
PHYSICAL REVIEW A 108, 033705 (2023)

Two-photon pulse-scattering spectroscopy for arrays of two-level atoms coupled to a waveguide
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We theoretically studied the scattering of short two-photon pulses from a spatially separated array of two-level
atoms coupled to the waveguide. A general analytical expression for the scattered pulse has been obtained.
The contributions of various single-eigenstate and double-excited eigenstates of the array have been analyzed.
We also calculated how the time, during which the incident photons are stored in the array, depends on the
array period and the number of atoms. The largest storage times correspond to the structures with the anti-Bragg
period, equal to the quarter of the wavelength of light at the atom resonance frequency λ/4.
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I. INTRODUCTION

Waveguide quantum electrodynamics (WQED), focused
on light-matter interactions in arrays of natural or artificial
atoms that are coupled to the waveguide, is a rapidly devel-
oping field of quantum optics [1,2]. Multiple experimental
platforms to study fundamental physics models and engi-
neer atom-photon interactions have now emerged. Among
the recent experimental results in the field of WQED are
the demonstrations of photon bound states [3] and photon
squeezing [4] in the low-excitation regime, as well as ob-
servation of the superradiant burst for the strongly excited
arrays [5,6]. Practical applications such as detection, process-
ing [3], and generation [7] of quantum photon states would
ultimately require devices operating in the pulsed regime.
Hence, there is a fundamental need for a deeper under-
standing the time-dependent atom-photon interaction in this
system.

In fact, a general scattering matrix consideration of the
photon scattering on an array of atoms in one point has already
been performed in the first works in the field [8,9]. Addition-
ally, the time dependence of the scattered two-photon wave
function and the manifestation of the photon bound state in
a single-atom case was analyzed in Ref. [10]. More recent
studies have also investigated the formation of bound pho-
ton states in the time-dependent photon transmission for the
two-atom case [11] as well as the many-atom case [12–15].
It has been predicted that the outgoing wave function can
manifest not only bound photon states, but also more com-
plex correlated multiphoton states formed due to atom-photon
interactions [16]. One other important aspect of the photon-
atom interactions is the quantum entanglement. In particular,
time-energy entanglement in the scattered two-photon wave
function for a cavity with an atom coupled to a waveguide has
been theoretically considered in Ref. [17]. The scattering of a
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time-entangled photon pulse was considered in Refs. [18,19].
Much attention is now attracted to the nonclassical photon
emission from strongly driven atomic arrays [20,21].

However, there is one interesting aspect of the time-
dependent photon transmission through the arrays, that has so
far not been analyzed in detail to the best of our knowledge.
That is the role of different collective states of the array. In
particular, it is now well known that spatially separated arrays
have a complicated structure of collective single- and double-
excited states [22–25]. These states can be distinguished by
their spontaneous decay rate, which can be either enhanced
(for superradiant states) or suppressed (for subradiant states)
due to the interference between the photons emitted from
different atoms. It is then natural to examine the signatures
of these states in the photon time dynamics. We recently
analyzed the case of continuous wave excitation in detail in
Refs. [26,27]. Here we focus on the case of excitation with
a short pulse propagating through the array, see Fig. 1. We
show that the measurement of the time-dependent joint de-
tection probability of transmitted photons provides additional
information about the double-excited collective modes that is
harder to capture by the continuous excitation scheme. Specif-
ically, the short pulse can excite both super and subradiant
states, and the latter are naturally observed as long-living tails
in the scattering dynamics. Frequency-domain observation of
subradiant states is also possible but requires careful resonant
tuning of incident light frequency. While this has been demon-
strated for single-excited states [28], we are not yet aware of
such results for the double-excited states excepting Ref. [29]
for a rather special setup of two coupled qubit pairs. Thus,
we hope that this work could be useful both as a first step
for potential future analysis of a multiphoton pulsed regime
and as a helpful tool for the analysis of ongoing and future
experiments [30,31]. For example, the longer-living tails of
the superradiant burst reported in Ref. [6] could be interpreted
as signatures of subradiant states.

