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Tricritical Dicke model with and without dissipation
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Light-matter interacting systems involving multilevel atoms are appealing platforms for testing equilibrium
and dynamical phenomena. Here we explore a tricritical Dicke model, where an ensemble of three-level systems
interacts with a single light mode, through two different approaches: a generalized Holstein-Primakoff mapping
and a treatment using the Gell-Mann matrices. Both methods are found to be equivalent in the thermodynamic
limit. In equilibrium, the system exhibits a rich phase diagram where both continuous and discrete symmetries
can be spontaneously broken. We characterize all the different types of symmetries according to their scaling
behaviors. Far from the thermodynamic limit, considering just a few tens of atoms, the system already exhibits
features that could help characterize both second- and first-order transitions in a potential experiment. Impor-
tantly, we show that the tricritical behavior is preserved when dissipation is taken into account. Moreover, the
system develops a rich steady-state phase diagram with various regions of bistability, all of them converging
at the tricritical point. Having multiple stable normal and superradiant phases opens prospective avenues for
engineering interesting steady states by a proper choice of initial states and/or parameter quenching.

DOI: 10.1103/PhysRevA.108.033706

I. INTRODUCTION

When N two-level atoms confined in a small volume inter-
acting with a single mode of light are all initialized in their
excited state, their spontaneous emission processes can inter-
fere constructively, leading to an intensity-enhanced pulse of
emitted light. This concept, known as Dicke superradiance,
was introduced in [1] and represents a foundation for nu-
merous subsequent studies regarding the coherence between
emitters across several platforms [2–4].

Later, an equilibrium notion of superradiance was intro-
duced with the Dicke model [5,6]. In the limit of an infinite
number of atoms and above a critical value of the light-matter
interaction strength, this model undergoes a second-order
phase transition from a normal phase with a vanishing photon
population to a superradiant phase with a macroscopic photon
population. Near the critical point, interesting features such
as squeezing [7,8] or the onset of chaotic behavior [9] are
expected.

Several extensions of the Dicke model have been proposed
to unlock new exotic phenomena; of particular interest is
the generalization to multilevel atoms [10–13]. Having more
than two atomic levels allows for creative model proposals
where the connectivity between levels can be engineered to
generate valuable properties such as the generation of dark
states [14] or the unlocking of different dynamical phases
[15]. In this work we focus on the study of multicritical points,
specifically, tricritical points (TPs), using multilevel Dicke
models [16]. A TP signals the intersection of a first- and a
second-order phase transition, and with these two types of
transitions having very different behaviors, a highly tunable
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system exhibiting a TP is ideal for exploring universal scal-
ing, hysteresis, and metastability that goes beyond the much
more extensively explored second-order quantum criticality.
Recently, evidence of TPs has been reported in magnetic
materials [17–20]. Such systems, however, lack the parameter
tunability available in atomic or optical platforms.

Realizing models in a cavity QED environment typically
requires an open-system description due to the necessary
presence of one or more sources of losses. Open Dicke-like
systems are of great interest in their own right. For example,
they show interesting steady-state features not present in the
closed systems [21–25] as the inclusion of dissipation chan-
nels can modify the geometry of the phase boundaries, alter
the order of the transitions, and generate regions of multista-
bility where the final state of the system is highly dependent
on initial-state preparation.

In this work we introduce a tricritical Dicke model (TDM),
describing a single cavity mode interacting with an ensemble
of three-level atoms. In this model, both continuous and dis-
crete symmetry breakings can occur. First, we characterize the
equilibrium phase diagram and critical scaling in the thermo-
dynamic limit. Second, we explore the system away from the
thermodynamic limit with a finite number of atoms. Finally,
we describe the nonequilibrium phase transition landscape in
the presence of losses and examine how the TP manifests in
such an open system. The richness of the dissipative phase
diagram characterized by different types of phase transitions
and regions of bistability presents exciting possibilities for
engineering desired steady states.

II. MODEL

We consider an ensemble of N three-level atoms interact-
ing with a single mode of light. We denote the jth atom level
by |m〉( j), with m = 1, 2, 3 corresponding to spin projection
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FIG. 1. Schematics of the TDM. The three states |1〉, |2〉, and
|3〉 are represented by the top, middle, and bottom yellow horizontal
bars, respectively. Wavy arrows represent photons of frequency ω.
The light-matter interaction terms are represented by solid arrows;
here g = g1 for corotating terms and g = g2 for counterrotating
terms.

values 1, 0, and −1, respectively, in the z direction. The TDM
is a generalization of the conventional Dicke model where
now the phase transition between the superradiant and normal
phases can occur across a second-order line, a first-order line,
or a TP. The TDM is described by the Hamiltonian

H = ωa†a + �(1 − δ)P11 − �P33

+ g1√
N

[a(P12 + γ P23) + a†(P21 + γ P32)]

+ g2√
N

[a†(P12 + γ P23) + a(P21 + γ P32)]. (1)

Here Pmm′ denotes a collective atomic operator defined as
Pmm′ = ∑N

j=1 |m〉( j)〈m′|( j), a (a†) denotes the bosonic annihi-
lation (creation) operator for the cavity photon mode, ω is the
photon frequency, � characterizes the atomic energy splitting,
and g1 is the light-matter interaction strength for the corotat-
ing terms and g2 for the counterrotating ones. Finally, the two
dimensionless quantities γ and δ represent an imbalance in the
light-matter coupling strength and an energy splitting between
different atomic levels, respectively (see Fig. 1).

Dicke-like models where co- and counterrotating terms are
allowed to have different coupling strengths have been widely
explored [24,26–30]. For the present case, if g1 = g2 the sys-
tem reduces to a specific case of the multicritical Dicke model
presented in [16]. On the other hand, if g2 = 0, the system
reduces to a previously studied Tavis-Cummings model that
also exhibits a tricritical point [31].

For the cavity system, one obstacle is that experimental
observation of the superradiant phase transition in its “pure”
form is seriously challenged by the no-go theorem stated by
Rzażewski et al. [32], where the inclusion of the A2 term from
the dipole interaction prevents the transition from occurring.
One way to circumvent this no-go theorem is to consider a
system where the coupling between atomic levels is achieved
by cavity-assisted Raman transitions. This could be realized,
for example, in an optical cavity QED system through the cou-
pling of different atomic hyperfine magnetic sublevels with
additional lasers [33]. This is the scheme we adopt here.

Finally, we want to remark that several other groups have
previously studied three-level atoms interacting with cavity
fields [14,34–36] (see Ref. [37] for a review). However, in
those works, different atomic transitions are coupled to dif-
ferent cavity modes. As such, the physics exhibited in those
systems is qualitatively different from ours.

III. THERMODYNAMIC LIMIT

Let us first explore the thermodynamic limit in which the
atom number N → ∞, while the coupling strengths g1 and g2

are finite.

A. Generalized Holstein-Primakoff mapping

In the conventional Dicke model, a Holstein-Primakoff
mapping [38], where the spin collective operators are mapped
into a single bosonic mode, is often used to explore the
mean-field properties of the system [9]. This mapping can be
intuitively understood as promoting one two-level atom from
the ground state to the excited state is equivalent to adding
one quantum of excitation in the mapped bosonic mode. In the
TDM, since we are dealing with three-level atoms, we require
mapping the atomic collective operators into two differ-
ent bosonic modes through a generalized Holstein-Primakoff
mapping, as suggested in Ref. [14]. In order to conduct the
generalized mapping, we choose state |3〉 as our reference
state. The mapping is then defined by

Pmm′ = b†
mb′

m, m, m′ = 1, 2

Pm3 = b†
j � = (P3m)†, m = 1, 2

P33 = N −
∑

m=1,2

b†
mbm, (2)

where � ≡
√

N − b†
1b1 − b†

2b2 . The Hamiltonian is now
given by

H = ωa†a − N� + (2 − δ)� b†
1b1 + � b†

2b2

+ g1√
N

(ab†
1b2 + a†b†

2b1) + g1γ√
N

(ab†
2� + a†�b2)

+ g2√
N

(ab†
2b1 + a†b†

1b2) + g2γ√
N

(a†b†
2� + a�b2). (3)

The form of Eq. (3) makes evident the meaning of the new
bosonic operators b1 and b2: They take us from the reference
state to the other two states and back. Creating an excitation
in state |1〉 requires an energy (2 − δ)�, which is the detuning
with respect to the reference state |3〉; a similar argument
follows for state |2〉. Moreover, note that since states |3〉 and
|1〉 are not directly coupled in our Hamiltonian, cycle terms
such as b†

1b2 are needed using this formalism.

