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Control of wave scattering for robust coherent transmission in a disordered medium
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The spatial structure of the inhomogeneity in a disordered medium determines how waves scatter and propa-
gate in it. We present a theoretical model of how the Fourier components of the disorder control wave scattering
in a two-dimensional disordered medium, by analyzing the disordered Green’s function for scalar waves. By
selecting a set of Fourier components with the appropriate wave vectors, we can enhance or suppress wave
scattering to filter out unwanted waves and allow the robust coherent transmission of waves at specific angles
and wavelengths through the disordered medium. Based on this principle, we propose an approach for creating
selective transparency, band gaps, and anisotropy in disordered media. This approach is validated by direct
numerical simulations of coherent wave transmission over a wide range of incident angles and frequencies and
can be experimentally realized in disordered photonic crystals. Our approach, which requires neither nontrivial
topological wave properties nor a non-Hermitian medium, creates opportunities for exploring a broad range of
wave phenomena in disordered systems.
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I. INTRODUCTION

Understanding how wave scattering in a disordered
medium depends on the spatial structure of its inhomogene-
ity is important for progress in fundamental topics such as
Anderson localization [1–5] and other transport phenomena
[6] as well as for a wide range of applications in photonics
[7,8], wave shaping [9], imaging [10,11], acoustics [12], mat-
ter waves [13], and even signal filtering [14]. A remarkable
insight into this relationship is found in Ref. [15], which
shows how the electron wave interaction with the Berry po-
tential can result in sharp Bragg-like scattering in spite of the
absence of periodicity, with the outgoing waves distributed at
specific angles in a manner akin to powder x-ray diffraction.
Although this phenomenon is reported for electron waves in
the Schrödinger equation, its underlying mechanism is not
quantum mechanical and instead depends on the orientation of
the incident wave vector k with respect to the Fourier (plane-
wave or q) components of the disorder [16], as represented by
the Berry potential [15]

U (r; {φ j}) = A√
N

N∑
j=1

cos(p j · r + φ j ), (1)

where r is the position vector in two dimensions, A is a
constant having the dimension of energy, N is the number
of Fourier components [17], and p j and φ j denote the wave
vector and phase of the jth component, respectively, with
|p j | = qc [18]. The set of phases {φ j} uniquely determines
the spatial configuration of U , with each φ j taking a value
between 0 and 2π . Equation (1) describes a two-dimensional
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(2D) random potential constructed from a superposition of
plane waves of equal wave number qc and distributed over
all propagation angles. Because the Fourier components of
the Berry potential are localized on a circular manifold of
radius qc, electron waves with |k| < qc/2 undergo minimal
scattering and thus propagate without attenuation.

The finding suggests that the distribution of the Fourier
components of the spatial disorder in a medium, as described
by its reciprocal-space (q) spectrum, has profound bearing for
scattering and coherent wave transmission. This principle has
been utilized in partially disordered media [8,19], in which
the spatial distribution of particulate scatterers, characterized
by the structure factor S(q), can be correlated to generate
transparency for a range of low-frequency waves [20]. In
stealthy hyperuniform (SH) systems in particular [21,22],
where S(q) = 0 for 0 < |q| � qSH and qSH is the length scale
of the absence of long-wavelength density fluctuations, this
results in optical transparency for incident waves with wave
numbers in the range of |k| < qSH/2 [20], a finding closely
related to that of Ref. [15]. Indeed, one may interpret Eq. (1)
as an analog of SH-type disorder for the Schrödinger equation,
with the Berry potential behaving as a random scalar field
with stealth hyperuniformity [22]. Similar conditions for wave
transparency in other SH systems have also been found by
Kim and Torquato [23,24].

A common conceptual thread that runs through the
earlier articles on wave propagation in SH systems and
Ref. [15] is that multiple wave scattering is suppressed when
long-wavelength fluctuations are absent from the disorder
configuration. In a classical disordered medium such as an
inhomogeneous dielectric material with a position-dependent
permittivity ε(r) [25,26], the control of scattering is real-
ized by modulating the Fourier components of ε(r) such
that its reciprocal-space spectrum conforms to a particular
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distribution. Because multiple scattering underlies the wave
transport phenomena of diffusion and Anderson localization
[6], this control of scattering can potentially allow us to engi-
neer the spectrum of waves transmitted through the disordered
medium. We remark here that there is a slight difference
between the complementary approaches of Ref. [15] and ex-
isting work on SH systems [21,22]. The former proposes the
reciprocal-space loci of the Fourier components of the disor-
der while the latter determines where the Fourier components
should be excluded.