The rest of the paper is organized as follows. Section II
outlines our model and the calculation approach. Next, we
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FIG. 1. Schematics of a two-photon pulse propagating through
an array of qubits coupled to a waveguide. Here, ω0 is a resonant
frequency of qubits and γ1D is a spontaneous emission rate into the
guided mode.

present the results for the two-photon wave function in
Sec. III. Our main results are summarized in Sec. IV. Ap-
pendix A is reserved for auxiliary theoretical details.

II. MODEL AND CALCULATION APPROACH

We consider a basic WQED setup with N two-level qubits,
periodically spaced near a waveguide and interacting via a
waveguide mode. The system is schematically shown in Fig. 1
and can be described by the following effective Hamiltonian
[1,23,32]:

H = −iγ1D

N∑
n,m=1

σ †
n σmei(ω0/c)|zm−zn|. (1)

This Hamiltonian assumes the usual Markovian and rotating-
wave approximations. The raising operators σ †

m obey the
usual spin-1/2 operators algebra: σ 2

m = 0, σmσ †
m + σ †

mσm =
1, [σm, σn] = 0 for m �= n. The energy is counted from the
atomic resonance h̄ω0, c is the speed of light, and zm are
the qubit coordinates along the waveguide. For a periodic
array, where zm+1 − zm = d , the period can be conveniently
characterized just by a single dimensionless parameter, the
phase ϕ = ω0d/c ≡ 2πd/λ0 gained by the light between two
neighboring two-level atoms with the distance d . An impor-
tant feature of the Hamiltonian Eq. (1) is the long-ranged
coupling between distant atoms, mediated by the waveguide
photons. The model assumes that the propagating photon
amplitude does not decay with distance and just acquires a
phase (ω0/c)|zm − zn|, which governs the coupling between
the atoms m and n. The parameter γ1D is the radiative decay
rate of a single atom into the waveguide. It is because of
this spontaneous decay that the effective Hamiltonian is non-
Hermitian.

We are interested in the scattering of a general two-photon
state, characterized by a time-dependent wave function ψ in

t1,t2
from such a setup. To this end, we use the known general
technique [23,33–35] to calculate the two-photon scattering
matrix in the frequency domain S(ω′

1, ω
′
2 ← ω1, ω2). We start

with the Fourier transform of the input state

ψ in
ω1,ω2

=
∫∫

dt1dt2 eiω1t1 eiω2t2ψ in
t1,t2 . (2)

The output state is then given by

ψout
ω′

1,ω
′
2
= 1

2

∫∫
dω1dω2

(2π )2
S(ω′

1, ω
′
2 ← ω1, ω2)ψ in

ω1,ω2
g, (3)

and then we perform the inverse Fourier transform

ψout
t1,t2 =

∫∫
dω′

1dω′
2

(2π )2
e−iω′

1t1 e−iω′
2t2ψout

ω′
1,ω

′
2
. (4)

The detailed derivation of the scattering matrix for an arbi-
trary number and positions of the qubits, mostly following
Refs. [23,34], can be found, e.g., in Ref. [1]. Here we just
recall the answer:

S(ω′
1, ω

′
2 ← ω1, ω2)

= (2π )2tω1tω2 [δ(ω1 − ω′
1)δ(ω2 − ω′

2)

+ δ(ω1 − ω′
2)δ(ω2 − ω′

1)]

+ 2γ 2
1D

N∑
m,n=1

s−
m (ω′

1)s−
m (ω′

2)[
−1]mns+
n (ω1)s+

n (ω2)

× 2πδ(ω1 + ω2 − ω′
1 − ω′

2), (5)

where


mn(ε) =
∫

Gmn(ω)Gmn(2ε − ω)
dω

2π
(6)

is the self-energy matrix for double-excited states with Gi j

being the Green’s function for a single excitation of the array,
given by the inverse of the following matrix:

[G−1(ω)]mn ≡ ωδmn − Hmn

= (ω − ω0)δmn + iγ1Dei(ω0/c)|zm−zn|. (7)

The coefficients

s±
m (ω) =

∑
n

Gmne±i(ω0/c)zn (8)

describe the coupling of the array with the incoming and
outgoing plane waves. The first term in the scattering matrix
(5) accounts for the independent photon transmission with the
transmission coefficients given by

tω = 1 − iγ1D

∑
mn

Gmnei(ω0/c)(zn−zm ). (9)

The second term in Eq. (5) accounts for the interaction be-
tween the photons induced by the array.

For a general pulse shape, the integration over time and
frequency can be performed only numerically and is rather
tedious. However, it is greatly simplified for a short pulse
when the input state ψ in

t1,t2 can be approximated by a product
of two δ functions

ψ in
t1,t2 = δ(t1)δ(t2). (10)

Physically, this means that the pulse duration is significantly
shorter than the inverse rate decay of the fastest eigenmode of
the system, that is, on the order of 1/(Nγ1D). From now on we
restrict ourselves to such a case. The calculation procedure is
detailed in Appendix A.

III. TRANSMITTED PULSE

We start this section by analyzing in detail the wave func-
tion for the pulse, transmitted through the subwavelength
array of a given length N = 4. Next, in Sec. III B, we examine

033705-2



TWO-PHOTON PULSE-SCATTERING SPECTROSCOPY … PHYSICAL REVIEW A 108, 033705 (2023)

FIG. 2. Incoherent part of the transmitted pulse for the incident delta pulse in the time domain. Calculation is performed for N = 4 and
ϕ = 0.1. Times are normalized by 1/γ1D. (a) Schematics of the various types of photon states in the transmitted pulse. (b) Dark red solid curve:
probability distribution to detect two photons at the same moment in time t1. Black solid curve: probability distribution to detect one photon
at the time t1 while the second photon is detected at time t2 = 0.2/γ1D. Dotted curves are calculated with all two-particle modes and only the
superradiant single-particle mode; the red one is for the times t1 = t2, the gray one for the fixed t2 = 0.2/γ1D. (c) Zoomed-in image from panel
(a). (d) Dependence of the probability of the two photons detection on the time difference t1 − t2 for fixed t1 + t2 = 10/γ1D. The solid green
curve is calculated exactly, and the dashed orange curve includes only the superradiant single-excited state and all double-excited ones.

the dependence of the effective time it takes the system to
scatter photons on the array length N .

A. Single- and double-excited states in the transmitted pulse

Figure 2 shows the incoherent part of the two-photon wave
function given by Eq. (A15) calculated under the incidence
of the two-photon δ-pulse Eq. (10). The incoherent part has
quite a complicated time dependence with several distinct
timescales. The shortest time scale t ∼ 1/(Nγ1D) corresponds
to the superradiant state where the constructive interference
enhances the emission rate. The longest timescale is on the
order of N3/(ϕ2γ1D) [22] and corresponds to the excitation of
subradiant states. To represent different timescales better, we
show the wave function at large and short times in Figs. 2(a)
and 2(c) separately.

For reference, we also present in Fig. 4 the complex spec-
trum of the system eigenfrequencies, calculated for the same
system parameters as in Fig. 2. The orange dots correspond to
the single-excited states. They were obtained as eigenvalues of
the effective Hamiltonian matrix Hmn, defined in Eq. (7). The
brightest state, with the largest imaginary part, corresponds to
the superradiant state with the decay rate ≈ Nγ1D. The three

other dots correspond to the single-excited subradiant states.
The blue dots show the spectrum of double-excited states.
This is calculated following Ref. [23]. The eigenfrequencies
are found by diagonalizing Eq. (A4), given in the Appendix.
The calculation demonstrates that there exists one superradi-
ant mode, two subradiant ones, and also three modes with
decay rates on the order of γ1D. As discussed in Ref. [23],
these three eigenstates could be understood as the “twilight”
states, which are a product of the wave function with one
photon being in the bright state and the other one being in
the subradiant one.