B. Ground-state phase diagram

Now we displace each bosonic operator by their mean-field
values

a =
√

Nα + c, b1 =
√

Nβ1 + d1, b2 =
√

Nβ2 + d2,

(4)

where the mean-field values α, β1, and β2 are taken to be of
order N0 and complex numbers, in general. The new bosonic
operators c, d1, and d2 represent the variations with respect to
the mean-field values. After substituting Eq. (4) into Eq. (3)
and expanding in powers of N , the Hamiltonian can be rewrit-
ten as (see details in Appendix A)

H ≈ NH0 +
√

NH1 + H2, (5)
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FIG. 2. Phase diagram in the λ1-λ2 plane for δ = 0 and (a) γ = 0.8, (b) γ = γTP = 1/
√

2, and (c) γ = 0.6. Here we choose α2 as the order
parameter, but equivalent phase diagrams can be constructed for β1 and β2. The solid vertical line represents the Tavis-Cummings line dividing
SRA and SRB. The dashed lines in (a) signal the second-order boundary, while the dotted lines in (b) denote the line of tricritical points; both
of these lines are given by Eqs. (7) and (8).

where terms with negative powers of N are discarded since we
are considering the thermodynamic limit N → ∞. The first
term H0 describes the ground-state mean-field energy of the
system and is given explicitly by

H0 = ωαα∗ − � + (2 − δ)�β1β
∗
1 + �β2β

∗
2

+ g1(αβ∗
1 β2 + c.c.) + g2(αβ∗

2 β1 + c.c.)

+ g1γ β(αβ∗
2 + c.c.) + g2γ β(αβ2 + c.c.), (6)

where β ≡
√

1 − |β1|2 − |β2|2. Minimization of H0 with re-
spect to the real and imaginary parts of α, β1, and β2 can
be performed to determine the values of these parameters.
The normal phase (NP) characterized by α = β1 = β2 = 0,
namely, all atoms in state |3〉 and zero-photon population, is
always a solution to the set of equations ∂H0/∂μ = 0 with
μ = α, β1, β2. However, this phase does not always represent
the configuration that minimizes the energy; in that case, the
equilibrium phase becomes a superradiant phase with nonzero
values of the three order parameters α, β1, and β2.

For g1, g2 �= 0 two different superradiant phases are found.
When g1 and g2 have the same sign, we find that all three order
parameters are real; we refer to this phase as superradiant
phase A (SRA). On the other hand, when g1 and g2 have
opposite signs, we find that β1 remains real but both α and β2

become purely imaginary; we refer to this phase as superradi-
ant phase B (SRB). A similar behavior of order parameters
was also found in previous studies in a model interpolat-
ing between the conventional Dicke and Tavis-Cummings
models [24,30].

For these two superradiant phases, α is described by a
single real number and then it is possible to find the location
of the TP and the equation for the second-order line by doing
a single-parameter Landau theory analysis after performing
time-independent perturbation theory following a procedure
similar to the one described in Ref. [16] (see Appendix B).
The critical line between the normal phase and each of the
superradiant phases is determined by two constraints

γ 2 = 1

λ2+
� 1

2 − δ
(SRA), (7)

γ 2 = 1

λ2−
� 1

2 − δ
(SRB), (8)

where λ± ≡ |λ1 ± λ2| and λi ≡ gi/
√

ω� are renormalized
dimensionless coupling strengths. The location of the TP is
obtained when the equal signs are taken in the above. Clearly,
if δ is positive we require δ < 2 for all parameters to be kept
real. Moreover, the derivation of Eqs. (7) and (8) assumes
nondegenerate perturbation theory requiring δ �= 1. To reduce
the number of parameters and facilitate the visualization of the
different phase boundaries, we constrain ourselves to δ = 0.
However, we will keep δ in all our derivations since in certain
experimental setups it might be easier to vary this detuning
instead of the parameter γ .

In Fig. 2 the phase diagram for δ = 0 and three different
values of γ is presented. Note that we have chosen α2 in-
stead of |α|2 as the order parameter in order to differentiate
between SRA and SRB. For δ = 0 the TP is located at γ =
γTP = 1/

√
2 as deducted from Eqs. (7) and (8). Figure 2(a)

illustrates how for values of γ > γTP the phase transition is of
second order with the phase boundary defined by γ 2 = 1/λ2

±.
In Fig. 2(b) the transition between the NP and SRA or SRB
is given by a line of TPs. Finally, in Fig. 2(c) the transition
is found to be of first order as the order parameter changes
discontinuously to a nonzero value across the phase transition.
The phase diagram looks almost identical when δ �= 0 with
the only difference being the value of γ where the order of the
phase transition changes (γTP). If δ decreases, the value of γTP

decreases and vice versa, as described in Eqs. (7) and (8).
The phase diagram showcases both discrete and continuous

symmetry breaking. First, note that the energy in Eq. (6)
is invariant under the transformation α → −α, β2 → −β2,
and β1 → β1. This Z2 symmetry is spontaneously broken in
SRA and SRB. On the other hand, when g2 = 0 the system
is reduced to a tricritical Tavis-Cummings model, in which
case H0 is invariant under a more general transformation
α → αeiθ , β2 → β2eiθ , and β1 → β1e2iθ , with θ ∈ [0, 2π ).
This means that there are infinite equilibrium configurations
with the three order parameters being nonzero for λ+ = λ− >

λc, with λc the value at which the first-order, second-order,
or tricritical phase transition occurs. These solutions spon-
taneously break the continuous U(1) symmetry. The special
case g1 = 0 is equivalent to the Tavis-Cummings case de-
scribed above after a rotation of the atomic spin operators is
performed [39].
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FIG. 3. Energy gap  between the ground state and first excited
state in the γ -λ+ plane for δ = 0 and fixed λ1 = 0.3

√
2. The white

dashed line represents the second-order boundary γ = 1/λ+, which
terminates at the TP as represented by the white star.

C. Critical behavior

Although H0 is enough to determine the ground-state
mean-field properties, additional terms (H1 and H2) are
needed to study the excitation spectrum. As shown in Ap-
pendix A, for any values of the order parameters α, β1, and
β2 that minimize H0, the Hamiltonian H1 vanishes, and the
excitation spectrum is determined by H2. The general form of
H2 is given by

H2 =
6∑

j=1

6∑
k=1

C jkv jvk, (9)

where v j is the jth component of the operator vector v =
(c†, d†

1 , d†
2 , c, d1, d2) and the matrix components C jk are given

explicitly in Appendix A. Since the Hamiltonian in Eq. (9) is
bilinear in the annihilation and creation operators, it can be
diagonalized using a Bogoliubov transformation [40,41] (see
Appendix C) into the form

H2 =
3∑

j=1

ε ja
†
j a j, (10)

where we have omitted a constant shift. The annihilation and
creation operators a j and a†

j are a linear combination of all the
operators contained in the components of v. If we consider
that ε1 < ε2 < ε3 for a given set of all system parameters,
then we can identify ε1 =  as the energy gap between the
ground state and the first excited state. In a second-order phase
transition, including the TP, we expect  to vanish exactly at
the phase transition, which is illustrated in Fig. 3.

