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Characterizing polariton states in the nondispersive regime of circuit quantum electrodynamics
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A superconducting qubit coupled to a readout resonator is currently the building block of multiple quantum
computing as well as quantum optics experiments. A typical qubit-resonator system is coupled in the dispersive
regime, where the detuning between qubit and resonator is much greater than the coupling between them. In this
work, we fabricated and measured a superconducting transmon-resonator system in the nondispersive regime.
The dressed states formed by the mixing of the bare qubit and resonator states can be further mixed by applying
a drive on the qubit, leading to the formation of polariton states. We report experimental studies of transitions
between polariton states at varying driving powers and frequencies and show how the nondispersive coupling of
the higher levels of the qubit-resonator system modifies the polariton eigenstates and the corresponding transition
frequencies. We also report close agreement with numerical results obtained from a driven Jaynes-Cummings
model beyond the dispersive regime.

DOI: 10.1103/PhysRevA.108.033703

I. INTRODUCTION

Circuit quantum electrodynamics (cQED) is an excellent
testbed for the study of various light-matter and matter-matter
interaction phenomena [1–4]. A basic building block of cQED
architecture consists of a microwave resonator coupled to an
artificial atom, both of which are realized on a chip using
superconducting microwave circuits. The atom-resonator unit
forms a multilevel quantum system which can be controlled
by applying microwave drives. In addition to forming the
basis for superconducting qubits for use in quantum com-
puting, cQED systems are also attractive from a quantum
optics perspective because they can be tuned into regimes
beyond what is easily achievable, or even feasible, with nat-
ural atoms [3,5]. Examples of such phenomena explored via
cQED include the implementation of strong [1,6], ultrastrong
[7,8], and deep strong [9] regimes of atom-cavity (res-
onator) coupling, probing the photon-number nonlinearity of
Jaynes-Cummings (JC) systems [10–12], and single atom las-
ing [13]. The JC nonlinearity induced by a superconducting
qubit in a resonator has also been used to implement a high-
fidelity readout [14–16]

Additional tunability of cQED systems can be introduced
via the application of drive fields. By driving the � (ladder)-
type transitions in an artificial atom, Mollow triplets [17],
Autler-Townes splitting (ATS) [17–19], and electromagneti-
cally induced transparency (EIT) [20–22] were probed and a
single-photon router [23] was implemented. Additionally, a
�-type level structure was realized in a qubit-resonator system
using drives on both qubit-like and resonator-like transitions
[24,25]. These � systems were used to measure the coherence
of a dark state [25], the coherence of high-Q resonators by
probing EIT with a sideband drive on the atom [26], and to
detect single microwave photons [27].
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In particular, “polariton” states, which are superpositions
of qubit-resonator dressed states caused by additional drive
fields, were studied in [28–32]. The tunability of frequencies
and decay rates of transitions between polariton states was
used to implement an impedance-matched � system [30],
which was subsequently used for down-conversion and the
detection of microwave photons [27,31,32]. Polariton states
were also proposed for implementing a two-qubit gate be-
tween a superconducting and a flying qubit in a coplanar
waveguide [33].

In this article, we report spectroscopic measurements of
polariton states formed by driving a transmon artificial atom
[34] that is in turn, coupled to a lumped-element resonator.
In particular, we engineer our system in a “nondispersive”
regime, where the coupling (g1) of the first-to-second excited
state transition of the transmon to the resonator mode is com-
parable to the detuning (�1) between the resonator and the
transition frequencies. This is in contrast to previous works
[29,32,35] in which polariton states were observed in the “dis-
persive” regime, where the coupling between the transmon
and the resonator is considerably smaller compared to the
detuning for all relevant transitions of the transmon. By means
of eigenmode analysis and master equation calculations, we
simulate the polariton transitions and observe close agreement
with experiment. We also explain the qualitative differences
between polariton transitions in the dispersive and nondisper-
sive regimes by using perturbative calculations.

Previous studies on polariton states focused on the limiting
cases of the dispersive regime [35] and the fully nondispersive
regime of the |g〉 → |e〉 transition [36]. In contrast, we work
in the nondispersive regime of the |e〉 → | f 〉 transition while
the |g〉 → |e〉 transition is dispersive. As we will demonstrate,
this leads us to an interesting regime which enables us to
explain the observed spectral features qualitatively within the
dispersive approximation, while at the same time requiring us
to incorporate the nondispersive effects in our calculation for
good quantitative agreement with the data.
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The paper is organized as follows. In Sec. II, we describe
the Hamiltonian of a transmon-resonator system including a
drive field on the transmon. We discuss how our device differs
from typical dispersively coupled transmon-resonator systems
and introduce the concept of polariton states. In Sec. III,
we describe the experimental setup used to characterize the
device we fabricated. In Sec. IV, we discuss the experimen-
tally measured polariton spectra obtained for varying powers
and frequencies of the drive tone. We demonstrate very close
agreement of the measured spectra with results obtained from
an eigenmode analysis as well as full master equation sim-
ulations. In Sec. V, we qualitatively explain the behavior of
polariton transitions in the nondispersive regime using pertur-
bation theory and compare it to the usual dispersive case. We
conclude with a summary.

