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Switchable superradiant phase transition with Kerr magnons

Gang Liu ,1,2 Wei Xiong ,3,* and Zu-Jian Ying 1,2,†

1School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
2Key Laboratory for Quantum Theory and Applications of MoE, Lanzhou Center for Theoretical Physics,

and Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, China
3Department of Physics, Wenzhou University, Zhejiang 325035, China

(Received 14 February 2023; accepted 23 August 2023; published 7 September 2023)

The superradiant phase transition (SPT) has been widely studied in cavity quantum electrodynamics (CQED).
However, this SPT is still subject to ongoing debates due to the no-go theorem induced by the so-called A2 term
(AT). We propose a hybrid quantum system, consisting of a single-mode cavity simultaneously coupled to both a
two-level system and yttrium-iron-garnet sphere supporting magnons with Kerr nonlinearity, to restore the SPT
against the AT. The Kerr magnons here can effectively introduce an additional AT tunable and strong enough to
counteract the intrinsic AT, via adiabatically eliminating the degrees of freedom of the magnons. We show that
the Kerr-magnon-induced SPT can exist in both cases of ignoring and including the intrinsic AT. Without the
intrinsic AT, the critical coupling strength can be dramatically reduced by introducing the Kerr magnons, which
greatly relaxes the experimental conditions for observing the SPT. With the intrinsic AT, the forbidden SPT can
be recovered with the Kerr magnons in a reversed way. Our work paves a potential way to manipulate the SPT
against the AT in hybrid systems combining CQED and nonlinear magnonics.
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I. INTRODUCTION

With the experimental advances in the era of ultrastrong
coupling in light-matter interactions [1,2] and the theoret-
ical efforts studying the fundamental quantum Rabi model
(QRM) [3–44], finite-component quantum phase transitions
(QPTs) have recently received increasing attention [5–21].
Practical applications of the finite-component QPTs have been
exploited in critical quantum metrology and quantum infor-
mation science [42–48].

A QPT occurs in the ground state in the variation of some
nonthermal parameter and is regarded as being driven by
quantum fluctuations [21,49]. Besides topological transitions
under symmetry protection [12–15] and various transitions in
symmetry breaking [11,16], the superradiant phase transition
(SPT) is a typical QPT in light-matter interactions. The SPT
was first predicted in the Dicke model [50,51] consisting
of an ensemble of N two-level systems (TLSs) coupled to
photons in a cavity [52]. By varying the coupling strength,
the ground state of the system changes abruptly from the
normal phase (NP) to the superradiant phase (SP) with a boost
of photon number. Due to this exotic behavior, the SPT has
been widely studied [5–12,15–21,53–59]. Besides the Dicke
model, the QRM [33–35,60,61], describing the interaction
between a single TLS (with level splitting �) and a single-
mode field (with frequency ω), can also predict the SPT in the
low-frequency limit (i.e., ω/� → 0) as a replacement of ther-
modynamic limit [5–12,15–21,62]. Both the Dicke model and
the QRM can be experimentally realized in cavity quantum
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electrodynamics (CQED) or circuit systems [63–67]. How-
ever, the no-go theorem induced by the so-called A2 term
(AT) (i.e., the squared electromagnetic vector potential) in
realistic CQED forbids the SPT [68]. Actually, whether or
not the SPT is prohibited by the AT has been a subject of
much debate for several decades [57,68–88]. Indeed, both
no-go theorems [68,70,83,86,87] and counter no-go theorems
[72,75,84,85,88] have been raised, essentially depending on
different situations such as adopting the conventional two-
level approximation (qubit) or nontruncated Hilbert space for
the matter part [68,70,82–84,86,87], applying the minimal
replacement rule of the gauge to kinetic terms and also to
nonlocal potentials [82,84,85,88], considering a spatially
uniform cavity field [68,70] or a spatially varying electromag-
netic field [81,86,87]. An arbitrary-gauge approach suggests
that the conflicting no-go and counter no-go theorems may be
reconciled in many-dipole cavity QED systems as views of
different quantum subsystems [85,88]. Besides natural atomic
systems, the debate has been extended to artificial atomic
systems as well [57,72–74,79,88], as in circuit systems the ex-
istence of an equivalent AT is also controversial and depends
on specific circuit designs [57,79,80].