In our paper, we propose a systematic approach to engi-
neer disorder for the selective suppression of scattering to
allow the robust transmission of waves through the disor-
dered medium for isotropic and selective transparency with
orientation-dependent frequency-space windows. Although it
is known that SH systems can act as isotropic low-pass
filters [20,21,24], we go beyond the current state of the
art through the introduction of a more elaborate substruc-
ture in the disorder spectrum, perhaps foreshadowed by
the notion of directional hyperuniformity in Ref. [22], and
show, in the context of a scalar wave model, how disorder
can be more precisely engineered to create midband gaps
and orientation-dependent frequency-space transmission win-
dows. We discuss its theoretical basis by analyzing how the
Fourier-space distribution of the disorder affects wave scat-
tering within the framework of the perturbative expansion
of the disordered Green’s function and the incident wave
function. A connection is also made with wave transparency
in SH systems. Our analysis sheds light on the relationship
between the disorder components and the on-shell scattering
contributions to the disordered Green’s function, and predicts
which plane waves are suppressed by disorder scattering. We
use the insights from the analysis to discuss the conditions for
isotropic and selective transparency. For validation, we com-
pute the coherent transmission coefficient t (k) [27] for a wide
range of incident angles and frequencies, using the Atomistic
Green’s Function (AGF) method adapted from Refs. [28,29],
and obtain excellent agreement between the theory and simu-
lation results. We demonstrate with a 2D example of how the
disorder components can be combined to suppress wave scat-
tering and to enable robust coherent transmission for certain
plane-wave states at specific incident angles and frequencies.
Possible experimental realizations are also suggested.

II. THEORY OF DISORDER SCATTERING
OF SCALAR WAVES

A. Scalar wave model

To discuss the scattering of a harmonic wave ψ (r) of
angular frequency ω at position r in a disordered medium, we
use the Helmholtz wave equation

[
∇2 +

(ω

c

)2
ε(r)

]
ψ (r) = 0 (2)

where ∇2 and c denote the 2D Laplace operator and wave
speed, respectively. Equation (2) has been used to model
transverse magnetic (TM) wave scattering in dielectric
materials [30–32]. For the purpose of this paper, we interpret
the wave function ψ (r) as the out-of-plane electric-field

component in a 2D dielectric medium [30–32] although our
results can be generalized to nonphotonic systems. The static
disorder is described by the permittivity function

ε(r) = ε0[1 + f (r)] ,

where ε0 = 1 denotes the permittivity of the disorder-free
medium; f (r), which denotes the disorder function
corresponding to the position-dependent fluctuations of
the permittivity, can be written as a sum of N Fourier
components like in Eq. (1), i.e.,

f (r) = α

√
2

N

N∑
j=1

cos(p j · r + φ j ), (3)

with the normalization constraint lim�→∞ 1
�

∫
�

dr| f (r)|2 =
α2 where � is the area of integration. The dimensionless con-
stant α is the root-mean-square value of f (r) and determines
the relative disorder strength in Eq. (2) as well as the “cou-
pling constant” in the Dyson expansion, which in our calcula-
tions we set as α = 0.1. Instead of a discrete sum, Eq. (3) can
also be expressed as an integral f (r) = α

∫
dqρ(q) exp[i(q ·

r + φq)] where ρ(q) is the “density of states.” The Fourier
transform of f (r) is given by F (q) = 1

h2

∫
�

dre−iq·r f (r) =
α( 2π

h )2 ∑N
j=1

√
2
N [eiφ j δ(q − p j ) + e−iφ j δ(q + p j )] where h is

the 2D unit-cell spacing. To facilitate our discussion of scat-
tering, we rewrite Eq. (2) as [25,26]

[∇2 + κ0(ω)2 + V (ω, r)]ψ (r) = 0, (4)

where κ0(ω) = ω
√

ε0/c is the frequency-dependent wave
number for a plane-wave state in the disorder-free medium
and V (ω, r) = κ0(ω)2 f (r) denotes the perturbation term
which scales linearly with α. In the absence of disorder
where V (ω, r) = 0, Eq. (4) admits the plane-wave solution
φ0(r) = 1√

�
eik·r which describes a state with the wave vector

k, such that |k| = κ0.

B. Dyson expansion of the disordered Green’s function

To elucidate the relationship between wave scattering
and disorder, we analyze the retarded Green’s function
G+(ω, r, r′), which describes the ω-dependent response at
point r from a source at r′ in the disordered medium [6,33] and
is used in perturbative expansion of the wave function ψ (r).
Although some of the material in the following discussion
on the Dyson expansion can be found in textbooks, we still
discuss it in order to clarify the role of the Fourier components
of V (ω, r) in scattering and wave transparency. Before we
proceed, we give a qualitative bird’s eye view of our approach
to determining wave transparency. In our analysis, we discuss
how V (ω, r) affects the perturbative corrections to the Green’s
function and the incoming plane-wave state, which are related
through the Lippmann-Schwinger equation, and identify the
condition for wave transparency under which these correc-
tions vanish. For simplicity, we describe these corrections in
terms of their Fourier transforms V (q) with respect to the
reciprocal-space coordinates k and q. This sheds light on the
role of V (q) in the integrals for the perturbative corrections.
We exploit the chain structure of these integrals to identify the
V (q) components that suppress the perturbative corrections
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when the former is set to zero. In addition, we show that
when we set V (q) = 0 for these components, the higher-order
perturbative corrections beyond the Born approximation are
also suppressed.