II. THEORETICAL MODEL

We consider a system consisting of a fixed-frequency trans-
mon coupled to a resonator, which can be described by the
generalized Jaynes-Cummings Hamiltonian [34]

Ĥ = h̄ωr â†â + h̄
∑

j

ω j | j〉〈 j| + h̄g0(â†b̂ + âb̂†). (1)

Here, ωr is the bare frequency of the resonator, h̄ω j is the
energy of the jth excited state (| j〉) of the transmon and
g0 is the transmon-resonator coupling strength. The exci-
tation (deexcitation) of the transmon and the resonator are
respectively described by the creation (annihilation) oper-
ators b̂† (b̂) and â† (â). In writing Eq. (1), we use the
rotating-wave approximation (RWA) to neglect the rapidly
oscillating terms. Furthermore, we neglect interactions that
lead to the exchange of multiple excitations between the
transmon and resonator, which is a valid approximation in
the transmon regime [34]. In our discussion, we will use
the labels g, e, f to refer to the three lowest transmon levels
with j = 0, 1, 2.

In our work, we introduce an additional drive on the trans-
mon that we call the “coupler” drive. In the presence of the
coupler drive, the system Hamiltonian can be written in the
rotating frame of the drive under the RWA as

Ĥrot = h̄δr â†â + h̄
∑

n

δn|n〉〈n|

+ h̄g0(â†b̂ + âb̂†) + h̄�d (b̂ + b̂†). (2)

Here, the drive has frequency ωd , and Rabi frequency �d , and
we introduce detunings δn = ωn − nωd , and δr = ωr − ωd .

Typical transmon-resonator systems operate in the so-
called dispersive regime, where the coupling strength is small
compared to the detuning between the transmon transition
frequencies and the resonator frequency. This condition can
be expressed as g j/� j � 1 for all energy levels j, where g j ≈
g0

√
j + 1 and � j = ω j, j+1 − ωr is the detuning of the res-

onator from the | j〉 → | j + 1〉 transition with corresponding
frequency ω j, j+1 = ω j+1 − ω j . The negative anharmonicity
of the transmon implies that ω j, j+1 < ω j−1, j . For a transmon,
the dispersive regime is usually realized by designing ω01 <

ωr [see Fig. 1(a)].

FIG. 1. (a) Frequency of bare resonator and qubit for nondis-
persive and dispersive case. (b) Plot showing the overlap amplitude
of the dressed states with the bare states in the nondispersive
regime (g1/�1 = 0.47), inset in the plot show the case of the dis-
persive limit (g0/�0 = −0.108, g1/�1 = −0.091).

However, in the case of our device, the transmon frequency
is greater than the resonator frequency, such that the frequency
for the |e〉 → | f 〉 transition of the transmon falls near the
resonator frequency, as shown in Fig. 1(a). This leads to
g1/�1 ≈ 0.47, for which the dispersive approximation does
not hold, leading to strong modifications in the nature of the
dressed states of the system. In the discussion that follows, we
first discuss the properties of the dressed states in the disper-
sive regime and then explain how these properties change in
the nondispersive case.

A. Dressed states in dispersive regime

1. Singly dressed states

The eigenstates of the undriven transmon-resonator
Hamiltonian (1) are the “singly” dressed states formed by the
mixing of the bare transmon and resonator eigenstates, see
Figs. 2(a) and 2(b). In the dispersive regime, the transmon-
resonator coupling essentially serves to modify the bare
transmon and resonator frequencies, but does not cause signif-
icant mixing of the corresponding eigenstates. As a result, the
dressed states are, to very good approximation, just the bare
eigenstates. This is numerically demonstrated in the inset of
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FIG. 2. Energy level diagrams showing (a) bare states of a qubit-resonator, (b) dressed states of qubit-resonator showing the coupler drive,
(c) five polariton states formed for a coupler drive resonant with |g, 0〉 to |e, 0〉 transition with dashed arrows showing transitions between
them.

Fig. 1(b), where we plot the contribution of bare states to the
different dressed states in the dispersive regime.

The dressed states involving the lowest two transmon levels
can be written in the dispersive regime as

|g, n〉 = |g, n〉 − g0
√

n

�0
|e, n − 1〉,

|e, n − 1〉 = |e, n − 1〉 + g0
√

n

�0
|g, n〉. (3)

Here, |g, n〉 and |e, n − 1〉 are the first and second dressed
states with n total excitations in the coupled transmon-
resonator system. In the basis given by |g, n〉, |e, n − 1〉 with
n = 0, 1, . . ., the transmon-resonator Hamiltonian in the dis-
persive regime can be approximated as

Ĥdisp = h̄ω′
r â†â + h̄ω′

01σ̂z/2 + h̄χσ̂zâ
†â. (4)

Defining χ j, j+1 ≡ g2
j/� j , the frequencies appearing in Eq. (4)

are given by ω′
r = ωr − χ12/2, ω′

01 = ω01 + χ01 and χ =
χ01 − χ12/2 [34].

2. Doubly dressed states: Polariton states

The inclusion of a coupler drive in the Hamiltonian (2)
serves to introduce further structure to the levels. This drive
further dresses the states, and the resultant “doubly” dressed
states are called polariton states [see Figs. 2(b) and 2(c)] [28].

In the dispersive regime, for weak to moderate drive pow-
ers (i.e., �d ), four polariton states are formed by mixing the
four lowest-energy singly dressed states as [28]⎛

⎜⎜⎜⎝
|1p〉
|2p〉
|3p〉
|4p〉

⎞
⎟⎟⎟⎠ =

(
R θ0

2
0

0 R θ1
2

)⎛
⎜⎜⎜⎝

|g, 0〉
|e, 0〉
|e, 1〉
|g, 1〉

⎞
⎟⎟⎟⎠, (5)

where

Rθ =
(

cos θ − sin θ

sin θ cos θ

)
,

and tan θ0(1) = 2�d/(ω′
ge,0(1) − ωd ) where ω′

ge,n is the fre-

quency of the |g, n〉 → |e, n〉 transition.