Note that the second-order equation (7) agrees with the nu-
merical behavior as signaled by the white dashed line. When
the first-order line is crossed, a discontinuous jump in the
energy gap is observed. Note that here we chose to illustrate
the energy gap variation entering SRA. However, as evidenced
by the symmetry of the phase diagrams in Fig. 2, an identical
behavior is expected for SRB. We note that although Eq. (10)
contains multiple possible excitations, we consider only the
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FIG. 4. Scaling near different types of transitions. (a) Energy gap
near the critical point. The dashed line corresponds to the Tavis-
Cummings model where the counterrotating terms are not present.
The solid line depicts the behavior when both co- and counterrotating
terms are present. (b) Order parameter |α| near the critical point.
The dashed (solid) line represents the behavior across the TP (a
second-order critical point). We consider values of |d| � 1 × 10−4;
d is defined to be negative (positive) if the transition is approached
from the normal (superradiant) phase. The scaling exponent for each
phase transition is indicated with an arrow.

first excited state here as higher excited states might not be
described correctly using the generalized Holstein-Primakoff
map [42]. While not explored here, the description of higher-
energy states could be done for a finite number of atoms N
through exact diagonalization following the method described
in the next section.

To differentiate between the different types of phase
boundaries, we can explore their corresponding critical expo-
nents. For instance, let us consider a point p = (δ, λ1, λ2, γ )
located very close to the critical point pc = (δc, λ1c, λ2c, γc).
Formally, we consider p to be located in a line perpen-
dicular to the phase boundary at point pc. We expect
that the order parameter α scales as α ∝ dμ, where d =√

(δ − δc)2 + (λ1 − λ1c)2 + (λ2 − λ2c)2 + (γ − γc)2 is the
distance from the critical point when we approach it from
the superradiant phase. Similarly, we could define the scaling
behavior of the excitation gap  ∝ dν± , where ν− considers
the point p to be located in the normal phase and ν+ is the
scaling exponent when the boundary is approached from the
superradiant phase.

In Fig. 4 the scaling behavior of  and |α| is presented.
The first thing that must be noted is that SRA and SRB have
identical scaling exponents. This means that in an experiment,
where the available quantity to measure is |α|2, these phases
are indistinguishable. Regardless of crossing a second-order
boundary or a TP, the excitation gap vanishes with ν± =
1
2 for these two phases. For the Tavis-Cummings line, on
the other hand, as we reach the critical point (second order
or TP) from the NP, the energy gap vanishes with ν− = 1.
However, the energy gap remains equal to zero inside the
superradiant phase, as shown in Fig. 4(a). This Goldstone
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mode [43] is characteristic of phases where a continuous U(1)
symmetry is spontaneously broken, leading to these gapless
excitations.

In the same way that ν± can be used to differentiate be-
tween the Tavis-Cummings line and the SRA or SRB phase
transitions, the exponent μ allows differentiating between a
second-order line and a TP as shown in Fig. 4(b). After cross-
ing to any superradiant phase, the order parameter scales with
μ = 1

2 for a second-order phase transition while the exponent
is μ = 1

4 for a TP, indicating that TP belongs to a different
universality class in comparison to other critical points on the
second-order line.

IV. FINITE N

Now that all the mean-field features in the thermodynamic
limit of the model have been discussed, it is important to study
if the precursors of the phase transitions are still present for a
finite number of atoms N . In order to perform exact diago-
nalization calculations, we need to consider a cutoff photon
number Nph; this means that the total size of the Hilbert space
is 3N × Nph. Clearly, only a few atoms can be considered if the
full Hilbert space is used. However, as we will show below,
by exploiting symmetry constraints, we are able to consider a
much larger system with N ∼ 102.

To this end, we can borrow some ideas from the treat-
ment used in the conventional Dicke model (see, for example,
Ref. [9]). The conventional Dicke Hamiltonian is given by
H = ωa†a + �Sz + g/

√
N (a + a†)Sx, where S j are collective

spin operators. It is clear that [H, S2] = 0, which means that
S2 is conserved and that states with different eigenvalue S are
not mixed by the Hamiltonian. Since in the mean-field ground
state of the NP all spins point downward (i.e., all the atoms
are in the ground state), it is of interest to consider the totally
symmetric manifold with S = N/2 to which the NP ground
state belongs and to represent the Hamiltonian using only the
set of states {|N/2,−N/2〉, |N,−N/2 + 1〉, . . . , |N/2, N/2〉}.
These states |S = N/2, m〉 are often referred to as Dicke states
and using them reduces the atomic Hilbert space size from 2N

to N + 1. Our task is then to find the corresponding Dicke
states for the TDM.

A. Gell-Mann matrices

The TDM Hamiltonian in Eq. (1) clearly does not commute
with S2 as it is nonlinear in the spin operators S j . However,
if instead of considering an SU(2) representation through the
conventional spin operators we choose an SU(3) representa-
tion spanned by the Gell-Mann matrices � j (see Appendix D
for a list of the Gell-Mann matrices’ properties), the TDM
Hamiltonian can be recast in the following form, which is
linear in terms of the Gell-Mann matrices:

H = ωa†a + �

2

(
3 − δ√

3
�8 + (1 − δ)�3

)

+ g1

2
√

N
a(�1 + i�2 + γ�6 + iγ�7)

+ g1

2
√

N
a†(�1 − i�2 + γ�6 − iγ�7)

+ g2

2
√

N
a†(�1 + i�2 + γ�6 + iγ�7)

+ g2

2
√

N
a(�1 − i�2 + γ�6 − iγ�7). (11)

Just as in Eq. (1), we have summed over all atoms and writ-
ten the Hamiltonian in terms of collective operators, namely,
� j = ∑N

k=1 �
(k)
j . One can show that the Hamiltonian (11)

commutes with the two Casimir operators of SU(3),

C1 =
∑

j

� j� j, C2 =
∑
j,k,l

d jkl� j�k�l , (12)

where d jkl = 1
4 tr({� j,�k}�l ) are totally symmetric coeffi-

cients. A conventional approach is to use the Cartan-Weyl
notation instead of the Gell-Mann matrices, so we define

T± = 1

2
(�1 ± i�2), Tz = 1

2
�3, Y = 1√

3
�8,

U± = 1

2
(�6 ± i�7), V± = 1

2
(�4 ± i�5). (13)

In this notation, it is clear that there are three sets of ladder
operators driving the transitions between the three different
states, while Tz and Y are both diagonal operators and are
associated with isospin and hypercharge in the context of
particle physics [44]. In terms of the operators defined in
Eqs. (13) and up to a constant shift, the TDM Hamiltonian
becomes

H = ωa†a + �

(
3 − δ

2
Y + (1 − δ)Tz

)

+ g1√
N

[a(T+ + γU+) + a†(T− + γU−)]

+ g2√
N

[a†(T+ + γU+) + a(T− + γU−)]. (14)

B. SU(3) Dicke states

Similar to how different representations of SU(2) are
labeled by the different eigenvalues of S2, different representa-
tions of SU(3) will be classified depending on the eigenvalues
of the two Casimir operators C1 and C2, which we denote by c1

and c2, respectively. A common notation change is to consider
the integers p and q instead of c1 and c2 as the labels for the
representations. The relation between these two notations is
given by [45]

c1 = (p2 + q2 + 3p + 3q + pq)/3,

c2 = (p − q)(3 + p + 2q)(3 + q + 2p)/18. (15)

In the particle physics context, p and q correspond to the num-
ber of quarks and antiquarks, respectively [46]. Since Y and Tz

commute with each other, they can define a set of commutable
operators with C1 and C2. Moreover, if we define T 2 =
T 2

x + T 2
y + T 2

z , with T± = Tx ± iTy, the set {T 2, Tz,Y,C1,C2}
defines a complete set of commutable operators [47]. Conse-
quently, each state in a given representation is labeled by the
eigenvalues of these operators, namely, |t, tz, y, p, q〉.