Our calculation approach, outlined in detail in Appendix A,
allows us to evaluate the contributions from various single-
and double-excited eigenstates into the total transmitted wave
function ψ (t1, t2) separately. Generally, the single-excited
states manifest themselves in the dependence on t1 and t2, that
is, along the edges of the color map in Fig. 2(a). The double-
excited states correspond to the dependencies on t1 ± t2, that
is, diagonal and antidiagonal in Fig. 2(a). Hence, the role
of different contributions can be singled out by examining
the cross sections in the corresponding directions, shown in
Figs. 2(b) and 2(d). Our analysis of the contributions of vari-
ous super and subradiant eigenstates and the directions, along
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FIG. 3. Incoherent part of the transmitted pulse for the two short one-photon pulses incident with a time delay τ [(a), (d): τ = 0.5/γ1D; (b),
(e): τ = 1/γ1D; (c), (f): τ = 2/γ1D] in the time domain. Calculation parameters of the system are the same as in Fig. 2, N = 4, and ϕ = 0.1.
The lower row [(d)–(f)] represents zoomed-in images at the short times of output wave functions in the upper row [(a)–(c)].

which these contributions are manifested, is schematically
summarized in Fig. 2(a). We will now discuss it in more detail.

Single- and double- excited subradiant states manifest
themselves as the long-living tails in the wave function along
the edges of the calculation domain in Fig. 2(a) and along
its main diagonal, respectively. The black solid and dark red
curves show the two corresponding cuts in Fig. 2(b). To
distinguish between single- and double-excited subradiant
states, we performed calculations along the same cuts that
neglect all single-excited subradiant states and include just
a superradiant single-excited mode [the dotted curves in
Fig. 2(b)]. Such an approximation well describes the ini-
tial fast decay of the wave functions for both curves and
the tails along the main diagonal (t1 = t2, red dotted curve).
Thus, the tails along the main diagonal can be attributed to
the double-excited subradiant states. On the other hand, this
approximation significantly underestimates the values of the
tails of the wave function for fixed t2 = 0.2/γ1D, as can be
seen by the comparison of the solid black and dotted gray
curves in Fig. 2(b). This indicates that the tails in the solid
black curve are due to the single-excited subradiant states.

The single-particle superradiant state manifests itself on
the antidiagonal direction in the (t1, t2) plane. It should be
then measured as a function of the time difference between
two photons. This can be seen by comparing the solid green
curve in Fig. 2(d), calculated accounting for all single-particle
states, with the dashed orange one that includes only superra-
diant single-particle states. Such a single superradiant mode
approximation correctly describes the shape of the central

peak in the full calculation. We also checked that to correctly
describe the amplitude of this sharp central feature it is neces-
sary to include all the double-excited states.

We also calculated the photon pair wave function for the
case when the two incoming photons are separated by the
delay time τ . The results are shown in Fig. 3. The upper and
bottom rows present the wave function calculated in the large
and smaller (zoomed-in) time domains, respectively. Three
columns correspond to the three values of τ . The results in
Figs. 3(a) and 3(d), when τ = 0.5/γ1D, look qualitatively sim-
ilar to those in Fig. 4. The only difference is the absence of the
signal before the last photon has arrived, that is, when t1 < τ

or t2 < τ . The increase of the value of τ leads to the modifi-
cation of the transmitted photon pair wave function. The most
notable modification is the suppression of the central feature at
t1 = t2, corresponding to the two-photon bound state. Indeed,
the interaction between the two photons is quenched when
they do not arrive simultaneously.