We remark that in our treatment of the disordered Green’s
function G+, we do not rely on any kind of configuration
averaging and instead rely on the analysis of wave scat-
tering for each disorder configuration corresponding to a
unique set of phases {φ j} from Eq. (3). This greatly simpli-
fies our analysis because it eliminates the need to evaluate
the configuration-averaged products of V in the higher-order
perturbative corrections to G+ [6]. Without configuration
averaging, the integrals for each order in the perturbative
expansion have a chain structure that can be exploited. This
chain structure allows us to show that if that disorder configu-
ration satisfies the condition V (q) = 0 for an identified set of q
vectors such that the lowest-order correction to G+ vanishes,
then all the higher-order corrections also vanish and we can
determine the condition for wave transparency.

To quantify the O(αn) perturbative scattering correction
to the incident k plane-wave state, we introduce the function
Pn(k, r), which is also used in the perturbative expansion of
G+, i.e.,

ψ (r) = φ0(r)[1 + P1(k, r) + P2(k, r) + · · · ], (5)

and analyze its relationship to V (ω, r). The connection be-
tween ψ (r) and φ0(r) can be realized through the Lippmann-
Schwinger equation [33]

ψ (r) = φ0(r) +
∫

dr′G+
0 (ω, r, r′)V (ω, r′)ψ (r′)

which we can rewrite as

ψ (r) = φ0(r) +
∫

dr′G+(ω, r, r′)V (ω, r′)φ0(r′) (6)

where the second term on the right represents the correction to
the unperturbed state after the perturbation V is switched on.
The significance of Pn(k, r) is that it depends on the scattering
strength of the plane wave by the disorder V . Hence, the re-
lation Pn(k, r) = 0 is important for determining the condition
for wave transparency.

In the absence of disorder (α = 0), we define the re-
tarded Green’s function G+

0 [6,33] using the equation [∇2 +
κ0(ω)2]G+

0 (ω, r, r′) = δ(r − r′), where δ(r − r′) denotes the
Dirac delta function [34]. When disorder is present, the
retarded Green’s function G+(ω, r, r′) is defined by the equa-
tion [∇2 + κ0(ω)2 + V (ω, r)]G+(ω, r, r′) = δ(r − r′). Unlike
G+

0 , G+ has no closed form but is formally related to G+
0

through the Dyson equation G+(ω, r, r′) = G+
0 (ω, r, r′) +∫

dr1G+
0 (ω, r, r1)V (ω, r1)G+(ω, r1, r′) [6,33], which we can

expand as a power series

G+(ω, r, r′) =
∞∑

n=0

G+
n (ω, r, r′) (7)

where G+
n corresponds to the O(αn) correction to G+ and can

be expressed as a convolution of G+
0 and V .

In the following discussion, we drop ω from the arguments
of G+

n and V for the sake of brevity. Assuming that the dis-
order is sufficiently weak for the series expansion to be valid,

we have for n = 1

G+
1 (r, r′) =

∫
dr1G+

0 (r, r1)V (r1)G+
0 (r1, r′), (8)

and for n > 1, in general,

G+
n (r, r′) =

∫
dr1 . . .

∫
drnG+

0 (r, r1)V (r1)

× G+
0 (r1, r2) . . .V (rn)G+

0 (rn, r′). (9)

We note that for n � 1, the integral in Eq. (9) has the chain
arrangement

G+
n (r, r′) =

∫
dr1G+

0 (r, r1)V (r1)G+
n−1(r1, r′). (10)

The expression for G+
n depends on G+

n−1 which in turns de-
pends on G+

n−2 and so on. Therefore, if we can prove that
G+

1 (r, r′), the lowest-order correction to G+(r, r′), vanishes
for any r and r′ when V (r) has the right disorder configura-
tion, then all the higher-order G+

n (r, r′) terms in Eq. (7) also
vanish by induction. For the isotropic transparency condition,
this reduces the problem to a matter of determining the V (r)
configuration for which G+

1 (r, r′) = 0.
To simplify the convolution in Eq. (8), we use

the Fourier transforms G+
0 (k) and V (q), defined by

the equations G+
0 (r, r′) = h2

∫
BZ

dk
(2π )2 eik·(r−r′ )G+

0 (k) and

V (r) = h2
∫

BZ
dq

(2π )2 eiq·rV (q), respectively, with the explicit

form of V (q) as V (q) = κ2
0F (q). It is well known that V (q) is

proportional to the scattering amplitude in the Born approxi-
mation [33]. From Eqs. (5) and (6), we obtain the expression

P1(k, r) = h4
∫

dq
(2π )2

eiq·rV (q)G+
0 (k + q) (11)

which implies that we can rewrite G+
1 from Eq. (8) as

G+
1 (r, r′) = h2

∫
dk

(2π )2
eik·(r−r′ )G+

0 (k)P1(k, r), (12)

where G+
0 (k) = limη→0+ 1

h2
1

(κ0+iη)2−|k|2 . The pole in G+
0 (k)

at |k| = κ0 [6] allows us to simplify Eq. (12) as an angular
integral, i.e.,

G+
1 (r, r′) = i

8π

∫ 2π

0
dθ exp(iκ0 cos θ |r − r′|)P1(κ0k̂, r),

(13)

where θ is the angle of k with respect to r − r′ and k̂ denotes
the unit vector parallel to k, and Eq. (13) implies that G+

1
depends on the value of P1(k, r) over the kinematically con-
strained |k| = κ0 “shell.” Similarly, we can express Eq. (9) as

G+
n (r, r′) = h2

∫
dk

(2π )2
eik·(r−r′ )G+

0 (k)Pn(k, r), (14)

where

Pn(k, r) = h4n
∫

dq1

(2π )2
. . .