Since the TDM Hamiltonian commutes with C1 and C2, it
does not mix states with different values of p and q. Simi-
lar to the conventional Dicke states, we focus on the totally
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FIG. 5. Photon population as a function of λ+ for different atom
numbers N near a phase transition into SRA: (a) second-order tran-
sition with γ = 0.8 and (b) first-order transition with γ = 0.6. In
both cases, we consider λ1 = λ2 = λ+/2 and δ = 0. The dashed
line shows the mean-field behavior in the thermodynamic limit. We
consider a photon cutoff of Nph = 100.

symmetric representation given by q = 0 and p = N [46]. As
shown in Ref. [48], in the totally symmetric representation,
y and t are related by t = y/2 + p/3. Then we can omit the
labels p, q, and y, and the states of interest are simply labeled
by |t, tz〉, with t = 0, 1/2, 1, 3/2, . . . , N/2 and tz = −t,−t +
1, . . . , t − 1, t . These states represent the generalized Dicke
states [49,50] for SU(3). Different SU(3) Dicke states are
connected by the ladder operators T± and U±.

Once these SU(3) Dicke states are chosen as a basis, the
only thing missing is to find the matrix elements of relevant
operators under this basis in order to construct the matrix rep-
resentation for the Hamiltonian (14). The explicit expressions
for these operators can be found in Appendix E. As Tz, T+,
and T− define an SU(2) subalgebra, their matrix elements are
very easy to determine. By contrast, U± produce interesting
matrix elements as they change the value of both t and tz,
simultaneously.

The dimension of the totally symmetric subspace spanned
by the SU(3) Dicke states is (N + 1)(N + 2)/2, which means
that we have decreased the atomic Hilbert space size from be-
ing exponential in N to quadratic in N . Furthermore, the parity
operator � = exp[iπ (a†a + Tz + 3Y/2)] commutes with the
Hamiltonian (14). Hence this symmetric subspace can be fur-
ther divided into two: one with even parity and the other with
odd. Consequently, the size of the Hilbert space needed for
exact diagonalization is reduced by another factor of 2.

In Fig. 5 the behavior of the photon population 〈a†a〉 for a
finite number of atoms N is compared with the results from the
thermodynamic limit N → ∞. Note that we cannot compare
〈a〉 since the spontaneous symmetry breaking only occurs in
the thermodynamic limit, namely, for finite N it is always the
case that 〈a〉 = 0.

We note from the figure that as N increases the be-
havior of the photon population converges rapidly to the

expected behavior in the thermodynamic limit. Moreover,
both the smooth behavior of the second-order phase transition
and the sharp discontinuous behavior of the first-order line can
already be captured with N = 50. Then, in an experimental
realization where thousands of atoms could be trapped, we
expect that the phase transition could be easily characterized
by the behavior of 〈a†a〉/N . The convergence of the results as
N increases signals that the description using the generalized
Holstein-Primakoff map and the one using the Gell-Mann
matrices are equivalent to each other in the appropriate limit
N → ∞.

V. OPEN-SYSTEM STEADY STATES

A potential experimental realization of the Hamiltonian
(14) can be done using the hyperfine states of an atom through
cavity-assisted Raman transitions. This was proposed for re-
alizing spin-1 light-interacting Hamiltonians in Ref. [51],
realized experimentally in Ref. [52], and could be extended to
higher spin systems as proposed in Ref. [16] (see Appendix F
for more details). In practical situations involving cavities,
dissipative processes are unavoidable. This raises the question
of whether all the types of critical boundaries that we find
in equilibrium would survive once incoherent losses are taken
into account. In particular, how would the TP manifest in an
open system?

We focus only on the leaking of photons out of the cavity
with rate κ as in the considered setup we can omit atomic
spontaneous decay (see Appendix F). In the absence of coun-
terrotating terms (Tavis-Cummings line), even an infinitesimal
value of κ would suppress the dissipative phase transition
[24]. Hence we focus exclusively on the dissipative phase
transition into SRA. For simplicity, we consider g1 = g2 = g
and δ = 0. This means that λ1 = λ2 and the light-matter in-
teraction is reduced to a single parameter; to keep a consistent
notation we choose that parameter to be λ+ = 2λ1 = 2λ2.

A. Master equation

Since the complete expressions for C1 and C2 in Eq. (12)
will be used as constraints, in this case, it is simpler to con-
sider the Hamiltonian in terms of the Gell-Mann matrices as
in Eq. (11). The open-system dynamics is described by the
Heisenberg-picture Lindblad equation

d

dt
A = i[H,A] + κ (2a†Aa − {a†a,A}), (16)

where A represents any operator of interest. We can ob-
tain a system of coupled differential equations by computing
Eq. (16) for all the �i and a:

d

dt
〈a〉 = − i(ω − iκ )〈a〉 − ig(〈�1〉 + γ 〈�6〉),

d

dt
〈�1〉 = − �〈�2〉 + gγ (〈a〉 + 〈a†〉)〈�5〉,

d

dt
〈�2〉 = �〈�1〉 − 2g(〈a〉 + 〈a†〉)〈�3〉

− gγ (〈a〉 + 〈a†〉)〈�4〉,
d

dt
〈�3〉 = 2g(〈a〉 + 〈a†〉)〈�2〉 − gγ (〈a〉 + 〈a†〉)〈�7〉,
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TABLE I. Different steady-state phases.

Phase Expectation values

Normal phase 1 (NP1) 〈a〉 = 0, 〈P11〉 = 1, 〈�1〉 = 〈�4〉 = 〈�6〉 = 0
Normal phase 2 (NP2) 〈a〉 = 0, 〈P22〉 = 1, 〈�1〉 = 〈�4〉 = 〈�6〉 = 0
Normal phase 3 (NP3) 〈a〉 = 0, 〈P33〉 = 1, 〈�1〉 = 〈�4〉 = 〈�6〉 = 0
Superradiant phase 〈a〉 �= 0, 〈�1〉, 〈�4〉, 〈�6〉 �= 0

d

dt
〈�4〉 = − 2�〈�5〉 − g(〈a〉 + 〈a†〉)〈�7〉

+ gγ (〈a〉 + 〈a†〉)〈�2〉,
d

dt
〈�5〉 = 2�〈�4〉 + g(〈a〉 + 〈a†〉)〈�6〉

− gγ (〈a〉 + 〈a†〉)〈�1〉,
d

dt
〈�6〉 = − �〈�7〉 − g(〈a〉 + 〈a†〉)〈�5〉,

d

dt
〈�7〉 = �〈�6〉 + g(〈a〉 + 〈a†〉)〈�4〉

+ gγ (〈a〉 + 〈a†〉)〈�3〉 −
√

3gγ (〈a〉 + 〈a†〉)〈�8〉,
d

dt
〈�8〉 =

√
3gγ (〈a〉 + 〈a†〉)〈�7〉, (17)

where we have taken the expectation value on both sides
of each equation. Note that we have taken the mean-field
approximation where expectation values of the form 〈a�i〉 are
approximated by 〈a〉〈�i〉. This approximation has proven to
be very effective in open Dicke-like systems when working in
the thermodynamic limit N → ∞ [22]. Consequently, for all
the following results we will always consider the system in the
thermodynamic limit. We have also rescaled the expectation
values as 〈�i〉/N → 〈�i〉 and 〈a〉/√N → 〈a〉.

Since we will focus only on the steady-state properties of
the system, we set all equations in Eq. (17) equal to zero.
Two important results follow from the steady-state equations.
First, the steady-state expectation value of all the antisymmet-
ric �i operators vanishes, namely, 〈�2〉 = 〈�5〉 = 〈�7〉 = 0,
and second, although there are still seven real variables to
determine (note that 〈a〉 counts as two variables as it is gener-
ally complex), only five independent equations remain. After
algebraic manipulation of Eqs. (17), it can be shown that the
two additional constraints are given by

A =
∑

j

〈� j〉〈� j〉, B =
∑
j,k,l

d jkl〈� j〉〈�k〉〈�l〉, (18)

where A and B are time independent, i.e., dA/dt = 0 =
dB/dt . Hence A and B are two constants determined by
the initial conditions. It is clear that these two additional
constraints are a manifestation of the Casimir invariants in
Eq. (12). This is a similar situation to what happens in the
conventional open Dicke model where the extra constraint
needed arises from the conservation of the total spin length
[SU(2) Casimir invariant]. In the thermodynamic limit and in
the totally symmetric representation where p = N , the eigen-
values c1 and c2 are given by

c1

N2
≈ 1

3
,

c2

N3
≈ 1

9
. (19)

Since rescaling 〈� j〉 → D〈� j〉, with D a time-independent
constant, does not change Eq. (18), we can define A =
D2c1/N2 and B = D3c2/N3. Here we choose D = 2 such that
A = 4

3 and B = 8
9 . Now that we have a complete set of al-

gebraic equations we can solve for all possible steady states
which can be broadly divided into four categories (three nor-
mal phases and one superradiant phase) as shown in Table I.