3. Polaritonic transitions

In our experiment, we probe the transition frequencies
between the various polariton states by introducing a weak
probe that induces resonator-like transitions, namely,

|1p〉 → |3p〉, |1p〉 → |4p〉, |2p〉 → |3p〉, and |2p〉 → |4p〉.
The corresponding contribution to the system Hamiltonian
from the probe is given by Hprobe = �p(âeiωpt + â†e−iωpt ).

As a point of reference, we present the polaritonic tran-
sition frequencies in the dispersive regime below, before
discussing the modifications in the nondispersive regime.
When the coupler drive ωd is resonant with ω′

ge,0, the tran-
sition frequency of the qubit when there are zero photons
in the resonator, the transition frequencies between polariton
states, ωi j,p (corresponding to the frequency of the |ip〉 → | jp〉
transition) are given by

ω13,p = ω′
r − (√

χ2 + �2
d − �d

)
,

ω14,p = ω′
r + (√

χ2 + �2
d + �d

)
,

ω23,p = ω′
r − (√

χ2 + �2
d + �d

)
,

ω24,p = ω′
r + (√

χ2 + �2
d − �d

)
. (6)

B. Dressed states in the nondispersive regime

In the case of nondispersive coupling between the trans-
mon and the resonator, no simple closed-form expressions
exist for the singly dressed states, and hence we turn to numer-
ical inquiries to find the eigenenergies and eigenstates of the
system. In Fig. 1(b), we plot the contribution of bare (uncou-
pled) transmon-resonator eigenstates to the dressed states for
the parameters of our device. In contrast to the dispersive case
(inset), we observe a substantial contribution of the higher
excited state | f , 0〉 to the dressed state |e, 1〉.

Similarly, in the case of the doubly dressed or po-
lariton states, we rely on numerical calculations, more
specifically, eigenmode simulations (Appendix C) to analyze
polaritonic transitions. Experimentally observed transitions
between these polariton states and comparisons with theoret-
ically predicted transition frequencies and intensities will be
discussed in detail in Sec. IV. For the second of these, we
note that the intensity of an observed transition between states
|α〉, |β〉 is proportional to

I|α〉↔|β〉 ∝ (Pα + Pβ )|〈α|â|β〉|2, (7)

where Pα, Pβ are the steady-state occupations of the states |α〉
and |β〉 and |〈α|â|β〉| is the probe-induced transition matrix
element.

Finally, we note that in nondispersive systems, the singly
dressed states are sometimes called polariton states even in the
absence of an external drive. However, for clarity, in this work
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FIG. 3. Schematic diagram of the measurement setup.
Figure shows a false-colored SEM image of the measured
device showing aluminum pattered transmon (red), resonator (blue),
center conductor of CPW (green), and ground plane (black) on
silicon (white) substrate.

we reserve the term polariton states for the doubly dressed
states obtained under external driving.

III. EXPERIMENTAL SETUP

A schematic of the measurement setup is shown in Fig. 3.
A fixed-frequency transmon capacitively coupled to a lumped-
element resonator is mounted at the 15-mK stage of a dilution
refrigerator. The resonator, in turn, is coupled to a coplanar
waveguide transmission line (CPW) to control and probe the
device. The probe and coupler tones used in the spectroscopic

measurements of polariton transitions are combined using a
directional coupler and input to the CPW of the device, as
shown in Fig. 3. The transmitted signal coming out of the
output port is then measured with the VNA after amplifying it
using a high electron-mobility transistor (HEMT) amplifier at
the 4-K stage followed by room-temperature (RT) amplifiers.

All the experimentally measured and derived parameters
of the device are given in Table I. The parameters ω01, g,
and α were extracted by tuning them and visually inspecting
the overlay of the eigenmode simulation plots over the ex-
perimental data to get the best agreement in both Figs. 4(b)
and 7(b). The dressed frequencies of the qubit and resonator
were extracted from qubit and resonator spectroscopy and
numerically verified by diagonalizing the Hamiltonian in
Eq. (1) using the aforementioned three parameters. The bare
resonator frequency was obtained by performing resonator
spectroscopy at very high probe powers. Time-domain mea-
surements were performed by applying shaped pulses on the
qubit followed by readout using high-power readout methods
[14] to obtain the coherence times (T1 and Tφ) of the qubit.
Further details regarding the time-domain measurements can
be found in Appendix B.

In this work, we study the polariton transitions as a
function of varying coupler drive-strength. For each coupler
power, we fix the frequency of the coupler tone at ωd =
ω′

ge,0, the dressed frequency of the qubit with zero photons
in the resonator, and sweep the frequency of a weak probe
tone to measure the transmission coefficient |S21|. The probe
frequency is swept across the “mean frequency” ω′

r,mid =
(ω′

r,e + ω′
r,g)/2, where ω′

r,e(g) is the singly dressed frequency
of the resonator when the transmon is in the first-excited
(ground) state. We vary the coupler powers from −80 dBm
to 0 dBm at the source (≈ −136 dBm to −56 dBm at the
device) (see Fig. 4). Following this, we also perform polariton
spectroscopy as we vary the coupler frequency while keeping
the coupler power fixed (see Fig. 6).

IV. OBSERVATIONS AND DISCUSSION

Figure 4(a) shows the spectroscopy of polariton transitions
for a fixed coupler frequency of ωd = ω′

ge,0, as the coupler
power Pd is varied. We plot the quantity |S21|, which is the

TABLE I. Device parameters.