Another way to circumvent the difficulty of reaching a
consensus on the existence of the AT is to find a possibility
to cancel the AT [89–91]. It has been suggested that the
disappearing SPT of the Rabi (Dicke) model in the presence
of the AT can be regained by combining the optomechanics
and CQED [90,91], where the customarily used Coulomb
gauge is chosen under a two-level approximation. The op-
tomechanics there actually provides an auxiliary AT at the
single-photon level to compensate for the intrinsic AT. How-
ever, the required strong quadratic optomechanical coupling
at the single-photon level is still a challenge within current
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fabrication techniques [92]. In such a situation, an alternative
quantum system capable of introducing a strong and tunable
auxiliary AT is highly desirable, although the arbitrary-gauge
approach [84,85,88] has been proposed to recover the SPT in
CQED systems with the AT.

In this regard, a feasible way may lie in nonlinear cav-
ity magnonics. With the advancement of quantum materials,
magnons (i.e., quanta of spin wave) in a yttrium iron gar-
net (YIG) sphere with flexible controllability and high spin
density have received much attention theoretically and ex-
perimentally [93–96], especially in magnon dark modes [97],
spin currents [98,99], entanglement [100–104], nonreciproc-
ity [105], and microwave-to-optical transduction [106,107].
Moreover, the magnons in the YIG sphere can have tunable
Kerr nonlinearity via controlling the external magnetic field,
originating from the magnetocrystalline anisotropy [108,109].
This nonlinearity has been demonstrated in experiment [110]
and used to study the bi- and multistabilities [111–113],
quantum entanglement [114], quantum phase transition [115],
long-range spin-spin coupling [116,117], and nonreciprocal
entanglement in cavity-magnon optomechanics [118].

In the present work we open a possible avenue to gain a
strong and tunable auxiliary AT which is capable of switching
on or manipulating the SPT, with the AT whether present
or not as in the aforementioned debate on the no-go theo-
rem. Based on the advances in the study of magnons, we
propose a hybrid system consisting of a microwave cavity
simultaneously coupled to both a TLS and Kerr magnons
(i.e., magnons with Kerr nonlinearity) in a YIG sphere to
restore the SPT. Here the coupled-TLS-cavity subsystem and
the coupled-magnon-cavity subsystem form the Rabi model
and cavity magnonics, respectively. By adiabatically eliminat-
ing the degrees of freedom of the magnons, we demonstrate
that the Kerr magnons finally play a role to effectively
introduce an additional AT which can counteract the origi-
nal one. Owing to the experimental controllability and the
nonlinearity-enhanced effect, the additional AT can be tunable
and strong enough to switch on and manipulate the SPT. In
the absence of the AT, the critical coupling of the SPT can be
significantly reduced when the Kerr magnons are included,
while in the presence of the AT the vanishing SPT can be
restored by the Kerr magnons. Our proposal shows that the
combination of CQED and nonlinear cavity magnonics can
provide a potential platform to study quantum critical physics.

II. MODEL OF THE HYBRID SYSTEM

We consider a hybrid quantum system consisting of a
microwave cavity [110] or superconducting resonator [119])
simultaneously coupled to a TLS, such as superconducting
qubits [120,121], and Kerr magnons in a YIG sphere (see
Fig. 1), where the Kerr nonlinearity of the magnons stems
from the magnetocrystalline anisotropy. The Hamiltonian of
the proposed hybrid system can be written as (setting h̄ = 1)

H = HRabi + HA2 + HK + HI , (1)

where HRabi = ωa†a + 1
2�σ̂z + gσx(a + a†) is the QRM, de-

scribing the interaction between the TLS and the cavity.
The parameter ω (�) is the frequency of the cavity (TLS)
and g is the coupling strength. The operators σx = |e〉 〈g| +

FIG. 1. Sketch of a hybrid quantum model including a Rabi
model coupled to a Kerr magnon mode. Here g (gm) is the Rabi
(magnon) coupling strength of the two atomic levels (the magnon
mode), respectively. Here the cavity mode is represented by a photon
and κm is the magnon decay rate.

