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Strong-coupling dynamics of frequency conversion in an optical microresonator
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Nonlinear strong coupling in the frequency conversion process is an emerging field and has recently become
accessible in integrated photonic platforms. Here we study the strong-coupling dynamics of second harmonic
generation (SHG) in an optical microresonator. It is revealed that the nonlinear modal superposition, featuring
intensity-dependent Rabi oscillation, leads to a clamped maximum SHG conversion efficiency, which can be
broken through a self-injection configuration. Moreover, the nonlinear strong-coupling physics is revealed
for various phenomena, including bistability, period-doubling bifurcation, and chaos. Additionally, pseudo-
Hermitian degeneracy is found, where the synchronized resonances result in enhanced SHG efficiency. This
work not only provides guidance for the implementation of high-efficiency photonic devices, but also may enrich
the studies of nonlinear dynamics and non-Hermitian physics in optical microresonators.
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I. INTRODUCTION

Nonlinear optical frequency conversion lays the founda-
tions for various research areas [1], ranging from coherent
light source [2–4] and quantum information processing [5–7]
to optical sensing and imaging [8–10]. Benefiting from the
rapid development of integrated photonics, optical microres-
onators have brought new horizons to nonlinear optics by
enhancing and regulating photon-photon interaction, enabling
high-efficiency frequency conversion as well as miniatur-
ized solid-state devices [11–15]. Since the 1980s, nonlinear
frequency conversion in optical microresonators, such as
harmonic generation, four-wave mixing, and stimulated scat-
tering, has been investigated in various material platforms,
including LiNbO3, AlN, GaAs, SiO2, Si3N4, SiC, and some
organic materials [16–23]. These studies are usually operated
in the weak-coupling regime, where the coherent back conver-
sions are neglected within the nonlinear processes.

Recently, stronger photon-photon interaction in nonlinear
microresonators has become accessible through reducing cav-
ity mode volume, engineering the phase-matching condition
[24–27], exploring high-nonlinearity materials [22,28], etc.
As the interaction enters the strong-coupling regime [29–33],
where the nonlinear coupling rate is faster than the decay rate
of cavity modes, more potential applications are enabled for
photonic integrated circuits, such as single-photon sources,
quantum gate control, and nonreciprocal devices [34–36].
So far, experimental evidence for nonlinear strong coupling
has been observed in two scenarios: the coupling strength
either is independent of the photon numbers of the coupled
modes (i.e., effectively linear) [33,36–38] or varies with those
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of the coupled modes [39]. Despite the observed signatures
for nonlinear strong coupling (e.g., Rabi splitting), rich dy-
namic behaviors and nonlinear physics have yet to be widely
explored.

In this work, we investigate the strong-coupling dynam-
ics of second harmonic generation (SHG) in a nonlinear
optical microresonator. It is demonstrated that the nonlinear
superpositions of the modes at different frequencies in the
strong-coupling regime lead to a clamped conversion effi-
ciency, which is then solved by proposing a self-injection
configuration. In addition, the intensity-dependent Rabi oscil-
lation emerges in the time domain, and the nonlinear physics
is revealed for various phenomena including bistability, bi-
furcation, and chaos. In the spectral domain, the singularity
with pseudo-Hermitian degeneracy is revealed, featuring the
coalescence of the eigenstates and eigenvalues.

The paper is structured as follows. In Sec. II, the model
of nonlinear strong coupling is described for the SHG pro-
cess. In Sec. III, we investigate the clamped SHG conversion
efficiency in the strong-coupling regime and propose a self-
injection configuration for further improvement. In Sec. IV,
the behaviors and physical pictures of the bistable and unsta-
ble states are studied in the strong-coupling regime. In Sec. V,
we conduct eigenvalues analysis through linearized Hamilto-
nian and present the synchronization of second harmonic (SH)
and fundamental-wave (FW) resonances.

II. MODEL OF NONLINEAR STRONG COUPLING

As shown in Fig. 1(a), the SHG process is operated in a
whispering-gallery microresonator with χ (2) nonlinearity. A
continuous-wave pump laser with frequency ωp and power
Pin is injected into the microresonator through a waveguide
and excites the cavity mode, i.e., FW mode, with a resonant
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FIG. 1. (a) Left: Schematic of SHG process in an optical mi-
croresonator side-coupled with a waveguide. Right: Energy-level
diagram for the nonlinear strong coupling, where N1(2) denotes the
photon number of the FW (SH) mode. (b) Temporal evolution of
photon number in the FW (SH) mode under the strong coupling.
Inset: Dependence of oscillation frequency on photon numbers in the
FW mode. (c) Intensity-dependent nonlinear coupling. Conversion
efficiency ηSHG vs the cavity-pump detuning �p and pump power Pin.
The orange line outlines the maximum efficiency under each pump
power.