Parameter Symbol Value

Bare resonator frequency ωr/2π 7.180 GHz
Bare qubit frequency ω01/2π 7.611 GHz
Dressed resonator frequency ω′

r/2π 7.1665 GHz

Coupling g/2π 46.57 MHz
Anharmonicity α/2π −291.4 MHz
Dressed qubit frequency with zero photons in resonator ω′

ge,0/2π 7.616 GHz

Dressed qubit frequency with one photon in resonator ω′
ge,1/2π 7.599 GHz

Dressed resonator frequency with qubit in ground state ω′
r,g/2π 7.175 GHz

Dressed resonator frequency with qubit in excited state ω′
r,e/2π 7.158 GHz

Qubit decay rate 1/T1 = �1 1.11 µs−1

Qubit dephasing rate 1/Tϕ = �ϕ 1.32 µs−1

Resonator decay rate κ 3.09 µs−1
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FIG. 4. Polariton state spectroscopy with coupler drive power
varied at ωd = ω′

ge,0. (a) Experimental data with different regimes of
coupler power marked. (b) Experimental data with the dashed lines
showing the simulated transition frequencies calculated by finding
the eigenvalues of the Hamiltonian given in Eq. (2) using the param-
eters given in Table I.

transmission amplitude normalized to the maximum observed
value. The observed data can be classified into four regimes
of coupler power, viz., very low power (< −70 dBm), low
power (−70 dBm to −45 dBm), moderate power (−45 dBm
to −15 dBm), and high power (> −15 dBm) regimes.

In Fig. 4(b), we overlay the measured data with results
from an eigenmode calculation, which enables us to iden-
tify the various polaritonic transitions. Furthermore, we are
able to qualitatively predict the intensity and linewidths of
the observed lines using a full master equation simulation.
The details of the eigenmode calculation and the master
equation simulations are presented in Appendixes C and D,
respectively. In the following, we qualitatively explain the
features observed in the experiment as shown in Fig. 4, using
the energies of the polariton states and the transition probabil-
ities between these states, which are plotted as a function of
coupler power in Fig. 5.

A. Very low-power regime

In the very low-power regime, one observes only one line,
which occurs at at ω′

r,g, i.e., the dressed resonator frequency

with transmon in the ground state. Here, only the state |g, 0〉
has a significant steady-state occupation, and the observed line
corresponds to the |g, 0〉 → |g, 1〉 transition induced by the
probe. In terms of polariton states, this corresponds to |1p〉 →

FIG. 5. (a) Shows transition probability of all five visible tran-
sitions due to probe drive. (b) Energy of polariton states varying
with the power of coupler drive in the dressed frame calculated by
finding the eigenvalues of the Hamiltonian given in Eq. (2) using the
parameters given in Table I.

|4p〉 and |2p〉 → |4p〉 transitions which are almost degenerate
in this regime.

B. Low-power regime

As the coupler power is increased, we move into the low-
power regime, where a second line appears. This line occurs at
ω′

r,e, i.e., the dressed resonator frequency with transmon in the
first-excited state, indicating that as the drive power increases,
the state |e, 0〉 begins to get populated. To explain the two lines
in terms of polariton states, we note that the nondispersive
nature of the higher transmon levels enhances the dispersive
shift χ ≈ (ω′

ge,0 − ω′
ge,1)/2 ≈ 2π × 8.5 MHz. The system in

this regime can be analyzed within the two-level dispersive
approximation, but using the measured value of χ in Eq. (6).
For low drive powers such that �2

d/χ
2 � 1, the transition

frequencies are approximately given by

ω13,p = ω̃r − χ + �d ,

ω14,p = ω̃r + χ + �d ,

ω23,p = ω̃r − χ − �d ,

ω24,p = ω̃r + χ − �d . (8)
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FIG. 6. Spectroscopy plot at different frequencies of coupler
drive detunings.

Equation (8) explains why only two lines are initially visible
in the low-power regime. To resolve any two transitions, the
frequency difference between them should be greater than
the resonator linewidth κ/2π ≈ 491 kHz. The two spectral
lines observed correspond to the nearly degenerate, and hence
unresolved pairs of transitions |1p〉 → |3p〉, |2p〉 → |3p〉, and
|1p〉 → |4p〉, |2p〉 → |4p〉, which only differ by ∼�d � κ .
This can also be seen in Fig 5(b) where the states |1p〉 and
|2p〉, and hence the above-mentioned transitions, are nearly
degenerate.

We also observe that the line around ω′
r,g is brighter than the

one around ω′
r,e. This can be explained by noting that, at low

drive power and in the presence of transmon and resonator
dissipation, the steady-state population is predominantly in
the ground state |g, 0〉.

With a further increase in power, the degeneracy of the |1p〉
and |2p〉 states, and hence of the two pairs of transitions, is
lifted (see Fig. 5), and we observe four distinct lines.

C. Moderate-power regime

As one starts to move into the moderate-power regime, we
observe that the intensities of the |1p〉 → |4p〉 and |2p〉 →
|3p〉 lines start to diminish. This agrees with the behavior of
the corresponding transition probabilities, |〈α|a|β〉|2, which
decrease with an increase in the coupler power, as seen in
Fig. 5(a). Therefore, only the |1p〉 → |3p〉 and |2p〉 → |4p〉
transitions are visible as the drive power increases.

In this regime, the dispersive two-level approximation
breaks down for our system. Equations (6) predict that
the |1p〉 → |3p〉 and |2p〉 → |4p〉 transition frequencies only
asymptotically converge as the drive power is increased. Con-
trary to this prediction, we observe a distinct crossing of the
two lines around a drive power of −26 dBm. The presence

FIG. 7. Polariton state spectroscopy with ωd varied at coupler
drive power of −40 dBm. (a) Experimental data. (b) Experimental
data with eigenmode simulation calculation similar to Fig. 4.

of a distinct crossing can be qualitatively explained by the
unusually large value of χ in our device, which is made
possible by the nondispersive coupling of the higher transmon
levels to the resonator. We discuss this in greater detail in
Sec. V.