|g〉 〈e| and σz = |e〉 〈e| − |g〉 〈g| represent the Pauli matri-
ces of the TLS, while a and a† denote the annihilation
and creation operators of the cavity, respectively. The sec-
ond term HA2 = (αg2/�)(a + a†)2 is the AT, where α �
1 for the achieved Rabi model (Dicke model) in cav-
ity quantum electrodynamics, which is dependent on the
Thomas-Reiche-Kuhn sum rule [72]. The Kerr Hamilto-
nian HK = ωmm†m + Km†mm†m, with the frequency ωm =
γ B0 + 2μ0Kanγ

2/M2V 2
m − 2μ0ρssKanγ

2/M2 and the Kerr co-
efficient K/h̄ = 2μ0Kanγ

2/(M2V 2
m ), represents the interaction

among magnons and provides the anharmonicity of the
magnons. Here γ /2π = geμB/h̄ is the gyromagnetic ration
with the g factor ge and the Bohr magneton μB, s = h̄/2 is
the spin quantum number, ρs = 2.1 × 10−22 cm−3 is the spin
density of the YIG sphere, μ0 is the vacuum permeability, Kan

is the first-order anisotropy constant of the YIG sphere, B0 is
the amplitude of a bias magnetic field in the z direction, M is
the saturation magnetization, and Vm is the volume of the YIG
sphere. Note that the Kerr coefficient K can be either positive
or negative by tuning the angle between the crystallographic
axis [100] or [110] of the YIG sphere and the bias magnetic
field [109–111]. The last term HI = gm(am† + a†m) charac-
terizes the interaction between the photons in the cavity and
the magnons in the YIG sphere with coupling strength gm.

III. EFFECTIVE HAMILTONIAN
OF THE HYBRID SYSTEM

Taking into account the dissipations of the system consid-
ered in Eq. (1), its dynamics is governed by the Heisenberg-
Langevin equation [122], i.e.,

dO
dt

= −i[O, H] + L†OL − 1

2
(OL†L + L†LO), (2)

where O represents the system operator and L is the Lindblad
operator. For the magnon-cavity subsystem of interest, the
relaxation operators can be defined as La = √

κa and Lm =√
κmm, where κ (κm) is the decay rate of the cavity (magnon).
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Specifically, the dynamics of the magnon-cavity subsystem
can be written as

ȧ(t ) = −
(

κ

2
+ iω

)
a − igσx − igmm

− 2i

(
αg2

�

)
(a + a†) + √

κain,

ṁ(t ) = −
(

κm

2
+ iωm

)
m − 2iKm†mm

− igma + √
κmmin, (3)

where ain and min are the vacuum input noise operators of
the cavity and magnon, respectively. The corresponding mean
values are zero, i.e., 〈ain〉 = 〈min〉 = 0. By rewriting each
operator of the magnon-cavity subsystem as its expectation
value plus the corresponding fluctuation, i.e., a → 〈a〉 + a
and m → 〈m〉 + m, the nonlinear term, i.e., m†mm, in Eq. (3)
can be reexpressed as

m†mm → |〈m〉|2〈m〉 + 2|〈m〉|2m + 〈m†〉m2

+ 〈m〉2m† + 2〈m〉m†m + m†m2. (4)

By neglecting the high-order fluctuation terms, we can lin-
earize the dynamics in Eq. (3) as

ȧ(t ) = −
(

κ

2
+ iω

)
a − igσx − igmm

− 2i

(
αg2

�

)
(a + a†) + √

κain, (5)

ṁ(t ) = −
(

κm

2
+ i
m

)
m − 2iK〈m〉2m† − igma + √

κmmin,

where 
m = ωm + 4KNm, with the mean magnon number
Nm = |〈m〉|2, is the effective frequency of the magnon induced
by its Kerr nonlinearity.