Although we find four categories of steady states, it does
not mean that all of them are stable attractors. In order to
study the stability of each steady state, we can simulate the
dynamics of the system of differential equations (17) starting
from slightly perturbed states and check if the dynamics leads
the system back to this same steady state. This is illustrated in
Fig. 6, where we initialize the system in a slightly perturbed
state with respect to different normal phases. For the param-
eters in Fig. 6(a), NP3 is stable and the system rapidly goes
back to this state after it is slightly perturbed. By contrast, in
Fig. 6(b) the perturbation causes the system to evolve away
from the unstable NP3 into a stable superradiant phase.

B. Dissipative phase diagram

In Fig. 7 a phase diagram with all the stable steady states is
presented for κ/ω = 0.1. The first key thing to notice is that
while NP1 is always unstable, both NP2 and NP3 have regions
where they are stable. Specifically, we note that for γ > 1,
NP2 is always unstable regardless of the value of λ+. This
behavior can be intuitively understood using the schematics
in Fig. 1. If γ > 1, the coupling for the lower atomic transi-
tion between states |3〉 and |2〉 is stronger than the coupling
for their upper transition between states |2〉 and |1〉. Since
state |1〉 has the highest energy of all, it follows that in the
normal phase the system behaves like an effective two-level
system, as in the conventional Dicke model, in which the
only stable normal phase is that where all spins populate the
lowest-energy state, in this case, state |3〉.

For γ < 1, on the other hand, all the richness of having
three-level atoms can be exploited and we see a series of
different stability regions. Of particular interest are the regions
of bistability where two different phases are stable and the
final fate of the system would depend entirely on the initial
conditions. These bistable regions can contain two normal
phases or one normal phase and one superradiant phase.
The dependence on initial conditions in a bistable region is
illustrated in Figs. 6(b) and 6(c), where, for the same set
of parameters, different initial states lead the system to the
superradiant phase in Fig. 6(b) and to NP2 in Fig. 6(c).

The stability of each steady state can be examined using
the standard linear stability analysis. Using the generalized
Holstein-Primakoff mapping and by considering the small
fluctuations above the steady state, the stability boundaries of
NP2 and NP3 can be found analytically (see Appendix G for
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FIG. 6. Steady-state stability. The system parameters are γ = 0.8 and (a) λ+ = 0.6
√

2 and (b) and (c) λ+ = √
2. In all panels the state is

initialized in a normal phase but with a slightly perturbed initial photon population 〈a〉 = 0.1 + 0.01i. In (a) and (b) the initial state is very
close to the NP3 phase, while in (c) the initial state is very close to the NP2 phase. In all panels κ/ω = 0.1.

more details) as

λ+ =
√

1 + κ2/ω2

γ
(NP3),

λ+ =
√

1 + κ2/ω2√
1 − γ 2

(NP2). (20)

These two boundaries are represented by the solid and dashed
lines, respectively, in Fig. 7. These two lines intersect at the
point

λ+TP =
√

2 + 2κ2/ω2, γTP = 1/
√

2, (21)

represented by the red star in Fig. 7. This is the only point
where all three bistability regions converge. In fact, it is the
point where all the steady-state phases for γ < 1 converge.
As we will argue below, this special point is the TP in the
open system.

C. Tricritical behavior

As bistability is often associated with first-order phase
transition, the emergence of bistable regions studied above

FIG. 7. Phase diagram of the stable steady states in the λ+-γ
plane for κ/ω = 0.1. The white solid line represents the stability
boundary of the NP3 phase, while white dashed and dotted lines
bound the stability region of the NP2 phase. The TP, indicated
by a red star, is located at the intersection of two of the stability
boundaries.

is intimately connected to the TP in the closed system. In
the limit of κ → 0, the values of λ+ and γ coincide exactly
with the values of the TP in the closed system (white star in
Fig. 3). The effect of cavity decay is to increase the critical
coupling strength to a larger value. A similar behavior is also
seen in the conventional open Dicke model. On the other hand,
since the leaking of photons affects both the upper and the
lower atomic transitions in the same manner, it is reasonable
to argue that the critical value of γ , which characterizes the
ratio of the coupling strengths for the two transitions, for
the open-system TP should remain unchanged with respect to
the closed-system value. These qualitative arguments strongly
suggest that the red star in Fig. 7 is indeed the TP in this open
system.

In order to quantitatively characterize the tricritical behav-
ior in the open system and compare it to that of the closed
system where we only have NP3 and a superradiant phase,
we consider horizontal cuts (fixed γ ) of the phase diagram in
Fig. 7 and vary λ+. For each value of λ+ we start the dynamics
in a state slightly perturbed from NP3 and then let the system
evolve until it reaches the steady state. The steady-state values
of the population in state |3〉, namely, 〈P33〉, are shown in
Fig. 8.

We note that as we sweep λ+ for γ � γTP, the change of
NP3 going from stable to unstable is signaled by a continuous
change in 〈P33〉 from one into a smaller value, a behavior
expected from a second-order transition. For γ � γTP, by
contrast, the change in 〈P33〉 is discontinuous, as we would
expect in a first-order transition. This change from continuous
to discontinuous behavior confirms the nature of the tricrit-
ical point. Note that since all points in Fig. 8 are obtained
from an initial state very close to NP3, then it is clear that
the critical points should follow Eq. (20), obtained using the
generalized Holstein-Primakoff mapping, as illustrated by the
vertical gray dashed lines. This again shows the excellent con-
sistency between the generalized Holstein-Primakoff mapping
and the use of the Gell-Mann matrices. In a similar fashion, by
choosing different initial states we could take a look at all the
other available steady states.

Our work studies how a TP in a closed system manifests
when dissipation is included, although Overbeck et al. pre-
viously investigated the TP in a dissipative Ising model [53],
which does not exist in the absence of dissipation. Neverthe-
less, a more general theory of multicriticality in open systems
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FIG. 8. Steady-state value of the population on state |3〉 as a
function of λ+ for different values of γ . Each value of 〈P33〉 is found
by numerically integrating the set of differential equations (17) for
a very long time tω = 10 000. For all data points the initial state
is slightly perturbed from NP3 with 〈a〉 = 0.1 + 0.01i. The vertical
gray dashed lines represent the value of λ+ where we expect NP3 to
become unstable for each γ according to Eq. (20). We set κ/ω = 0.1
for all points.

is still lacking and should be an interesting direction for future
studies.

VI. CONCLUSION

We have presented a thorough study of the tricritical Dicke
model in both the closed and open setups. In equilibrium,
the tunability of the system allows studying not only the
change of the phase transition order from second to first but
also the spontaneous symmetry breaking of both discrete and
continuous symmetries. The different phase transitions were
classified according to their scaling exponents. Moreover, sig-
nals of these transitions were shown to be observable far from
the thermodynamic limit (with less than 100 atoms).

In the presence of cavity losses, the system develops a se-
ries of regions of bistability, the emergence of which is closely
related to the tricritical point, and all bistable regions converge
at the tricritical point. Additionally, NP2 becomes stable in a
large region of the parameter space for γ � γTP. The richness
of the nonequilibrium phase diagram allows for the potential
preparation of desired steady states through proper choices of
initial states and/or parameter quenching.

In both the closed and open setups there is excellent
agreement between using the generalized Holstein-Primakoff
mapping and the description using the Gell-Mann matrices in
the appropriate limit N → ∞. Nonetheless, more than just
being equivalent, the two approaches are complementary as
different levels of information about the system can be ac-
cessed through each one of them.