∫
dqn

(2π )2
ei(q1+...+qn )·rV (q1)

× G+
0 (k + q1) . . .V (qn)G+

0 (k + q1 + . . . + qn),

(15)
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which we can rewrite as

Pn(k, r) = h4
∫

dq1

(2π )2
eiq1·rV (q1)G+

0 (k + q1)

× Pn−1(k + q1, r), (16)

with P0 = 1. The identity in Eq. (16) relates Pn to Pn−1 for
n � 1 and, like in Eq. (10), has a chain arrangement within
the integrand in which Pn(k, r) depends on Pn−1(k + q1, r)
over the same shell where |k| = |k + q1| = κ0. This will be
useful for understanding why all higher-order corrections to
the k plane-wave state are suppressed for |k| < qc/2 when
the disorder is described by Eq. (3).

C. On-shell scattering in perturbative expansion

The expression in Eq. (15) lends itself to an intuitive
physical interpretation when it is fully expanded in
G+

0 and V . If we confine ourselves to the first-order
(Born) approximation or ψ (r) ≈ φ0(r)[1 + P1(k, r)], we
can interpret P1(k, r) from Eq. (11) as the perturbative

correction in ψ (r) due to all the possible k
V (q1 )−→ k + q1

scattering processes in which V (q1) determines the
strength of the scattering process and k and k + q1 are
the wave vectors of the incident and outgoing plane-wave
states, respectively. Similarly, we can interpret P2(k, r) =
h8

∫ dq1
(2π )2

∫ dq2
(2π )2 ei(q1+q2 )·rV (q1)G+

0 (k + q1)V (q2)G+
0 (k + q1 +

q2) as the next-order perturbative correction in ψ (r)

due to all the possible k
V (q1 )−→ k + q1

V (q2 )−→ k + q1 + q2
scattering processes, and likewise for the remaining Pn(k, r)

terms where k
V (q1 )−→ k + q1

V (q2 )−→ . . .
V (qn )−→ k + q1 + . . . + qn.

Because G+
0 (k) has poles at |k| = κ0 [6], the presence of the

G+
0 (k), G+

0 (k + q1), . . ., G+
0 (k + q1 + . . . + qn) terms in the

integrand of Eq. (15) implies that the contributions to Pn(k, r)
for n � 1 are maximized when the wave vectors of the virtual
states (k, k + q1, . . ., k + q1 + . . . + qn) are kinematically
restricted to the circular frequency shell of radius κ0, i.e.,

|k| = |k + q1| = . . . = |k + q1 + . . . + qn| = κ0. (17)

The singularity of G+
0 implies that the integral associated

with Pn(k, r) in Eq. (15) is limited to scattering between
these on-shell states. The kinematic constraint in Eq. (17) also
implies that the arbitrarily large momentum transfers (�k =
q1 + . . . + qn) from multiple scattering are not possible.

D. Condition for wave transparency

If a plane-wave state with wave vector k propagates
through the disordered medium without attenuation, it means
that the medium is transparent and ψ (r) = φ0(r) because of
the absence of scattering, i.e., Pn(k, r) = 0 for n � 1. To de-
termine the condition for the absence of scattering, we analyze
the structure of the integrand in Pn(k, r) from Eq. (15) and
find the configuration of the disorder V (r), in the form of the
V (q) = 0 spectrum, that is compatible with Pn(k, r) = 0.

1. Isotropic transparency

In the case of isotropic transparency like in SH sys-
tems, we have to find the V (q) spectrum compatible with

k+q

k

(a) (b)

κ0 

qc

FIG. 1. The black Ewald circle is the shell containing the loci of
all possible k states such that |k| = κ0. The green circle of radius qc

is centered at k and contains the loci of all the possible q disorder
Fourier components in the Berry potential. (a) If κ0 > qc/2, then the
on-shell k → k + q scattering process is allowed because the two
circles intersect. (b) If κ0 < qc/2, then the two circles do not intersect
and there is no on-shell scattering.

Pn(k, r) = 0 for all k’s that satisfy |k| = κ0 and Eq. (14)
implies the more stringent condition G+(r, r′) ≈ G+

0 (r, r′).
This problem is however greatly simplified given the chain
structure of Eq. (10) which suggests that we need only to
determine the V (q) spectrum corresponding to G+

1 (r, r′) = 0
because Eq. (10) implies that G+

n (r, r′) = 0 for n > 1.
The structure of the angular integral in Eq. (13) means

that G+
1 (r, r′) depends on P1(k, r) distributed over all k’s that

satisfy |k| = κ0. In this angular integral, the value of P1(k, r)
on the shell depends on the magnitude of V (q) for |q| < 2κ0,
which we physically interpret as a bottleneck limiting the
availability of the on-shell k → k + q scattering phase space
for |k| = |k + q| = κ0 . Hence, if we wish to make the approx-
imation G+

1 (r, r′) ≈ 0, we should set V (q) = 0 for |q| < 2κ0

to suppress this on-shell scattering contribution to G+
1 (r, r′).