Noting that the magnon-cavity coupling gm can be tuned
by the displacement of the YIG sphere [123], we can assume
a weak coupling κm � gm so that the decoherence time of
magnons is much shorter than that of photons in the cavity. In
such a situation, the degrees of freedom of the magnon can be
adiabatically eliminated by setting ṁ(t ) = 0, which directly
gives rise to

m = 2K〈m〉2gm

W
a† − gm

(

m + i κm

2

)
W

a, (6)

where W = 
2
m + κ2

m
4 − 4K2N2

m. Substitution of Eq. (6) back
into Eq. (5) leads us to

ȧ = −
(

κeff

2
+ i(ω − η
m)

)
a − igσx − 2i

(
αg2

�

)
(a + a†)

− 2iKη〈m〉2a† + √
κeffain, (7)

where η = g2
m/W is a dimensionless parameter related to the

cavity frequency shift η
m and κeff = κ + κmη is the effective
decay rate of the cavity. By rewriting the equation of motion
in Eq. (7) as ȧ = −i[a, Heff ] − (κeff/2)a + √

κeffain, we ob-
tain the effective Hamiltonian after eliminating the degrees of

freedom of the Kerr magnons

Heff = HRabi + HA2 + Kη〈m〉2

(
a† − 
m

2K〈m〉2
a

)2

. (8)

As 
m, K , and 〈m〉 can be tuned by the amplitude and the
direction of the bias field, the YIG sphere size, and the drive
power, with the sign of K also being adjustable [109–111],
we can assume K < 0 and set 
m = −2K〈m〉2. Thus, the
Hamiltonian (8) reduces to

Heff = HRabi + HA2 + H ′
A2 , (9)

where H ′
A2 = −χ (a + a†)2, with χ ≡ −Kη〈m〉2, and a re-

duced η = 4g2
m/κ2

m is an additional AT induced by the Kerr
magnons. One sees that the strength of the additional AT χ

is highly enhanced by the nonlinear Kerr effect in proportion
to 〈m〉2, thus being competent to counteract the effect of the
original AT HA2 and restore the SPT of the QRM in the
presence of the AT.

IV. SWITCHABLE SPT BY KERR MAGNONIC COUPLING

To study the ground-state properties of the Hamiltonian in
Eq. (9), a squeezing transformation, i.e., S(r) = exp[r(a†2 −
a2)/2], is imposed, leading to a → a cosh(r) + a† sinh(r). By
choosing the squeezing parameter

r = −1

4
ln

(
1 + αḡ2 − 4

χ

ω

)
, (10)

with rescaled coupling ḡ = g/gc, where gc = √
ω�/2 is the

critical coupling of the QRM without the AT [6,7,11], Hamil-
tonian (9) is transformed to an effective QRM

HS = U †HeffU = ω̃a†a + �

2
σz + g̃(a† + a)σx, (11)

where ω̃ = ωe−2r is the renormalized photon frequency in the
cavity and g̃ = ger is the effective coupling strength. Com-
pared to the original QRM, the parameters ω̃ and g̃ in Eq. (11)
are tunable via χ . Correspondingly, with renormalized criti-
cal coupling g̃c = √

ω̃�/2, the rescaled coupling strength in
Eq. (11) becomes

˜̄g ≡ g̃/g̃c = ḡ/
√

1 + αḡ2 − 4χ/ω. (12)

The critical point is decided by ˜̄gc = 1, beyond which the
ground state transits from the NP to the SP.

Obviously, when Kerr magnons are not included (i.e., K =
0 or equivalently χ = 0), ˜̄g reduces to ˜̄g → ḡ/

√
1 + αḡ2. For

the realistic cavity QED, α � 1 leads to ˜̄g < 1, indicating that
the Rabi model with the AT is always in the normal phase,
unable to reach the SPT. This is just the aforementioned no-go
theorem [72].

When we have Kerr magnons, the critical coupling is ex-
plicitly determined by ḡc = √

(1 − 4χ/ω)/(1 − α) in terms
of the original system parameters. This indicates that the
SPT is switchable via the Kerr magnons as long as χ/ω >
1
4 for α > 1, which is equivalent to gm/κm >

√
3ω/8ωm by

the constraint 
m = −2K〈m〉2. Figure 2 illustrates the SPT-
restored regime (red, marked by 4χ/ω > 1). These conditions
can be readily fulfilled experimentally [110–112,123,124] as
|K| = 0–103 nHz and 〈m〉 = 0–1017, with a typical order
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FIG. 2. SPT-restored regime (red, marked by 4χ/ω > 1) in
(a) the ω-gm plane at ωm/2π = 10 GHz and (b) the ωm-gm plane at
ω = 0.1 GHz.