Although this system could be realized using Raman tran-
sitions as mentioned above, an interesting future research
direction could be to use other platforms where an equivalent
system might be realized to explore these interesting steady
states. There are already various platforms where a Dicke-
like Hamiltonian can be simulated [54–56], and modifications
in those setups might lead to Hamiltonians of the form of
Eq. (1). For example, in a spin-orbit-coupled Bose-Einstein
condensate with spin-1 atoms, tricritical points have been
reported [57]. In that case, the motional degrees of freedom
of the atoms are the analog of the light mode in our setup
[58]. Then, if a loss process equivalent to the photons leaking
from the cavity can be engineered in such a platform, various
interesting magnetic steady states could be explored.
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APPENDIX A: GENERALIZED HOLSTEIN-PRIMAKOFF MAPPING

First, we start by expanding � presented in Eq. (3),

� ≈
√

Nβ − 1

2β
(β1d†

1 + β∗
1 d1 + β2d†

2 + β∗
2 d2) − 1

2β
√

N

(
(d†

1 d1 + d†
2 d2) + (β1d†

1 + β∗
1 d1 + β2d†

2 + β∗
2 d2)2

4β2

)
, (A1)

where we have kept only powers of N that allow us to recast the Hamiltonian in the form of Eq. (5). The H0 is explicitly given
in Eq. (6) and the derivatives of H0 with respect to the order parameters are given by the equations

∂H0

∂α
= ωα∗ + g1β

∗
1 β2 + g2β

∗
2 β1 + g1γ ββ∗

2 + g2γ ββ2,

∂H0

∂β1
= (2 − δ)�β∗

1 + g1α
∗β∗

2 + g2αβ∗
2 − g1γ β∗

1

2β
(αβ∗

2 + c.c.) − g2γ β∗
1

2β
(αβ2 + c.c.),

∂H0

∂β2
= �β∗

2 + g1αβ∗
1 + g2α

∗β∗
1 + g1γ βα∗ + g2γ βα − g1γ β∗

2

2β
(αβ∗

2 + c.c.) − g2γ β∗
2

2β
(αβ2 + c.c.). (A2)
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Additionally, ∂H0
∂α∗ = ( ∂H0

∂α
)∗, ∂H0

∂β∗
1

= ( ∂H0
∂β1

)∗, and ∂H0
∂β∗

2
= ( ∂H0

∂β2
)∗. Clearly, minimization of H0 requires that simultaneously all six

derivatives presented above are equal to zero. Expanding the terms proportional to
√

N , we find that

H1 =
(

∂H0

∂α

)
c +

(
∂H0

∂α∗

)
c† +

(
∂H0

∂β1

)
d1 +

(
∂H0

∂β∗
1

)
d†

1 +
(

∂H0

∂β2

)
d2 +

(
∂H0

∂β∗
2

)
d†

2 . (A3)

This means that as long as we always consider the values of the order parameters that minimize the energy, then H1 = 0.
The H2 can be rewritten in the general form given in Eq. (9), with v = (c†, d†

1 , d1, c, d1, d2). The explicit values of the C jk are
given by

C11 = C44 = 0, C14 = C41 = ω/2,

C22 = C∗
55 = −γ β2

1

8β3
[g1(αβ∗

2 + c.c.) + g2(αβ2 + c.c.)],

C25 = C∗
52 = 1

2

[
(2 − δ)� − g1γ

2β

(
1 + |β1|2

2β2

)
(αβ∗

2 + c.c.)

]
− g2γ

4β

(
1 + |β1|2

2β2

)
(αβ2 + c.c.),

C33 = C∗
66 = −γ β2

2

8β3
[g1(αβ∗

2 + c.c.) + g2(αβ2 + c.c.)] − γ

2β
(g1αβ2 + g2α

∗β2),

C36 = C∗
63 = 1

2

[
� − g1γ

2β

(
2 + |β2|2

2β2

)
(αβ∗

2 + c.c.)

]
− g2γ

4β

(
2 + |β2|2

2β2

)
(αβ2 + c.c.),

C12 = C21 = C∗
45 = C∗

54 = 1

2
g2β2 − γ

4β
(g1β2β1 + g2β

∗
2 β1),

C15 = C51 = C∗
42 = C∗

24 = 1

2
g1β

∗
2 − γ

4β
(g1β2β

∗
1 + g2β

∗
2 β∗

1 ),

C13 = C31 = C∗
46 = C∗

64 = 1

2

(
g1β1 − g1γ β2

2

2β

)
+ 1

2

(
g2γ β − g2γ |β2|2

2β

)
,

C16 = C61 = C∗
43 = C∗

34 = 1

2

(
g1γ β − g1γ |β2|2

2β

)
+ 1

2

(
g2β

∗
1 − g2γ (β∗

2 )2

2β

)
,

C23 = C32 = C∗
56 = C∗

65 = −g1γαβ1

4β
− g2γα∗β1

4β
− g1γ β2β1

8β3
(αβ∗

2 + c.c.) − g2γ β2β1

8β3
(αβ2 + c.c.),

C26 = C62 = C∗
35 = C∗

53 = 1

2
(g1α + g2α

∗) − g1γα∗β1

4β
− g2γαβ1

4β
− g1γ β1β

∗
2

8β3
(αβ∗

2 + c.c.) − g2γ β1β
∗
2

8β3
(αβ2 + c.c.). (A4)

APPENDIX B: PERTURBATION THEORY

In SRA and SRB, the mean-field value of 〈a〉 = α is purely real and purely imaginary, respectively. Here we explicitly
compute the critical boundaries for SRA, but an identical procedure follows for SRB.

First, replacing a and a† in Eq. (1) by their expectation value α, we obtain the mean-field Hamiltonian as

HMF/N�= 1

λ2+
α2 + (1 − δ)P11 − �P33

+α (P12 + γ P23 + P21 + γ P32), (B1)

where we have rescaled (g1+g2 )α
�

√
N

→ α. Near the critical line (either a second-order phase transition or a TP), we expect α to be
very small. We can then apply the time-independent perturbation theory, treating the first line of Eq. (B1) as the unperturbed
Hamiltonian and the second line as the perturbing Hamiltonian.

If we keep the perturbation expansion up to the sixth order, the mean-field energy will have the form

EMF/N� = p0 + p1α
2 + p2α

4 + p3α
6, (B2)

where the pi coefficients are explicitly given as

p0 = −1, p1 = 1

λ2+
− γ 2, p2 = γ 2

(
γ 2 − 1

2 − δ

)
,

p3 = γ 2

(
−2γ 4 + 3γ 2

2 − δ
+ γ 2

(2 − δ)2
− 1

(2 − δ)2

)
. (B3)
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Using the standard Landau theory analysis [59], if p2 > 0, the line p1 = 0 represents a second-order boundary, which leads to

γ 2 = 1

λ2+
>

1

2 − δ
,

and the TP is determined by the conditions p1 = p2 = 0 and p3 > 0, i.e.,

γ 2 = 1

λ2+
= 1

2 − δ
.

These are the results reported in Eq. (7).
An alternative and straightforward method to find these two conditions was described in [16] for tridiagonal Hamiltonians

like our TDM Hamiltonian. In order to use that result, we rewrite the Hamiltonian in the consistent notation

HMF/N� =
(

1

λ2+
α2 + 1

)
I + αd + h, (B4)

where I is the 3 × 3 identity matrix and the d and h matrices are defined as

d =
⎛
⎝0 1 0

1 0 γ

0 γ 0

⎞
⎠, h =

⎛
⎝(2 − δ) 0 0

0 1 0
0 0 0

⎞
⎠. (B5)

In this notation, the critical conditions are given by

|dk,k−1|2 = 1

λ2+
hk,k for k = 2, 3. (B6)

This yields the two critical equations γ 2 = 1/λ2
+ and λ2

+ = 2 − δ as presented in Eq. (7). These two constraints are equivalent
to p1 = 0 and p2 = 0, respectively. A similar procedure but using 〈a〉 = iα leads to Eq. (8) for SRB.