This is similar to the condition S(q) = 0 for |q| < qSH in SH
systems which are also transparent for incoming plane-wave
states that satisfy |k| < qSH/2 [20,23,24]. In our case, we may
regard |V (q)|2 as the analog of S(q) for |q| > 0 and, like in SH
systems, define a finite “exclusion zone” centered around the
origin in reciprocal space for the nonzero V (q) components.

Therefore, if we set V (r) from Eq. (4) to be proportional
to U (r; {φ j}) from Eq. (1) such that the Fourier components
in f (r) are only nonzero when |q| = qc, then we can approxi-
mate G+(ω, r, r′) ≈ G+

0 (ω, r, r′) for ω < ωc where ωc = cqc

2
√

ε0

is the cutoff frequency. This implies that any incident plane
wave with frequency ω < ωc, or equivalently with wave num-
ber |k| < qc/2, can propagate through the disordered region
with near total transparency, consistent with the principal find-
ing of Ref. [15]. Similar conditions for the cutoff frequency in
SH systems have also been derived in Ref. [20] and also by
Torquato and Kim [23,24]. Figure 1 shows the geometrical in-
terpretation for the on-shell scattering contribution in P1(k, r).
We draw an Ewald circle of all the possible |k| = κ0 states
and another circle containing the disorder modes. If ω > ωc,
then the Ewald circle is large enough for the two circles to
intersect and disorder scattering is allowed. If ω < ωc, no
disorder scattering is allowed.

2. Selective transparency

Beyond isotropic transparency, we can also fine tune V (q)
to generate wave transparency for a set of k plane-wave states
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L

W

y

x

dael thgiRdael tfeL

f(r)

Disordered region

FIG. 2. Schematic of the simulation setup for the AGF calcula-
tions. The disordered region (0 � x � L) is confined between the two
semi-infinite disorder-free leads on the left (x < 0) and right (x > L)
where f (r) = 0. In the transverse y direction, we impose periodic
boundary conditions.

that is more selective than the 0 < ω < ωc frequency band
in isotropic transparency. Instead of setting V (q) = 0 in the
entire |q| < qc neighborhood, we limit the V (q) = 0 condition
to a subset of the Fourier components in the |q| < qc region to
generate a smaller window of wave transparency containing
the selected k plane-wave states. In other words, we permit
some nonzero Fourier components in the “exclusion zone”
to interact (scatter) with the incoming plane-wave states that
are outside of this window. To do this, we need to determine
the condition for Pn(k, r) = 0 for the k states in this win-
dow. We first show how this is determined for P1(k, r) in

0 0.5 1−0.5−1

0

.5

−1

.5

1

kxa

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0
0 0.5 1−0.5−1

kxa

0

.5

−1

.5

1

qx

|t(k)|2

|t(k)|2

FIG. 3. The disorder function f (r) for disorder modes at
(a) |q| = 0.5/a and (b) 0.5/a � |q| � 1/a. The value of f (r) is
indicated by the color bar in the bottom right corner. The bottom
left corner insets show the loci of the disorder modes in q space.
The corresponding coherent transmission |t (k)|2 spectra for L = 5W
are shown in (c) and (d), respectively, with each k plane wave rep-
resented by a colored dot indicating its numerical value according to
the color bar. To guide the eye, we draw the dimensionless frequency-
dependent κ0a contour lines at intervals of 0.025 (gray lines) and 0.25
(black lines).

Eq. (11), which is associated with the k
V (q1 )−→ k + q1 scattering

processes of an individual k state, as the procedure can be gen-
eralized to higher-order Pn(k, r) terms because the integrand
for Pn(k, r) in Eq. (16) also contains the V (q)G+

0 (k + q) term
which determines the loci of q for the V (q) contributing to the
integral.

Given the presence of the V (q)G+
0 (k + q) term in the

integrand, which we associate with the k → k + q scatter-
ing process shown in Fig. 1(a), we minimize the integral in
Eq. (11) and hence P1(k, r) by setting V (q) = 0 for all possi-
ble values of q that satisfy |k + q| = κ0. These loci of q values
for V (q) = 0 comprise a circle of radius κ0 centered at q = −k
in reciprocal space and contain all the Fourier components that
can interact with that particular k state. For each k state, we
have one circle. We note that this circle is contained within
the |q| < 2κ0 neighborhood. Hence, to generate transparency
for a window of k states, we set the V (q) = 0 condition over
the reciprocal-space region defined by the superposition of
these circles. If this transparency window includes all the k
states with |k| < qc/2 like in SH systems, then, as expected,
we have to impose the V (q) = 0 condition over the entire
|q| < qc neighborhood. Otherwise, the V (q) = 0 condition
has to be applied to only a subregion of the |q| < qc neighbor-
hood. This procedure also minimizes the higher-order Pn(k, r)

terms, which are associated with the k
V (q1 )−→ k + q1

V (q2 )−→
. . .