2π × 10 GHz for ωm and the low-frequency requirement of
ω for SPT, while gm can be tuned from weak couplings
(gm/κm < 1) to strong couplings (gm/κm > 1) by the YIG
sphere displacement [123].

V. REVERSED SPT AND PHASE DIAGRAM

In the absence of the AT, the SPT occurs in increasing the
coupling strength as the small-g regime is the NP. However, in
the presence of the AT, the SPT restored by Kerr magnons is
reversed. In fact, the ground state is in the SP for the regime
˜̄g > 1, which gives rise to ḡ < ḡc. This means the the SP lies
below ḡc instead of above ḡc. Conversely, the regime ḡ > ḡc

is in the NP, as derived from ˜̄g < 1. The reversed SPT would
facilitate experimental study of the SP without the need to go
beyond critical Rabi coupling.

In order to characterize the behavior of the SPT, we define
the ground-state photon number as the order parameter, i.e.,
ξ = A〈a†a〉g, with the scaling factor A = e−2rω/� to unify
different value cases of ω and χ . In the limit of ω/� → 0,
Hamiltonian (11) can be readily diagonalized by expansion
and unitary transformations [10–12,90,91]. Explicitly, ξ = 0
for ḡ < e−2r and ξ = ( ˜̄g2 − ˜̄g−2)/4 for ḡ > e−2r . To show this
clearly, we plot ξ as a function of ḡ in Figs. 3(a) and 3(c).

FIG. 3. SPT at (a) and (b) α = 0 and (c) and (d) α = 1.5 for
(a) and (c) the order parameter ξ as a function of the coupling
strength g and (b) and (d) the phase diagram of ξ in the g-χ plane.
The dashed (dot-dashed) line denotes the analytical boundary be-
tween SP and NP (UP).

From Fig. 3(a) where the AT is not included, the SPT can be
induced regardless of whether the magnon Kerr effect is taken
into account or not. Without the magnon Kerr effect (χ = 0),
the SPT occurs at ḡ(=0)

c = 1 (see the curve marked by dia-
monds). However, when the magnon Kerr effect is considered
(χ = 0.245), the SPT point is shifted to ḡ( 	=0)

c = 0.141 (curve
marked by circles), which is much smaller than ḡ(=0)

c , i.e.,
ḡ( 	=0)

c = 0.141ḡ(=0)
c . This indicates that the introduced magnon

Kerr effect can be utilized to dramatically reduce the criti-
cal coupling strength of the SPT, which greatly relaxes the
parameter requirement in experiments. The AT is considered
(α = 1.5) in Fig. 3(c), where one sees that the SPT disappears
in the absence of the magnon Kerr effect (black curve with
closed diamonds). However, when the magnon Kerr effect is
introduced, the SPT is restored at ḡ( 	=0)

c = 0.282 (blue curve
with closed circles). Note here, as previously discussed, that
the SPT is reversed with the transition direction from the SP
to the NP with increasing coupling, which is opposite to the
case in Fig. 3(a).

Figures 3(b) and 3(d) further show the ground-state phase
diagram of ξ in the g-χ plane. In the absence of the AT but
including the magnon Kerr effect [Fig. 3(c) with α = 0], we
can see that the transition from the NP (ξ = 0) to the SP
(ξ > 0) can be observed with the increase of the coupling
strength g in χ/ω < 1

4 regime. The critical boundary is gov-
erned by χ/ω = (1 − ḡ2)/4 (dashed line). In the χ/ω > 1

4
regime, one has ḡ2 = 1 − 4χ/ω < 0 spuriously; the system
enters an unstable phase (UP) (yellow area). When both the
AT and the magnon Kerr effect are included [Fig. 3(d) with
α = 1.5], we find that both the SP and the NP can recover
in the previously unstable regime of χ/ω > 1

4 , now with 1 −
4χ/ω and 1 − α both negative to fulfill ḡ2 > 0. The critical
NP-SP boundary is described by ḡ = √

(1 − 4χ/ω)/(1 − α)
[dashed line in Fig. 3(d)], while the SP-UP boundary is shifted
from χ/ω = 1

4 to χ/ω = (1 + αḡ2)/4 [dot-dashed line in
Fig. 3(d)].