B. Duration of the transmitted pulse and the average time
between two photons

As the measure of the efficiency of the dark states’ excita-
tion, we introduce the quantity

T =
∫∫

dt1dt2
∣∣ψout

t1,t2

∣∣2
t1∫∫

dt1dt2
∣∣ψout

t1,t2

∣∣2 (11)

in the same way as was done in Ref. [36]. Taking into account
the bosonic statistics of photons, we leave only the time of
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FIG. 4. Complex frequency spectrum for the following system
parameters: number of qubits N = 4; normalized period of the ar-
ray ϕ = 0.1. Orange dots denote single-photon states, blue squares
correspond to the two-photon states.

the one photon t1 under the integral (in general, we should
look at the average times of both particles). The quantity T
defined in such a way has the meaning of the duration of the
transmitted pulse. Therefore, we expect that the excitation of
the dark states increases the value of T . Figure 5(a) represents
the dependence of the inverse duration of the transmitted
pulse 1/T on the number of qubits N and the period of the
system ϕ. If all the qubits are placed at one point (ϕ = 0)
then a short propagating pulse excites a superradiant state.
This case corresponds to the maximum values of 1/T for
each N in Fig. 5(a). If the qubits are periodically spaced with
a normalized distance ϕ equal to π/2, the dark states can
be excited more efficiently. Indeed, as expected, the value
ϕ = π/2 corresponds to the largest values of T (minimum
values of 1/T ) for each N in Fig. 5(a).

The time T becomes shorter for the larger number of qubits
for a fixed period ϕ as the decay rate of the superradiant
mode is equal to Nγ1D. This is also related to the Markovian
approximation we use. This approximation implies the infinite
speed of light, so that the increase of N and the physical length
of the system does not lead to an increase of T [36].

Similarly to the average duration of the transmitted pulse,
we introduce the average difference of arrival times between
two transmitted photons


T =
∫∫

dt1dt2
∣∣ψout

t1,t2

∣∣2|t1 − t2|∫∫
dt1dt2

∣∣ψout
t1,t2

∣∣2 . (12)

The general dependence of the 
T on the phase ϕ for the
fixed numbers of qubits N looks mostly similar to the one
discussed above for the duration of the transmitted pulse T
[compare Figs. 5(a) and 5(b)]. In particular, when the qubits
are periodically spaced with the quarter wavelength distance
(corresponding to ϕ = π/2), the time difference 
T is mainly
defined by subradiant modes. In contrast, when all the qubits
are located at one point (ϕ = 0) we observe the excitation
of the superradiant mode. More careful comparison between
Figs. 5(b) and 5(a) reveals a qualitative difference between
the dependencies of 1/
T and of 1/T on N . While 1/T

FIG. 5. Dependence of the inverse duration of the (a) transmitted
pulse 1/T and (b) the inverse average time between two photons
1/
T on the period of the system ϕ for fixed numbers of qubits N .

monotonously increases with N for all ϕ, 1/
T increases with
N for ϕ = 0 and decreases with N for ϕ = π/2. As such, the

T parameter looks more suitable to distinguish between the
regimes, controlled by the superradiant mode (ϕ = 0) and by
the subradiant modes (ϕ = π/2).

IV. SUMMARY

To summarize, we developed a general analytical theory
for the scattering of two-photon pulses from an array of two-
level atoms, coupled to the waveguide. The wave function
of the scattered pulse was obtained by a convolution of the
known two-photon scattering matrix in the frequency domain
with the Fourier transform of the incident pulse. In the case
of a pulse duration being much shorter than the spontaneous
emission lifetime, we were able to obtain a general analyti-
cal result for the scattered signal. This analytical expression,
while being relatively cumbersome, considerably simplifies
an interpretation of the scattered signal. Namely, it becomes
possible to understand the role of the qualitatively differ-
ent contributions corresponding to various single-excited and
double-excited eigenstates of the arrays with different radia-
tive lifetimes (subradiant and superradiant states).