V (qn )−→ k + q1 + . . . + qn process for multiple scattering, be-

cause it suppresses the k
V (q1 )−→ k + q1 part of the scattering

process.
This result can be reached from another perspective by

considering the self-energy, which describes the frequency
shift and inverse lifetime caused by the disorder scattering,
as defined by �(ω, k) = G+

0 (k)−1 − 〈G(k)〉−1 where 〈G(k)〉
is the configuration-averaged disordered Green’s function in
reciprocal space. To the lowest nonzero O(α2) approximation,
we can write [35]

�(ω, k) ≈
∫

dq
(2π )2

〈V (q)V (−q)〉G+
0 (k + q)

≈
∫

dq
(2π )2

|V (q)|2G+
0 (k + q) (18)

since V (−q) = V (q)†. Given the singularity in G+
0 (k + q) and

the linear dispersion ω(k) = c|k|, the q integral for �(ω, k) is
effectively taken over a circular shell of radius κ0 centered at
q = −k in reciprocal space, like in the integral for P1(k, r) in
Eq. (11). Therefore, if we set V (q) = 0 on this shell and use
the on-shell approximation |k| = κ0, then we have �(ω, k) ≈
0 which we interpret as the absence of scattering for the k
plane-wave state.

III. COHERENT TRANSMISSION SIMULATION
AND ANALYSIS

A. Simulation setup

To validate our analysis, we compute the coherent
transmission coefficient t (k) [27], which determines the
proportion of the wave flux passing through the disor-
dered region without blurring, for a range of k states. If
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FIG. 4. Plot of the disorder function for (a) f (r), (b) finner(r), and (c) fouter(r). The value of f (r) is indicated by the color bar in the bottom
right corner. The bottom left corner insets show the loci of the Fourier components in q space. The corresponding distributions of the scattered
(black dots) and unscattered (red dots) k plane-wave states are shown in (d) to (f) while the |t (k)|2 spectra for L = 20W are shown in (g) to (i)
with the numerical values represented by the color bar. The white arrow in (g) points to the window of transparency for f (r).

|t (k)|2 = 1, the disordered medium is completely transpar-
ent. We approximate Eq. (2) using a 2D square lattice
[6], in which the second derivatives are replaced by finite
differences, i.e., ∇2ψ (r) ≈ 1

a2 [−4ψ (r) + ψ (r + ax̂) + ψ (r −
ax̂) − ψ (r + aŷ) + ψ (r − aŷ)] where a is the 2D lattice con-
stant determined by the length scale of the scattering problem.
The resulting eigenvalue equation 1

a2 [4ψ (r) − ψ (r + ax̂) −
ψ (r − ax̂) − ψ (r + aŷ) − ψ (r − aŷ)] = ω2 ε(r)

c2 ψ (r) can be
written in the matrix form K� = ω2M�, where K is the
finite-difference matrix, � is a column vector with ψ (r)
as its vector elements, and M is a diagonal matrix with
ε(r)
c2 as its diagonal elements. This formulation sets us up

for the direct scattering amplitude calculations using the
AGF method [28,29], a technique developed to study phonon
scattering [36,37]. In the disorder-free lattice where ε(r) =
ε0, the dispersion relationship is given by [6] ω(k)2 =
4c2

a2 [sin2( 1
2 kxa) + sin2( 1

2 kya)]. In the continuum (a → 0)
limit, we obtain |k| = κ0 and recover the linear ω(k) = c|k|
relationship [6].

Our AGF simulation setup is shown in Fig. 2. A disor-
dered region of width W and length L is sandwiched between
the semi-infinite and disorder-free left and right leads where
f (r) = 0. We fix W = 200a and let L vary. We use the
dimensionless variable κ0a to represent the frequency. For
each k plane wave, we compute |t (k)|2 = |S(k, k)|2, where
S(k′, k) is the scattering amplitude between the incoming state
�in(k) and the outgoing state �out(k

′) at frequency ω. At each
frequency step, we determine all the kinematically allowed
k states and compute their S(k′, k) and |t (k)|2 values. For
consistency with our analysis based on the continuum limit,
we restrict the range of k in our AGF calculations to |k| � 1/a
or κ0a � 1.

