ω′
1 = � − E (1,ν ′

2 ). Finally, we arrive at the result

� (nlin)(t1, t2) ≈ − 8iπ2
∑
i′1,i

′
2

g∗
n′

1,σ
′
1;i′1

g∗
n′

2,σ
′
2;i′2

⎛
⎝∑

ν ′
1,ν

′
2

g
(ν ′

1 )
i′1,i

g
(ν ′

2 )
i′2,i

e−iE (1,ν′
1/ν′

2 ) (t>−t< )e−i�t<

� − E (1,ν ′
1 ) − E (1,ν ′

2 )

⎞
⎠Qi, j (�)

×
⎛
⎝∑

i1

Gj,i1 (ω1)gn1,σ1;i1

⎞
⎠

⎛
⎝∑

i2

Gj,i2 (ω2)gn2,σ2;i2

⎞
⎠, (B7)

where t> (t<) is the largest (smallest) of the detection times t1 and t2. During the derivation we have also used a near-resonant
approximation (|ω j − ω0| � ω0), which formally means that one has to make the replacement ω j → ω0 and k j → k0n j in the
definitions of coupling constants.

We would like to make one more comment. The notation E (1,ν ′
1/ν

′
2 ) means that one has to pick ν ′

1 when t ′
1 > t ′

2 and ν ′
2 otherwise.

This is important because if one wants to derive a formula similar to Eq. (9), then the indices ν ′
1 and ν ′

2 get coupled to the
quantum numbers of the outgoing photons (k′

1, σ
′
1) and (k′

2, σ
′
2) and the alternation of ν ′

1 and ν ′
2 is required to keep the photon

wave function symmetric with respect to the total exchange of quantum numbers of two photons 1 ↔ 2. However, if the two
outgoing photons are totally identical, then one can put either ν ′

1 or ν ′
2 in the above expression.

Since the general expression is rather cumbersome, we consider the case of twin-photon scattering, meaning that ω1 = ω2,
n′

1 = n′
2, and n1 = n2. The normalized second-order correlation function is then given by

g(2)(τ ) =
∣∣∣∣1 + � (nlin)(t1, t2)

� (lin)(t1, t2)

∣∣∣∣
2

=
∣∣∣∣∣1 −

∑
ν

C(ν)
n′,σ ′;n,σ (ω)e−i(E (1,ν)−ω)τ

∣∣∣∣∣
2

, (B8)

where the explicit expression for C(ν)
n′,σ ′;n,σ (ω) has the form

C
(ν ′

1 )
n′,σ ′;n,σ (ω) =

∑
i′1,i

′
2
(ε∗

n′,σ ′ · dge
i′1

)e−ik0n′ ·ri′1
(
ε∗

n′,σ ′ · dge
i′2

)
e
−ik0n′ ·ri′2

(∑
ν ′

2

g
(ν′

1 )

i′1 ,i
g

(ν′
2 )

i′2 ,i

�−E (1,ν′
1 )−E (1,ν′

2 )

)
Qi, j (�)

[∑
i1

Gj,i1 (ω)
(
deg

i1
· εn,σ

)
eik0n·ri1

]2

[ ∑
m′,m

(
ε∗

n′,σ ′ · dge
m′

)
e−ik0n′ ·rm′ Gm′,m(ω)

(
deg

m · εn,σ

)
eik0n·rm

]2 .

(B9)

In order to double-check the obtained formula, one can compute g(2)(τ ) for a single atom in free space, for which there is
only one singly excited eigenstate E (1,1) = ω0 − i�0/2, g(1)

1,1 = 1, and G(ω) = (ω − ω0 + i�0/2)−1. By substituting this into the

expression above for C(ν)
n′,σ ′;n,σ (ω), one can obtain g(2)(τ ) = |1 − e−i(ω0−ω)τ−(�0/2)τ |2, which is precisely what we would expect.

The obtained result can be easily modified in order to be suitable to use in WQED systems. One only needs to consider that
gλ,i = √

�σ,i, where �σ,i is the emission rate of atom i into the mode propagating in the σ direction. Here we assume that the
waveguide is a single-mode one (fixed polarization and distribution of the fields) such that the only quantum number for photons
is the direction of propagation σ , but this is straightforward to generalize.
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