We also studied the dependence of the average time it takes
the array to emit two photons when being excited resonantly
on the array length and period. The emission time becomes
generally shorter for longer structures, which can be explained
by the formation of superradiant single-excited photon states.
The longest emission times correspond to the structures with
the anti-Bragg period, equal to the quarter of the wavelength
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of light at the atom resonance frequency λ/4. This is due to
the suppression of the superradiant states for the anti-Bragg
structures.

Our results indicate that the time-dependent spectroscopy
of photon transmission can be an interesting complementary
tool to the frequency domain analysis. It would be also in-
structive to generalize the results for the more complicated
time dependence and entanglement structure of the input
pulse. While this problem has already been analyzed in the lit-
erature [15,19], the general effect of the excitation spectrum of
the array on the quantum pulse transmission is far from being
completely understood. For example, it would be interesting
to examine what happens with the quantum light transmission
through the Bragg structures with the period of λ/2 [36] that
can demonstrate strongly non-Markovian physics [26].
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APPENDIX A: APPLICATION OF S-MATRIX METHOD
FOR THE CALCULATION OF A DELTA-PULSE

TRANSMISSION

Here we describe how to consider scattering of a short
input two-photon pulse of the shape Eq. (10). Its Fourier
transform (2) is given just by ψ in

ω1,ω2
= 1. Next, we define the

frequency-integrated scattering matrix

S̃(ω′
1, ω

′
2) ≡

∫∫
dω1dω2

(2π )2
S(ω′

1, ω
′
2 ← ω1, ω2)

= 2tω′
1
tω′

2
+ 2γ 2

1D

∑
i, j

s−
i (ω′

1)s−
i (ω′

2)Qi j

×
∫

dω1

2π
s+

j (ω1)s+
j (ω′

1 + ω′
2 − ω1), (A1)

where Q = 
−1 [see Eqs. (5) to (7)]. To further proceed
with the frequency integration it is instructive to expand the
coupling coefficients

s±
j (ω) =

∑
ν

s±,ν
j

ων − ω
(A2)

as a sum of resonances at the single-excited state eigenfre-
quencies ων . These are given just by the eigenvalues of the
effective Hamiltonian matrix Hmn, defined in Eq. (7). Given
Eq. (A2), the frequency integration in the last line of Eq. (A1)
results in

f +
j (ω′

1 + ω′
2)

≡
∫

dω1

2π
s+

j (ω1)s+
j (ω′

1 + ω′
2 − ω1)

= −
∑
μ,ν

∫
dω1

2π

s+,ν
j s+,μ

j

(ω1 − ων )(ω1 + ωμ − ω′
1 − ω′

2)

= i
∑
μ,ν

s+,ν
j s+,μ

j

ων + ωμ − ω′
1 − ω′

2

. (A3)

To further proceed with the integration it is necessary to also
expand the matrix Q over the resonant terms. The resonances
correspond to the double-excited states, found from the effec-
tive Hamiltonian

N∑
m′n′=1

(H + U )mn,m′n′ψm′n′ = 2εψmn, (A4)

with Hmn;m′n′ = δmm′Hnn′ + δnn′Hmm′ , and Umn,m′n′ =
δmnδmm′δnn′U, where m and n are the coordinates of first
and second excitation. Here, the coefficient U describes the
anharmonicity of the qubit potential. In the considered case of
the two-level qubit, the limit U → ∞ should be taken. Then,
Eq. (6) can be further simplified to

Qmn = 2(iε − γ1D)δmn +
N (N−1)/2∑

ν=1

2idν
mdν

n

εν − ε
, (A5)

where εν are the two-photon state energies found from
Eq. (A4), and dν

m = Hmm;m′n′ψν
m′n′ with the normalization con-

dition for two-photon states being
∑

m′n′ (ψν
m′n′ )2 = 1.