APPENDIX C: BOGOLIUBOV TRANSFORMATION

Since the Hamiltonian in Eq. (9) is bilinear in the annihila-
tion and creation operators, we can diagonalize it by doing a
Bogoliubov transformation. First, we can rewrite H2 as

H2 = vMv†, (C1)

where, in our current notation, M is given by

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

C14 C15 C16 C11 C12 C13

C24 C25 C26 C21 C22 C23

C34 C35 C36 C31 C32 C33

C44 C45 C46 C41 C42 C43

C54 C55 C56 C51 C52 C53

C64 C65 C66 C61 C62 C63

⎞
⎟⎟⎟⎟⎟⎟⎠

. (C2)

Now let us consider a Bogoliubov transformation T such that
v† = T u†, where u = (a†

1, a†
2, a†

3, a1, a2, a3) is a new set of
annihilation and creation operators. Our objective is to find the
transformation T such that H2 is diagonalized as in Eq. (10).

Since we require the operators in u to follow canoni-
cal bosonic commutation relations, namely, [aj, a†

k] = δ jk ,
[a j, ak] = 0, and [a†

j , a†
k] = 0, it follows that T is constrained

by

T †�T = �, (C3)

where � is a diagonal matrix with diagonal given by
(1, 1, 1,−1,−1,−1). Since we are looking for T such
that T †MT is diagonal with twofold-degenerate eigenval-
ues ε1, ε2, and ε3, then it follows that T †�2MT = �T † =
�T −1�MT , which means that T −1�MT is a diagonal ma-
trix with eigenvalues ε1, ε2, ε3, −ε1, −ε2, and −ε3. Then, by
simply diagonalizing the matrix �M we can find both the
transformation matrix T and the corresponding eigenvalues.

APPENDIX D: GELL-MANN MATRICES

The Gell-Mann matrices are a group of eight 3 × 3 ma-
trices that generate the SU(3) algebra. They are explicitly
defined as [44]

�
(k)
1 =

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠, �

(k)
2 =

⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠,

�
(k)
3 =

⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠, �

(k)
4 =

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠,

�
(k)
5 =

⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠, �

(k)
6 =

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠,

�
(k)
7 =

⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠, �

(k)
8 = 1√

3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠,

(D1)

where the superscript k indicates that these are single-particle
operators associated with the kth atom. The commutation
and anticommutation relations of the Gell-Mann matrices are
given, respectively, by[

�
(n)
j ,�

(n)
k

] = 2i
∑

l

f jkl�
(n)
l , (D2)

{
�

(n)
j ,�

(n)
k

} = 4

3
δ jkI + 2

∑
l

d jkl�
(n)
l . (D3)

Here f jkl are totally antisymmetric structure constants and
most of them vanish; for a list of the nonzero values of
f jkl see Ref. [46]. The d jkl are totally symmetric constants
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FIG. 9. Schematic of the proposed experimental implementation
[51]. Three hyperfine states, for example, those in the F = 1 man-
ifold in 87Rb, are coupled to a manifold of excited states through
a cavity mode (blue solid arrows) and through circularly polarized
lasers with polarizations σ+ (purple dashed arrows) and σ− (pink
dotted arrows). By highly detuning the excited states, the system
becomes effectively a three-level one, with states |1〉, |2〉, and |3〉
coupled to each other.

defined explicitly by d jkl = 1
4 tr({� j,�k}�l ). These d jkl con-

stants are also used to define one of the Casimir operators
[see Eq. (12)]. By construction, the collective operators � j =∑N

k=1 �
(k)
j used in the main text follow the same commutation

or anticommutation relations given above.

APPENDIX E: MATRIX ELEMENTS
OF SU(3) DICKE STATES

Here we list how each operator acts on the generalized
Dicke states |t, tz〉. Both Tz and Y are diagonal in this basis

Tz|t, tz〉 = tz|t, tz〉, Y |t, tz〉 =
(

2t − 2N

3

)
|t, tz〉, (E1)

where N is the number of atoms. In the second relation, we
have used the fact that y, the eigenvalue of Y , is not indepen-
dent of the eigenvalue t in a totally symmetric representation.
Since T± and Tz define an SU(2) subalgebra, the matrix ele-
ments of T± are defined as

T±|t, tz〉 =
√

t (t + 1) − tz(tz ± 1)|t, tz ± 1〉. (E2)

Finally, for a totally symmetric representation D(N, 0), the
matrix elements of the ladder operators U± are given by [60]

U+|t, tz〉 =
√

(t − tz + 1)(N − 2t )
∣∣t + 1

2 , tz − 1
2

〉
,

U−|t, tz〉 =
√

(t − tz )(N − 2t + 1)
∣∣t − 1

2 , tz + 1
2

〉
.

With all these matrix elements being defined, we can construct
a matrix representation of the Hamiltonian (14) and perform
exact diagonalization.

APPENDIX F: POTENTIAL EXPERIMENTAL
REALIZATION

We consider three hyperfine ground levels |1〉, |2〉, and |3〉
that could be the ones on the F = 1 ground state of 87Rb as
depicted in Fig. 9. These states are coupled to a manifold of
excited states, with F = 2 in this case, through a cavity mode
with π polarization and lasers with circular σ± polarizations.
Importantly enough, the presence of both σ+ and σ− lasers

allows for tuning independently the co- and counterrotating
terms (g1 and g2 in this work) by modifying each laser’s
parameters. Additionally, the bare energies of each ground
state can be modified through Zeeman shifts using magnetic
fields or using microwaves through the ac Stark shift [61,62].

We consider that the one-photon transitions between
the ground and the excited levels are far off resonance
such that the excited levels can be adiabatically eliminated,
making the system effectively three levels, with the three
levels now coupled through the cavity and laser fields.
We refer to [51], where this experimental realization was
originally proposed, for a complete derivation of the Hamil-
tonian parameters in terms of the laser parameters and
detunings.

Finally, another important consequence of the chosen setup
is that since the states |1〉, |2〉, and |3〉 are chosen to be ground
states (do not have any spontaneous decay channels), we can
omit any individual and collective atomic decoherence chan-
nels and focus only on the photons leaking out of the cavity,
as in Eq. (16).

APPENDIX G: STABILITY OF NORMAL PHASES

In order to find the stability boundaries of the normal
phases we can use the H2 Hamiltonian in Eq. (9). For NP3,
H2 is simply given by

H2 = ωc†c + 2�(1 − δ)d†
1 d1 + �d†

2 d2

+ g2γ (c†d†
2 + cd2) + g1γ (c†d2 + cd†

2 ). (G1)

Now we can compute the Lindblad equation (16) for c, d1,
and d2 using H2 as a Hamiltonian. Note that since we are in a
normal phase, here c = a. The six resulting equations can be
written in matrix form as

dx
dt

=

⎛
⎜⎜⎜⎜⎜⎜⎝

−κ ω 0 0 0 0
−ω −κ 0 0 −2gγ 0
0 0 0 2� 0 0
0 0 −2� 0 0 0
0 0 0 0 0 �

−2gγ 0 0 0 −� 0

⎞
⎟⎟⎟⎟⎟⎟⎠

x, (G2)

where we have set g1 = g2 = g and δ = 0 in order to
be consistent with the main text discussion. Here xT =
(Re(〈c〉), Im(〈c〉), Re(〈d1〉), Im(〈d1〉), Re(〈d2〉), Im(〈d2〉)).
The eigenvalues of the matrix above determine whether NP3
represents a stable steady state or not. If the real part of all
eigenvalues is negative, NP3 is stable; on the other hand, if at
least one of the eigenvalues has a positive real part, the phase
is unstable.