D. High-power regime

As one increases the power of the coupler drive even fur-
ther, going into the high-power regime, a fifth line is observed
(see Fig. 4). This fifth line can be explained using Fig. 5(a),
where the transition probability between |2p〉 and a fifth po-
lariton state |5p〉 becomes appreciable at high drive powers.
Furthermore, the frequency of this transition falls within the
probed range of frequencies only at high powers. The cross-
ing between |2p〉 → |5p〉 and |1p〉 → |3p〉 transitions around
−10 dBm is also predicted by numerical calculations of the
polariton state energies as seen in Fig. 4(b).

E. Spectroscopy at different coupler frequencies

Previously, we discussed spectroscopic measurements
when the coupler drive frequency ωd was resonant with the
|g, 0〉 → |e, 0〉 transition. Here, we consider polariton spectra
measured with different values of �ωd = ωd − ω′

ge,mid where
(ω′

ge,mid = ω′
ge,0 + ω′

ge,1)/2, as shown in Fig. 6. From these
plots, we observe that the crossing between the |1p〉 → |3p〉
and |2p〉 → |4p〉 lines can be observed only for ωd � (ω′

ge,0 +
ω′

ge,1)/2. This observation is consistent with our numerical
simulations (see Appendix D).

To gain further insight into the effect of coupler tone fre-
quency, we performed spectroscopy of the polariton states
by sweeping the coupler frequency while keeping the cou-
pler power fixed. The measured data for a coupler power
of −40 dBm is shown in Fig. 7(a) and a comparison with
the eigenmode calculation is shown in Fig. 7(b). We observe
that the spectrum at a coupler tone frequency ωd = ω′

ge,mid
resembles a Mollow triplet. This value of ωd corresponds
to the point where |1p〉 → |3p〉 and |2p〉 → |4p〉 transitions
become degenerate. Moreover, the triplet is observed at this
specific value of ωd for a broad range of drive powers. At
coupler frequencies away from this point, we observe four
lines in the spectrum corresponding to the four polaritonic
transitions.
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FIG. 8. Master equation simulation of spectroscopy of the sys-
tem with (a) nondispersive coupling and (b) dispersive coupling.

V. COMPARISON WITH DISPERSIVE CASE

In this section, we discuss the role of the nondispersive
coupling of the higher transmon levels in the observed spec-
trosopic data.

A. Master equation simulations

First, we qualitatively compare master equation simula-
tions of our device in the nondispersive regime, with a typical
transmon-resonator system in the dispersive regime, where
the bare transmon frequency is 1 GHz below the resonator,
as shown in Fig. 1. All other parameters are the same for
both systems and are listed in Table I. The details of the
master equation and the numerical methods used are given in
Appendix D.

The simulated spectra for the two systems are shown in
Figs. 8(a) and 8(b). For the simulations, we plot the normal-
ized mean number of photons in the resonator in the steady
state, defined as

ñ = 〈â†â〉 − 〈â†â〉min

〈â†â〉max − 〈â†â〉min
, (9)

where 〈â†â〉 is the mean resonator occupation in steady state
and the maximum and minimum values are taken over the
range of parameters scanned. The location of the lines, their
intensities, and linewidths in Fig. 8(a) are consistent with
the measured data shown in Fig. 4. A noticeable difference
between the spectra in Figs. 8(a) and 8(b) is the absence of

a distinct crossing of the lines in the latter case. Instead, we
observe the two lines approaching each other in frequency, be-
coming indistinguishable beyond −55 dBm of coupler power.

B. Qualitative explanation for distinct crossing

The observation of a distinct crossing in the experiment
is the result of a large value of χ , which, in our device,
originates from the nondispersive coupling of the |e〉 → | f 〉
transition to the resonator. Despite the nondispersive origin of
this large χ , we can qualitatively predict a crossing through
analytical calculations in a multilevel dispersive approxima-
tion, while using a large value of χ . To do so, we extend the
work of Ref. [28] to include the effect of higher levels along
the lines of Ref. [34]. The central idea is that, for the data
shown in Fig. 4, the coupler drive frequency is near-resonant
with |g, n〉 → |e, n〉 transitions but off-resonant from |e, n〉 →
| f , n〉 transitions. This is because of the fact that, for moderate
drive powers, we have �d � α where α = ωe, f − ωg,e is the
anharmonicity of the transmon. As a result, the off-resonant
driving of higher transmon transitions by the coupler can be
treated using perturbation theory. The details of this calcula-
tion are presented in Appendix E. Using this approach, we
find that the frequencies of the |1p〉 → |3p〉 and |2p〉 → |4p〉
polaritonic transitions are given by

ω13,p = ω̃r − (√
χ2 + �2

d − �d
) + �2

d cos θ1

α
,

ω24,p = ω̃r + (√
χ2 + �2

d − �d
) − �2

d cos θ1

α
, (10)

where tan θ1 = −�d/χ . The two frequencies become degen-
erate (ω13,p = ω24,p) when

sin θ1 + �d sin(2θ1)

2α
= 1. (11)

This equation reduces to the case of a transmon truncated to
a two-level system in the limit that α → ∞. In this case, the
crossing condition becomes θ1 = π/2, which is only satisfied
as �d → ∞ and hence the crossing is not observed.