B. Simulation results

1. Isotropic wave transparency

Figure 3(a) shows an instance of f (r) in which its Fourier
components are distributed uniformly over a circular manifold
(or “ring”) with a radius of |q| = qc = 0.5/a, as shown in
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FIG. 5. Coherent transmission |t (k)|2 spectrum (yellow shaded
area under the curve) for the disorder function f (r) as a function of
frequency κ0a at normal incidence (ky = 0) with the label “Trans-
mit.” The spectrum is derived from Fig. 4(g). The |t (k)|2 spectra
for finner and fouter are labeled “Inner” (red solid line) and “Outer”
(dashed blue line), respectively, with the corresponding transmission
gaps labeled “Mid gap” (red shaded rectangle) and “Top gap” (blue
shaded rectangle). The transmission window in the 0.25 < κ0a < 0.5
range is indicated by the double-headed arrow (“Window”).

the inset of Fig. 3(a). The corresponding |t (k)|2 spectrum
for L = 5W is shown in Fig. 3(b) for the frequency range
0 < κ0a � 1. We observe that, for κ0 > qc/2, |t (k)|2 ≈ 0 for
almost every state as a result of multiple scattering by the
disorder. This reduction in |t (k)|2 for κ0 > qc/2 is a result of
the disordered domain being much larger than the mean free
paths of the plane-wave states with κ0 > qc/2. At κ0 = qc/2,
there is a sharp transition or cutoff frequency, below which
|t (k)|2 ≈ 1 or near-perfect transparency for every state re-
gardless of the angle of incidence. Nonetheless, we observe
some speckling in the |t (k)|2 spectrum above the cutoff fre-
quency due to the random phase in the disorder modes. If we
distribute the disorder components uniformly over a band of
rings (0.5/a � |q| � 1/a), as shown in the inset of Fig. 3(c),
instead of a single ring, then the speckling is smoothed out,
as shown in Fig. 3(d), because of the greater range of V (q)
components available for on-shell scattering.

2. Orientation and frequency-dependent transparency window

The smoothing of the speckling in Fig. 3(d) implies that the
the effects of the disorder Fourier components are additive,
i.e., by selectively including more Fourier components in
f (r) we can introduce more scattering pathways to modify
the |t (k)|2 spectrum by filtering out unwanted k states.
We go beyond the SH systems by introducing an anisotropic
substructure in the distribution of the Fourier components. We
elaborate on this idea with the example in Fig. 4. Figure 4(a)
shows the anisotropic f (r) distribution ( f = finner + fouter)
obtained from combining two disorder distributions finner(r)
and fouter(r), shown in Figs. 4(b) and 4(c), respectively. Each
of the disorder distributions corresponds to a set of distinctive
scattering pathways. The highly anisotropic finner comprises
Fourier components distributed over two circular pockets
with radius of 0.2/a and centered away from the origin at

qx = ±0.3/a unlike the examples in Fig. 3. On the other
hand, fouter, which describes SH-like disorder, is isotropic
and comprises Fourier components that are centered at the
origin and distributed over a band of rings with radii varying
between 1/a and 1.5/a.

To understand how combining disorder distributions af-
fects the scattering pathways, we plot in Figs. 4(d)–4(f) the
k plane-wave states that are unaffected by on-shell scattering
for f (r), finner(r), and fouter(r), respectively. At each given κ0,
we compute all the possible k → k + q on-shell scattering
transitions for each k state. If none of the q’s lie in the re-
gion occupied by the Fourier components, then that k state is
considered unaffected by on-shell scattering. The distribution
of unscattered k states for finner in Fig. 4(e) shows a distinc-
tive anisotropy. At more oblique angles of incidence, the k
states are more likely to be scattered. The low-frequency plane
waves with κ0a < 0.05 are however unaffected by on-shell
scattering because the disorder component closest to the ori-
gin is at q = (±0.1/a, 0). In the 0.05 � κ0a � 0.25 frequency
range, there is a transmission gap [38] because of the absence
of unscattered plane waves. The upper bound of this gap is
determined by the position of the disorder mode furthest from
the origin at q = (±0.5/a, 0) and can be adjusted by chang-
ing the radius and position of the circular pockets in finner.
At higher frequencies (κ0a > 0.25), a range of unscattered k
states exists for more acute incident angles because there are
no disorder modes available in finner to scatter the plane wave
at higher frequencies for small incident angles. For fouter, the
distribution of unscattered k states in Fig. 4(f) shows a sharp
cutoff at κ0a < 0.5 because the disorder Fourier components
are located in the 1/a � |q| � 1.5/a band.

Hence, for f , Fig. 4(d) shows the distribution of un-
scattered k states, which is equal to the intersection of the
unscattered k states in Figs. 4(e) and 4(f). Figures 4(g)–4(i)
show the |t (k)|2 spectra for L = 20W where a larger L is
chosen to magnify the effects of multiple scattering. We see
a close correspondence between Figs. 4(d) and 4(g), with the
|t (k)|2 values highest for the unscattered k states, validating
our theory of how disorder Fourier components affect wave
scattering and transport. The |t (k)|2 spectrum for f can also
be approximated by taking the product of the |t (k)|2’s for finner

and fouter from Figs. 4(h) and 4(i). Figure 4(g) shows that by
combining the Fourier components of finner and fouter to filter
out the unwanted k states, we are able to create transmis-
sion gaps and a window of high transparency [Fig. 4(g)] in
the |t (k)|2 spectrum, in which incoming plane waves can be
robustly transmitted through the disordered medium without
blurring. The correspondence between Figs. 4(d) and 4(g) is
however not perfect because of wave reflection at the bound-
ary between the leads and the disordered region. Nevertheless,
the example from Fig. 4 shows that we can combine groups of
disorder Fourier components to engineer specific wave trans-
port properties such as the transparency window; we use fin