Since we are interested in the boundary where the phase
becomes unstable, it is important to determine when the ma-
trix develops a zero eigenvalue. Then we set the determinant
of the matrix equation to zero, leading to

−4�3(4g2γ 2ω − κ2� − ω2�) = 0. (G3)

After some algebra, and since λ+ = λ1 + λ2 = 2g/
√

ω� in
this case, we obtain the boundary equation

λ2
+ = 1 + κ2

ω2

γ 2
, (G4)
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which is given as the first of Eqs. (20). As explained in
Ref. [14], if we want to consider the case for NP2, it is
required to repeat the process of the generalized Holstein-
Primakoff mapping but using |2〉 as the reference state. Once
the mapping is done, one can take the H2 Hamiltonian found
for NP2 and compute the Lindblad equations. Performing a

similar stability analysis, the stability boundary of NP2 is
found to be

λ2
+ = 1 + κ2

ω2

1 − γ 2
, (G5)

which is given as the second of Eqs. (20).
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Lett. 35, 432 (1975).
[33] F. Dimer, B. Estienne, A. S. Parkins, and H. J. Carmichael,

Phys. Rev. A 75, 013804 (2007).
[34] J. Léonard, A. Morales, P. Zupancic, T. Donner, and T.

Esslinger, Science 358, 1415 (2017).
[35] R. López-Peña, S. Cordero, E. Nahmad-Achar, and O.

Castaños, Phys. Scr. 96, 035103 (2021).
[36] S. Cordero, E. Nahmad-Achar, R. López-Peña, and O.

Castaños, Phys. Scr. 96, 035104 (2021).
[37] J. Larson and T. Mavrogordatos, The Jaynes–Cummings Model

and Its Descendants (IOP, Bristol, 2021).
[38] T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).
[39] P. Kirton, M. M. Roses, J. Keeling, and E. G. Dalla Torre, Adv.

Quantum Technol. 2, 1800043 (2019).
[40] N. N. Bogoljubov, Nuovo Cim. 7, 794 (1958).
[41] J. Valatin, Nuovo Cim. 7, 843 (1958).
[42] J. G. Hirsch, O. Castaños, R. López-Peña, and E. Nahmad-

Achar, Phys. Scr. 87, 038106 (2013).
[43] J. Goldstone, A. Salam, and S. Weinberg, Phys. Rev. 127, 965

(1962).
[44] M. Gell-Mann, Phys. Rev. 125, 1067 (1962).
[45] A. Pais, Rev. Mod. Phys. 38, 215 (1966).
[46] W. Greiner and B. Müller, Quantum Mechanics: Symmetries

(Springer, Berlin, 2012).
[47] G. E. Baird and L. C. Biedenharn, J. Math. Phys. 4, 1449 (1963).
[48] A. Macfarlane, E. Sudarshan, and C. Dullemond, Nuovo Cim.

30, 845 (1963).
[49] L. Rosso, L. Mazza, and A. Biella, Phys. Rev. A 105, L051302

(2022).
[50] S. Hartmann, Quantum Inf. Comput. 16, 1333 (2016).
[51] S. J. Masson, M. D. Barrett, and S. Parkins, Phys. Rev. Lett.

119, 213601 (2017).
[52] Z. Zhiqiang, C. H. Lee, R. Kumar, K. J. Arnold, S. J. Masson,

A. S. Parkins, and M. D. Barrett, Optica 4, 424 (2017).
[53] V. R. Overbeck, M. F. Maghrebi, A. V. Gorshkov, and H.

Weimer, Phys. Rev. A 95, 042133 (2017).
[54] K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, Nature

(London) 464, 1301 (2010).
[55] X. Li, M. Bamba, N. Yuan, Q. Zhang, Y. Zhao, M. Xiang, K.

Xu, Z. Jin, W. Ren, G. Ma, S. Cao, D. Turchinovich, and J.
Kono, Science 361, 794 (2018).

[56] A. Mezzacapo, U. Las Heras, J. S. Pedernales, L. DiCarlo, E.
Solano, and L. Lamata, Sci. Rep. 4, 7482 (2014).

[57] D. Campbell, R. Price, A. Putra, A. Valdés-Curiel, D.
Trypogeorgos, and I. Spielman, Nat. Commun. 7, 10897 (2016).

033706-13

https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1103/PhysRevLett.36.1035
https://doi.org/10.1038/nphys494
https://doi.org/10.1103/PhysRevLett.30.309
https://doi.org/10.1103/PhysRevA.8.2517
https://doi.org/10.1103/PhysRevA.7.831
https://doi.org/10.1103/PhysRevA.99.023822
https://doi.org/10.1038/s41598-023-29202-x
https://doi.org/10.1103/PhysRevE.67.066203
https://doi.org/10.1103/PhysRevLett.122.193201
https://doi.org/10.1103/PhysRevA.104.063705
https://doi.org/10.1103/PhysRevE.95.012153
https://doi.org/10.1103/PhysRevA.107.033711
https://doi.org/10.1103/PhysRevA.84.053856
https://doi.org/10.1103/PhysRevResearch.5.023112
https://doi.org/10.1103/PhysRevA.104.043708
https://doi.org/10.1103/PhysRevB.97.045139
https://doi.org/10.1103/PhysRevLett.89.227202
https://doi.org/10.1103/PhysRevB.97.224510
https://doi.org/10.1038/nphys4242
https://doi.org/10.1103/PhysRevA.84.043637
https://doi.org/10.1103/PhysRevA.85.013817
https://doi.org/10.1103/PhysRevA.97.023807
https://doi.org/10.1103/PhysRevLett.120.183603
https://doi.org/10.1088/1367-2630/aa9cdd
https://doi.org/10.1016/0003-4916(92)90178-O
https://doi.org/10.1016/0003-4916(92)90179-P
https://doi.org/10.1088/1742-5468/2016/09/093105
https://doi.org/10.1016/j.aop.2017.04.005
https://doi.org/10.1103/PhysRevLett.112.173601
https://doi.org/10.1103/PhysRevA.87.023805
https://doi.org/10.1103/PhysRevLett.35.432
https://doi.org/10.1103/PhysRevA.75.013804
https://doi.org/10.1126/science.aan2608
https://doi.org/10.1088/1402-4896/abd654
https://doi.org/10.1088/1402-4896/abd653
https://doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1002/qute.201800043
https://doi.org/10.1007/BF02745585
https://doi.org/10.1007/BF02745589
https://doi.org/10.1088/0031-8949/87/03/038106
https://doi.org/10.1103/PhysRev.127.965
https://doi.org/10.1103/PhysRev.125.1067
https://doi.org/10.1103/RevModPhys.38.215
https://doi.org/10.1063/1.1703926
https://doi.org/10.1007/BF02750419
https://doi.org/10.1103/PhysRevA.105.L051302
https://doi.org/10.26421/QIC16.15-16-5
https://doi.org/10.1103/PhysRevLett.119.213601
https://doi.org/10.1364/OPTICA.4.000424
https://doi.org/10.1103/PhysRevA.95.042133
https://doi.org/10.1038/nature09009
https://doi.org/10.1126/science.aat5162
https://doi.org/10.1038/srep07482
https://doi.org/10.1038/ncomms10897


DIEGO FALLAS PADILLA AND HAN PU PHYSICAL REVIEW A 108, 033706 (2023)

[58] C. Hamner, C. Qu, Y. Zhang, J. Chang, M. Gong, C. Zhang, and
P. Engels, Nat. Commun. 5, 4023 (2014).

[59] P. M. Chaikin and T. C. Lubensky, Principles of Condensed
Matter Physics (Cambridge University Press, Cambridge,
1995).

[60] J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963).
[61] F. Gerbier, A. Widera, S. Fölling, O. Mandel, and I. Bloch,

Phys. Rev. A 73, 041602(R) (2006).
[62] K. Jensen, V. M. Acosta, J. M. Higbie, M. P. Ledbetter, S. M.

Rochester, and D. Budker, Phys. Rev. A 79, 023406 (2009).

033706-14

https://doi.org/10.1038/ncomms5023
https://doi.org/10.1103/RevModPhys.35.916
https://doi.org/10.1103/PhysRevA.73.041602
https://doi.org/10.1103/PhysRevA.79.023406