Using the expansions Eqs. (A5) and (A3) the scattering
matrix (A1) becomes

S̃(ω′
1, ω

′
2) = 2tω′

1
tω′

2
+ 2γ 2

1D

∑
i

s−
i (ω′

1)s−
i (ω′

2)ui(ω
′
1 + ω′

2),

(A6)

where

ui(ε) = −2(ε + iγ1D)
∑
ν,μ

s+,ν
i s+,μ

i

(ων + ωμ − 2ε)

− 2
N (N−1)/2∑

κ=1

dκ
i

εκ − ε

∑
ν,μ

1

ων + ωμ − 2ε

×
N∑

j=1

dκ
j s+,ν

j s+,μ
j . (A7)

To simplify the notation it is convenient to relabel the indices
so that r = (μ, ν) and rewrite the same equation in a more
general form

ui(ε) =
∑

r

iε − γ1D

(εr − ε)
U r

i +
∑

rs

V rs
i

(εr − ε)(εs − ε)
, (A8)

where

U r
i = is+,ν

i s+,μ
i (A9)

and

V rs
i = (−1)ds

i

⎛
⎝ N∑

j=1

ds
j s

+,ν
j s+,μ

j

⎞
⎠. (A10)

We are now in position to substitute Eq. (A6) into Eq. (4)
and integrate over frequencies ω1,2 to find the output wave
function in the form

ψout
t1,t2 = ψout, coh

t1,t2 + ψout, incoh
t1,t2

= 1

2

∫∫
dω′

1dω′
2

(2π )2
S̃(ω′

1, ω
′
2)e−iω′

1t1 e−iω′
2t2 . (A11)
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The coherent part of the output wave function is given by the following expression:

ψout, coh
t1,t2 = y(t1)y(t2), (A12)

with

y(t1) =
∫

dω′
1

2π
t (ω′

1)e−iω′
1t1 = iθ (t1)

∑
μ

e−iωμt1tμ, (A13)

y(t2) =
∫

dω′
2

2π
t (ω′

2)e−iω′
2t2 = iθ (t2)

∑
ν

e−iων t2tν . (A14)

The incoherent part of the output wave function is written as

ψout, incoh
t1,t2 = γ 2

1D

∑
i,μ,ν

s−,ν
i s−,μ

i

[∑
r

U r
i Lνμr (t1, t2) +

∑
rs

V rs
i Mνμrs(t1, t2)

]
, (A15)

where

Lνμr (t1, t2) = θ (t1)θ (t2)
∫∫

dω′
1dω′

2

(2π )2
e−iω′

1t1 e−iω′
2t2

(iε − γ1D)

(εr − ε)

1

(ων − ω′
1)(ωμ − ω′

2)
, (A16)

and

Mνμrs(t1, t2) = θ (t1)θ (t2)
∫∫

dω′
1dω′

2

(2π )2
e−iω′

1t1 e−iω′
2t2

1

(εr − ε)(εs − ε)

1

(ων − ω′
1)(ωμ − ω′

2)
. (A17)

For Eqs. (A13) and (A14) we use the expansion of transmission coefficient over one-particle resonant terms

t (ω) =
∑

μ

tμ
ω − ωμ

. (A18)

The integrals in Eqs. (A16) and (A17) are readily found by the Cauchy theorem, e.g., in MATHEMATICA. As a result, we obtain
the following expressions:

Lνμr (t1, t2) = θ (t1)θ (t2)[(iεr − γ1D)(θ (t1 − t2)e−iων (t1−t2 )−2iεr t2

+ θ (t2 − t1)e−iωμ(t2−t1 )−2iεr t1 ) − [i(ωμ + ων )/2 − γ1D]e−iων t1−iωμt2 ]
1

εr − (ων + ωμ)/2
, (A19)

Mνμrs(t1, t2) = θ (t1)θ (t2)θ (t2 − t1){[εr − (ωμ + ων )/2]e−iωμ(t2−t1 )−2iεst1 − [εs − (ωμ + ων )/2]e−iωμ(t2−t1 )−2iεr t1