For a multilevel system like a transmon, where α is
finite, we can obtain an approximate crossing condition
from Eq. (11). For �2

d � χ2, we can substitute sin θ1 ≈ 1 −
χ2/(2�2

d ), cos θ1 ≈ −χ/�d in Eq. (11) and obtain the cross-
ing condition �2

d ≈ −χα/2. In addition, to observe a distinct
crossing, we require that the crossing condition must be sat-
isfied for drive powers such that the two transitions are well
resolved. Since the resolution of the observed transitions is
limited by the resonator linewidth κ , the two transitions are re-
solvable when their frequency difference close to the crossing
is greater than κ , i.e.,

√
χ2 + �2

d − �d > κ . By substituting
the crossing condition �2

d ≈ −χα/2 into this inequality, we
arrive at the condition |χ | � (κ

√
2|α|)2/3 that satisfies both

the above requirements.
For a transmon-resonator system with typical values of

α/2π ∼ −300 MHz and κ/2π ∼ 0.5–10 MHz, this leads to
a required value of χ/2π � 5.3–39 MHz. In our device, the
nondispersive coupling of the upper transmon levels to the
resonator leads to χ/2π ≈ 8.5 MHz, which for a κ/2π ≈
0.5 MHz, enables us to observe a distinct crossing. On the
other hand, for a transmon system coupled in the dispersive
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FIG. 9. Comparison of eigenmode simulation for the
Hamiltonian versus multilevel dispersive Hamiltonian in Eq. (E1).

regime, usually χ/2π � 2 MHz, making the observation of a
distinct crossing difficult.

We note that a similar spectrum and crossing, as shown in
Fig. 4, was also reported in Ref. [35]. However, in that work,
the device operated in a fully dispersive regime, and hence the
observed spectra and crossing could be fully explained within
the dispersive approximation. In contrast, in our system, al-
though we are able to qualitatively explain the existence of
a crossing using the multilevel dispersive approximation, we
find that it fails to achieve a good quantitative agreement in
master equation simulations as shown in Fig. 9. Instead, as
shown in Fig. 8(a), we obtain excellent agreement when using
the full nondispersive JC interaction in our simulations. The
different operating regimes of the device in Ref. [35] and in
our work is illustrated in Fig. 1(a).

VI. CONCLUSION

We theoretically and experimentally studied the properties
of polariton states in a transmon-resonator system operating
in a nondispersive regime. The nondispersive coupling arises
from the fact that the frequency of the |e〉 → | f 〉 transition of
the transmon lies close to the resonator frequency, resulting in
a value of g1/�1 ≈ 0.47. By introducing a coupler drive on
the transmon, we generated polariton states. We spectroscopi-
cally studied the polarition transitions using a weak probe field
on the resonator. By using eigenmode analysis, and master
equation simulations, we were able to explain the origin of
the observed spectral lines and their intensities. We found that
the observed lines differed significantly from those expected
in the dispersive regime. In particular, at moderate coupler
drive powers, we observed a distinct crossing between two
lines. Using perturbation theory, we derived a condition on
χ required to observe a crossing, and showed that the large
value of χ/2π ≈ 8.5 MHz in our device satisfied this condi-
tion. We also showed that this condition was difficult to be
satisfied in the usual dispersive regime.
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APPENDIX A: DEVICE FABRICATION

The device was fabricated in three steps of lithography. The
first step involved patterning of the gold alignment markers.
A fresh 2-inch Si wafer was coated with an optical resist
S1805, spun at 4000 rpm for 45 s and 1 min. of baking
at 110◦ C. Then the alignment marks were written using a
Heidelberg direct-write laser writer followed by development
using a AZ786 developer. Postdevelopment, the wafer went
through the process of O2 plasma ashing to remove the extra
photoresist. A thin film of gold was deposited using an e-beam
evaporator (Leybold) followed by a liftoff process using ace-
tone. A second step of photolithography was used to pattern
the CPW transmission line, resonator, and ground plane in
aluminum. The deposition of Al was done in an e-beam evapo-
rator followed by a liftoff process using acetone. The final step
of patterning the Josephson junctions involved electron beam
lithography in a 30kV Raith eLINE tool. The samples were
first coated with PMMA 950 C6 resist and baked for 15 min. at
180◦ C. Following e-beam lithography and development using
MIBK: IPA(1:3) for 40 s and IPA for 1 min, the Josephson
junctions were formed using a bridgeless junction technique
[37]. The intermediate oxidation step between the two Al
depositions was done at 700 mTorr pressure for 20 min.

APPENDIX B: SETUP FOR TIME
DOMAIN MEASUREMENTS

We measured the relaxation and dephasing times of the
transmon T1 and Tφ , respectively, using time domain mea-
surements. The setup used to carry out the time domain
measurements is shown in Fig. 10. We followed standard time
domain measurement techniques as described in Refs. [14,38]
using a high-power readout scheme.

APPENDIX C: EIGENMODE ANALYSIS

We recall that the Hamiltonian in the frame of the coupler
drive is given by

Ĥrot

h̄
= δr â†â +

∑
n

δn|n〉〈n| + g0(â†b̂ + âb̂†)

+ �d (b̂ + b̂†), (C1)

where the symbols are defined in Sec. II. To find the en-
ergy of polariton states, we diagonalized the Hamiltonian
(C1). We note that the transition frequencies in the laboratory
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FIG. 10. Schematic diagram for the time domain measurement.
The time domain pulses were generated using an arbitrary waveform
generator (AWG) for both the transmon and the resonator. The output
signals were down-converted and digitized using an analog-to-digital
converter (ADC) with a 1 GSa/s sampling rate.

frame can be obtained from the eigenfrequencies of this
Hamiltonian upon shifting them by the coupler frequency.
This point becomes clear when computing the transition ma-
trix elements in the presence of a probe, which is discussed
below.