to create anisotropy and a transmission gap and foutto create a
low-pass filter. Furthermore, the orientation, size, and position
of the transparency window can be modified by changing
the loci of the circular pockets and ring in f . In Figs. 6
and 7, we also show how the |t (k)|2 spectrum changes when
we modify finner by changing the orientation of the circular
pockets.
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FIG. 6. Plot of the disorder function for (a) f (r), (b) finner(r), and (c) fouter(r) with finner rotated by 45◦. The value of f (r) is indicated
by the color bar in the bottom right corner. The bottom left corner insets show the loci of the disorder modes in q space. The corresponding
distributions of the scattered (black dots) and unscattered (red dots) k plane-wave states are shown in (d) to (f) while the |t (k)|2 spectra for
L = 20W are shown in (g) to (i) with the numerical values represented by the color bar. The white arrow in (g) points to the window of
transparency for f (r).

For greater clarity, we plot in Fig. 5 the coherent transmis-
sion |t (k)|2 spectrum from Fig. 4(g) for incoming plane-wave
states at normal incidence (ky = 0). We observe two trans-
mission bands—one at low frequencies (κ0a < 0.05) and the
other in the “window” (0.25 < κ0a < 0.5). The two transmis-
sion bands are separated by a “midgap” (0.05 � κ0a � 0.25)
that originates from scattering by the Fourier components
associated with finner while the window is bounded from above
by a “top gap” (κ0a � 0.5) originating from scattering by the
Fourier components associated with fouter.

C. Possible experimental realization

This phenomenon can be simulated for TM waves in
a 2D photonic crystal (PC) with tunable site disorder.
A prototype would be a 2D square lattice of cylindrical
dielectric rods [39,40] with a radius of R and nearest-neighbor
distance of h. To realize the spatial structure of the disorder
described by f (r), we can let the cylinder radius be site

dependent, i.e., R(r) = R0[1 + f (r)], where R0 is the
average radius of the rods in the photonic crystal, so that
the perturbation is proportional to f (r). The coherent
transmission spectrum through a disordered PC sandwiched
between two disorder-free PC leads as in Fig. 2 should
be similar to those in Fig. 3. Alternatively, the coherent
transmission spectrum should be observed in a disordered PC
with a position-dependent refractive index [41].

Another possible approach for experimental realization
would be to allow the amplitude of the nonzero Fourier
components of f (r) to vary while we fix the loci of the
zero-amplitude Fourier components in q space. For instance,
in the example in Sec. III B 2, the zero-amplitude Fourier
components would be confined to the region surrounding the
two circular pockets and bounded by the ring as shown in the
inset of Fig. 4(a). This provides us with more flexibility in
the design of disordered media with selective transparency
and such disorder configurations can be realized through
collective-coordinate optimization [21,42].
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FIG. 7. Plot of the disorder function for (a) f (r), (b) finner(r), and (c) fouter(r) with finner rotated by 90◦. The value of f (r) is indicated
by the color bar in the bottom right corner. The bottom left corner insets show the loci of the disorder modes in q space. The corresponding
distributions of the scattered (black dots) and unscattered (red dots) k plane-wave states are shown in (d) to (f) while the |t (k)|2 spectra for
L = 20W are shown in (g) to (i) with the numerical values represented by the color bar. The white arrows in (g) point to the window of
transparency for f (r).

IV. SUMMARY

We have elucidated the role of disorder, in terms of
its Fourier components, in wave scattering in a 2D disor-
dered medium. We show how the disorder configuration, as
determined by V (q), can be engineered for isotropic and se-
lective wave transparency. Using numerical simulations, we
demonstrate an approach where, by choosing the appropriate
combination of Fourier components, wave scattering can be
selectively suppressed and the transport properties of the ma-
terial can be engineered to create transmission gaps and allow
specific incident waves to be robustly and coherently transmit-
ted in orientation-dependent frequency windows. This Fourier
components-based approach, which requires neither nontriv-
ial topological wave properties nor a non-Hermitian medium,
can be generalized to tailor the transport properties of dis-
ordered media for fundamental investigations of disordered
systems and applications in acoustics, imaging, photonics, and
structural health monitoring.
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APPENDIX: COHERENT TRANSMISSION SPECTRA
FOR OTHER COMBINATIONS OF finner AND fouter

We plot in Figs. 6 and 7 the simulation data for different
finner. The data in Fig. 6 are for an finner that is like the one
in Fig. 4 but rotated by 45◦ with respect to the x axis. The
coherent transmission spectra for f and finner are also rotated
by 45◦ with respect to the x axis. Hence, we do not observe
the window of transparency unless the angle of incidence is

033523-9



ZHUN-YONG ONG PHYSICAL REVIEW A 108, 033523 (2023)

close to 45◦. Similarly, the data in Fig. 7 are for an finner

that is rotated by 90◦. Hence, the window of transparency
can only be observed at very oblique angles of incidence
close to 0◦.
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