− (εr − εs)e−iων t1−iωμt2} 1

[εr − (ων + ωμ)/2][εs − (ων + ωμ)/2](εr − εs)
+ (t1 ↔ t2, ων ↔ ωμ). (A20)

APPENDIX B: TWO SHORT ONE-PHOTON PULSES WITH A TIME DELAY

In this Appendix, we discuss how to describe the scattering of two short one-photon pulses with a time delay. Such a pulse
can be approximated by a product of two δ functions with the time delay τ :

ψ in
t1,t2 = δ(t1 − τ )δ(t2) + δ(t1)δ(t2 − τ ), (B1)

which is symmetrized in the time domain as two photons are indistinguishable due to their bosonic nature.
For simplicity, we first consider the initial pulse in the form

ψ in
t1,t2 = δ(t1 − τ )δ(t2). (B2)

Its Fourier transform is then given by eiω1τ . We repeat the steps outlined in Appendix A but with an incident pulse of a shape
given by Eq. (B2).

The output wave function assumes the form

ψout
t1,t2 = ψout, coh

t1,t2 + ψout, incoh
t1,t2 , (B3)

with the coherent part is given by

ψout, coh
t1,t2 = y(t1)y(t2), (B4)

033705-7



VLASIUK, POSHAKINSKIY, AND PODDUBNY PHYSICAL REVIEW A 108, 033705 (2023)

where

y(t1) =
∫

dω′
1

2π
t (ω′

1)eiω′
1τ e−iω′

1t1 = iθ (t1 − τ )
∑

μ

e−iω′
1(t1−τ )tμ, (B5)

y(t2) =
∫

dω′
2

2π
t (ω′

2)e−iω′
2t2 = iθ (t2)

∑
ν

e−iων t2tν . (B6)

The incoherent part reads as

ψout, incoh
t1,t2 = γ 2

1D

∑
i,μ,ν

s−,ν
i s−,μ

i

[ ∑
r

U r
i Lνμr (t1, t2) +

∑
rs

V rs
i Mνμrs(t1, t2)

]
, (B7)

where

U r
i = is+,ν

i s+,μ
i e−iωντ , (B8)

V rs
i = (−1)ds

i

⎛
⎝ N∑

j=1

ds
j s

+,ν
j s+,μ

j

⎞
⎠e−iωντ , (B9)

Lνμr (t1, t2) =
∫∫

dω′
1dω′

2

(2π )2
e−iω′

1t1 e−iω′
2t2 ei2ετ (iε − 1)

(εr − ε)

1

(ων − ω′
1)(ωμ − ω′

2)

=
∫∫

dω′
1dω′

2

(2π )2
e−iω′

1(t1−τ )e−iω′
2(t2−τ ) (iε − 1)

(εr − ε)

1

(ων − ω′
1)(ωμ − ω′

2)
, (B10)

and

Mνμrs(t1, t2) =
∫∫

dω′
1dω′

2

(2π )2
e−iω′

1t1 e−iω′
2t2 ei2ετ 1

(εr − ε)(εs − ε)

1

(ων − ω′
1)(ωμ − ω′

2)

=
∫∫

dω′
1dω′

2

(2π )2
e−iω′

1(t1−τ )e−iω′
2(t2−τ ) 1

(εr − ε)(εs − ε)

1

(ων − ω′
1)(ωμ − ω′

2)
. (B11)

Evaluating the integrals in Eqs. (B10) and (B11) we obtain the expressions which are the same as Eqs. (A19) and (A20) up to
the following substitution t1 → t1 − τ , t2 → t2 − τ in the right parts of the equations.

The second term in Eq. (B1) provides the same output wave function up to the exchange of times t1 ↔ t2. The resulting output
wave function for the input pulse in the form of Eq. (B1) is given by the sum of two output terms.
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