In the additional presence of a probe, the full Hamiltonian
Hp of the system can be written in the frame of the coupler
drive as

Ĥp = Ĥrot + h̄�p(âeiδpt + â†e−iδpt ), (C2)

where �p is the probe strength, ωp is the probe frequency, and
δp = ωp − ωd .

As this probe is considered to be weak, we can neglect
its effect on the eigenspectrum of the Hamiltonian. However,
we do not neglect it in the context of transitions between
eigenstates of Hrot, for example, |α〉, |β〉 with respective ener-
gies h̄ωα, h̄ωβ . The corresponding transition matrix element
is given by

τ = 〈α(t )|(Hp/h̄)|β(t )〉
= �p(〈α|eiωαt )(âeiδpt + â†e−iδpt )(e−iωβ t |β〉)

= �p(e−i(ωτ −δp)t 〈α|â|β〉 + ei(ωτ −δp)t 〈α|â†|β〉), (C3)

where h̄ωτ = h̄(ωβ − ωα ) is the difference between the en-
ergies of the states in the coupler drive frame. From this,
we see that to obtain a nonzero time-averaged value of τ ,
the probe frequency must equal the transition frequency in
the laboratory frame, which is given by ωd + ωτ , which
is the condition for energy conservation.

For all the simulations we used the QUTIP [39] package
in PYTHON, and considered four levels in both the transmon
and the resonator. The Rabi frequency �d is related to the
amplitude of the drive as �d = βV where β is the coupling
parameter between the drive and resonator. The voltage V
can be converted to the power applied to the device using the
relation V = √

Z × 10(Pc−att−30)/10 where Z is the impedance
of the transmission line (CPW), and Pc is the drive’s power at
the source in dBm and att is the attenuation present in the
line. Using the above relation, all the unknown parameters
can be absorbed in one constant C such that �d = C10Pc/20

where C = β
√

Z × 10−(att+30)/10. The parameter C was tuned
along with ωge, g, and α to get the agreement between the
experimental data and with simulation results, and the value
of C was found to be 0.562.

APPENDIX D: DETAILS OF MASTER
EQUATION SIMULATIONS

While eigenmode analysis enables us to identify the ob-
served transitions and qualitatively predict their intensities
and linewidths to obtain a quantitative prediction, we use mas-
ter equation simulations. Starting from the laboratory-frame
Hamiltonian including both the coupler and the probe fields,
we transform to an interaction picture through the unitary
operator

Û ′
rot = eiωpt (â†â)+iωd t (b̂†b̂), (D1)

resulting in an interaction Hamiltonian

Ĥ ′
rot

h̄
= δr â†â +

∑
n

δn|n〉〈n| + �d (b̂ + b̂†) + �p(â + â†)

+ g0(ei�t â†b̂ + e−i�t b̂†â), (D2)

where � = ωp − ωd .
To include the environmental effects like the decay of

transmon and resonator, the master equation simulations were
performed including Lindblad terms describing the decay
(rate �1) and dephasing (�φ) of the transmon, and the decay
of the resonator (κ). The complete master equation is

˙̂ρ = − i

h̄
[Ĥ ′

rot, ρ̂] + κD[â]ρ̂ + �1D[b̂]ρ̂ + �φD[b†b]ρ̂,

(D3)

where D[Â]ρ̂ = Âρ̂Â† − 1
2 (Â†Âρ̂ + ρ̂Â†Â) for an operator Â.

The simultaneous presence of both coupler and probe
means that there is no rotating frame in which the
Hamiltonian can be made time-independent. Since this equa-
tion is time-dependent, finding steady-state solutions to it can
be computationally expensive. To decrease the computational
resources required, we make use of the method of matrix
continued fractions [40,41] as our time-dependent terms are
sinusoidal with a single frequency. In this method, the density
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matrix is reshaped into a vector and the master equation is
expressed as a vector differential equation as

˙̂ρ = (L0 + L1ei�t + L−1e−i�t )ρ̂, (D4)

where L(−1,0,1) are Liouvillian superoperators represented as
matrices acting on the vector ρ̂. This equation can be solved
iteratively by expanding ρ̂ into its frequency components. We
write ρ̂(t ) as

ρ̂(t ) =
∑
n∈Z

ρ̂nein�t . (D5)

Substituting this ansatz into the master equation gives∑
n

in�ρ̂nein�t =
∑

n

(L0 + L1ei�t + L−1e−i�t )ρ̂nein�t ,

(D6)

through which a recursion relation of the form

L1ρ̂n−1 + (L0 − in�)ρ̂n + L−1ρ̂n+1 = 0, (D7)

between different frequency components of ρ̂ is obtained.
This equation needs to be solved via the method of matrix
continued fractions. First, for n > 0, we set ρ̂n = Snρ̂n−1. Sub-
stituting and simplifying, we obtain

Sn = −[(L0 − in�) + L−1Sn+1]−1L1, (D8)

through which we can obtain S1 by setting a large N such that
Sn = 0 ∀ n > N . This method converges quickly as it is based
in the regular continued fraction method that can be proven to
converge “exponentially” quickly.