The results in Fig. 3 are obtained from the effective Hamil-
tonian in Eq. (9). Although the Hamiltonian (9) is analytically
derived from the original Hamiltonian (1) by adiabatically
eliminating the magnon mode, one may wonder about a nu-
merical cross-check. To confirm the validity of our results,
we further compare the order parameter ξ with the result
of the original Hamiltonian (1), as simulated by including
the decay rates of the cavity and the magnons via Heff =
H − i κm

2 m†m − i κa
2 a†a according to the quantum Langevin

equation. An example is illustrated in Fig. 4 in the absence
of the AT [α = 0 in Fig. 4(a)] and in the presence of the AT
[α = 1.5 in Fig. 4(b)]. The parameters here meet the condition
κm � gm as previously applied in adiabatically eliminating
the magnon mode. Here, in both Figs. 4(a) and 4(b), the results
of the effective Hamiltonian (9) and original Hamiltonian (1)
are represented by the solid lines and dashed lines, respec-
tively. We see in both cases, without the AT and with the AT,
that the results from the effective Hamiltonian and original
Hamiltonian are in good agreement, which shows that the
mapping from the Hamiltonian (1) to the Hamiltonian (9) is
reliable and the SPT can indeed be restored and reversed by
the magnon Kerr effect, with the critical coupling strength
significantly reduced.
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FIG. 4. Comparison of the order parameter ξ as a result of the
effective Hamiltonian (9) (solid lines) and the original Hamiltonian
(1) including the decay rates (dashed lines) for (a) α = 0, with
K/� = −6.125 × 10−13 and ωm/� = 367.5, and (b) α = 1.5, with
K/� = −6.5 × 10−13 and ωm/� = 390. The other parameters are
ω/� = 0.01, � = 1 MHz, gm/� = 2π × 0.01, κm/� = 2π × 100,
and κa/� = 2π × 0.0001 in both panels.

VI. CONCLUSION

In summary, we have proposed a hybrid quantum system
combining nonlinear cavity magnonics and CQED to restore
the SPT of the QRM, which has been thought to disappear
in the presence of the AT due to the constraint of the no-
go theorem or to dramatically reduce the critical coupling
strength if the SPT is not prohibited as in the counter no-go
theorem in the debate. Indeed, by adiabatically eliminating the
degrees of freedom of the magnons, we have demonstrated
that the Kerr magnons in a YIG sphere coupling with the
Rabi cavity system effectively introduce an additional AT

which can counteract the intrinsic AT. The additional AT is
not only tunable via the Kerr magnon effect but also can be
strong as in the nonlinear dependence of the magnon number,
which can be very large, thus being capable of making the
SPT switchable. We have analytically extracted the critical
coupling generally in the presence of both the AT and the
Kerr effect. The recovered SPT is illustrated by the transition
in the photon number and shown in an overview by the de-
termined phase diagram. We see that, when the AT is absent,
our hybrid system can reduce the critical Rabi coupling and
thus greatly relaxes the experimental conditions for observing
the SPT. When the intrinsic AT is included, the unreachable
SPT without Kerr magnons can be gained by turning on the
Kerr magnon-photon coupling, while the superradiant phase
is available in small Rabi couplings due to the revered tran-
sition direction. We have also shown the magnonic parameter
regimes for restoring the SPT which are experimentally tun-
able and accessible. Note that an adjustable critical point is
more favorable and provides more flexibility for applications
such as in critical quantum metrology [42–48], where a wide
range of critical couplings would greatly enlarge the critical
sensing regime [44]. In such a trend, our proposal provides
a promising path to manipulate the quantum phase transition
with a hybrid system, combining the advantages of nonlinear
cavity magnonics and CQED.
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