A similar treatment for n < 0 with ρ̂n = Tnρ̂n+1 gives

Tn = −[(L0 − in�) + L1Tn−1]−1L−1, (D9)

from which T−1 can be obtained by setting T−N = 0.
Finally, we can substitute everything back into the recur-

sion relation at n = 0 to get

(L−1S1 + L0 + L1T−1)ρ̂0 = 0, (D10)

which is solved easily to get ρ̂ss = 〈ρ̂〉t = ρ̂0, and hence ρ̂n.
A partial implementation of this method can be found in

QUTIP [39] for L1 = L−1. For our simulations, we extended
the method to treat the case when L1 �= L−1

For our system, we write the terms in the master equa-
tion as

L0 = − i

h̄
[Ĥ ′

rot,0, ·] + κD[â] · +�1D[b̂] · +�φD[b̂†b̂]·,

L1 = − i

h̄
[g0â†b̂, ·], L−1 = − i

h̄
[g0âb̂†, ·], (D11)

where Ĥ ′
rot,0 is the time-independent part of the

Hamiltonian Ĥ ′
rot in Eq. (D2). Solving these equations as

described above, we find the time-independent steady-state
component ρss and the associated mean number of photons in
the resonator mode 〈â†â〉 = Tr[â†â ρ̂ss], using which we com-
pute ñ according to Eq. (9). In the experiment, we can measure
the coefficient of power transmission, which is proportional
to the steady-state resonator occupation. Hence, we plot the
later observable as a proxy for the spectrum in our numerical
simulations.

FIG. 11. Master equation simulations corresponding to spec-
troscopy plot Fig. 6 at different coupler drive detunings, as described
in Appendix D. The plot shows the normalized value for the occupa-
tion of photons in the resonaotor.

In Fig. 11, we show simulated spectra for the parameters
of the experimental data presented in Fig. 6. The simulations
reproduce the observed spectra very well and provide further
confirmation of the accuracy of our modeling.

APPENDIX E: PERTURBATION THEORY
CALCULATIONS TO ACCOUNT FOR HIGHER LEVELS

IN THE TRANSMON

In this Appendix, we show the detailed calculations that
help us explain the existence of a crossing in a multi-
level nondispersive system. To do this, we extend the work
of Ref. [28] to consider the effect of higher levels in the
transmon. Applying a multilevel dispersive rotation to the
Hamiltonian [Eq. (2)], we obtain the Hamiltonian written in
the singly dressed basis as [34]

Ĥdisp,rot

h̄
≈

∑
n

δ′
n|n〉〈n| + δ′

r â†â − χ01â†â|0〉〈0|

+
∑
n>0

(χn−1,n − χn,n+1)â†â|n〉〈n| + �d (b̂ + b̂†),

(E1)

where δ′
n is the dispersively shifted energy levels of the trans-

mon in the drive frame, δ′
r is the dispersively shifted frequency

of the resonator, and χi,i+1 are the dispersive frequency shifts
between neighboring transmon states. Here we assume that
the residual drive on the dressed resonator arising from the
dispersive rotation can be neglected.

For the subspace with r excitations in the resonator, we
can replace â†â → r and write the transmon part of the
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Hamiltonian as

Ĥq,r

h̄
=

∑
n

δn,r |nr〉〈nr | + �d (b̂ + b†), (E2)

where |nr〉 = |n, r〉 and the resonator-induced shifts were ab-
sorbed into an effective energy δn,r for the level |nr〉.

To simulate the experimental results presented here, we
consider the case of ωd near-resonant to ω′

ge,r = ω′
01,r while

being far-detuned from ω′
e f ,r = ω′

12,r . Also, for the sake of this
calculation, we assume �d � α, the anharmonicity. Hence,
the effective contribution of off-resonant driving can be stud-
ied perturbatively by writing Ĥq,r as

Ĥq,r = Ĥ0
q,r + Ĥ1

q,r, (E3)

where

Ĥ0
q,r =

∑
n

δn,r |nr〉〈nr | + �d (|0r〉〈1r | + |1r〉〈0r |) (E4)

is the unperturbed Hamiltonian and

Ĥ1
q,r = �d

∑
n>1

√
n(|nr〉〈(n − 1)r | + |(n − 1)r〉〈nr |) (E5)

is the perturbation. As a result of the coupler drive, the first
two eigenstates of the unperturbed Hamiltonian are given by( |+r〉

|−r〉
)

= R θr
2

( |0r〉
|1r〉

)
, (E6)

where tan θr = 2�d/δ1,r , while the other eigenstates are |nr〉
for n > 1. Since the drive mixes only adjacent levels, the
energy corrections h̄�ω±,r arising from second-order pertur-
bation theory to the |+r〉, |−r〉 energies h̄ω0

±,r are only due to
the |2r〉 state. These are given by

ω0
±,r = δ1,r

2
±

√(
δ1,r

2

)2

+ �2
d , (E7)

�ω−,r = 2�2
d

sin2(θr/2)

ω0−,r − δ2,r
, (E8)

�ω+,r = 2�2
d

cos2(θr/2)

ω0+,r − δ2,r
. (E9)

We can now determine the transition frequencies for the
|1p〉 → |3p〉 (ω13,p) and |2p〉 → |4p〉 (ω24,p) polariton transi-
tions. In the dispersive regime, the polariton states are given
by the mapping |1p〉 ≡ |−, 0〉, |2p〉 ≡ |+, 0〉, |3p〉 ≡ |−, 1〉,
and |4p〉 ≡ |+, 1〉. When ωd = ω′

ge,0 (as in Fig. 4), we have
δ1,0 = 0, δ1,1 = −2χ . Furthermore, we can also approximate
δ2,0 ≈ δ2,1 ≈ α � ω±,r . Then, we obtain

ω13,p = ω̃r − (√
χ2 + �2

d − �d
) + �2

d cos θ1

α
, (E10)

ω24,p = ω̃r + (√
χ2 + �2

d − �d
) − �2

d cos θ1

α
, (E11)

which correspond to Eq. (10) discussed in the paper.
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