frequency ω1 = 2π × 193.55 THz. The SH light is generated
and enhanced by the SH cavity mode with a resonant fre-
quency ω2. The modal resonance mismatch δm = ω2 − 2ω1

is set as δm = 0, unless otherwise specified. The intrinsic and
coupling losses of the FW (SH) mode are, respectively, κ1(2),0

and κ1(2),ex, giving rise to the linewidth of κ1(2) = κ1(2),0 +
κ1(2),ex. In our work, the intrinsic quality (Q) factor for the FW
(SH) mode is set as Q1(2),0 = 5 × 105. It is assumed that other
nonlinear processes, such as the optical parametric oscillation
and cascaded sum-frequency generation, are negligible in this
work [40,41]. The momentum-matching condition is set to
be satisfied; otherwise, the coupling between the FW and SH
modes through the SHG process is forbidden. This nonlinear
system is described by the Hamiltonian [42]

H = ω1a†a + ω2b†b + g[(a†)2b + a2b†]

+ √
κ1,exain(aeiωpt + a†e−iωpt ), (1)

where a (a†) and b (b†) are the annihilation (creation) op-
erators of the FW and SH modes, in correspondence to the
respective photon numbers of N1 = a†a and N2 = b†b. g is
the single-photon nonlinear coupling strength, determined by
the nonlinear susceptibility χ (2), mode volume, and field over-
lap, which is set as g/2π = 5 MHz in our work. The energy
conversion rate between the two modes is governed by the
effective coupling strength varying with the population at the
FW mode, i.e., G = √

N1g, from which the strong-coupling
regime can be identified by the cooperativity 8G2/κ1κ2 > 1.

According to the Hamiltonian in Eq. (1), the evolution of
the SHG process can be described by the following coupled-
mode equations within the rotating frame of ã = ae−iωpt and

b̃ = be−i2ωpt :
dã

dt
= i�pã − κ1

2
ã − 2igã∗b̃ + √

κ1,exain,

db̃

dt
= i�SHb̃ − κ2

2
b̃ − igã2. (2)

Here the modal losses are incorporated. The input light am-
plitude is described as ain = √

Pin/h̄ωp, and �p = ω1 − ωp

(�SH = ω2 − 2ωp) denotes the cavity-pump (harmonic) de-
tuning. The conversion dynamics of SHG in Fig. 1(b) is
captured by the free evolution from a strong-coupling steady
state through switching off the pump instantaneously. Once
the nonlinear strong-coupling regime is accessed, the flux
converts back and forth before damping, resulting in the sig-
nature Rabi oscillation. Notably, the oscillation frequency fosc

is decreasing against time and is proportional to
√

N1 [the
inset of Fig. 1(b)], different from the effectively linear cou-
pling scenario [33,36]. This temporal behavior indicates the
superposition of the FW and SH modes under strong coupling,
which would exhibit Rabi splitting in the frequency domain
[energy-level diagram in Fig. 1(a)].

The intensity-dependent strong coupling is studied by ana-
lyzing the SHG conversion efficiency in the parameter space
spanned by pump power Pin and cavity-pump detuning. Here,
the efficiency ηSHG = κ2,exN2h̄ω2/Pin is calculated by solving
the mean field 〈a〉 and 〈b〉 based on Eq. (2), under the critical
coupling condition for both modes (i.e., κ1(2),0 = κ1(2),ex). As
shown in Fig. 1(c), in the weak-coupling regime, the efficiency
ηSHG manifests a single peak at �p = 0 and monotonically
increases with the pump power. As Pin further grows, the
nonlinear interaction enters the strong-coupling regime, where
the doublet peak of efficiency occurs versus the cavity-pump
detuning at a fixed pump power.

III. CONVERSION EFFICIENCY

The power dependence of ηSHG under the critical coupling
condition (κ1,ex = κ1,0, κ2,ex = κ2,0) is plotted at different de-
tuning �p in Fig. 2(a). For the case �p = 0, the efficiency
ηSHG gradually deviates from a linear power dependence as
the pump increases and reaches the maximum value of 0.25.
Then it declines in the strong-coupling regime (shaded blue
area) due to the destructive interference between the FW light
from the pump and the down-converted light. In order to
improve the efficiency under strong coupling, the detuning
�p is adjusted to match the supermode resonance [32,36],
determined by intensity-dependent Rabi splitting. However,
the maximum efficiency is clamped at a fixed value (marked
by the red line), regardless of the increasing pump power.

The physics origin of this counterintuitive phenomenon
can be elaborated by the photon population at the eigenstates,
as shown in Fig. 2(b). Note that with different Pin, the FW
and SH photon numbers are extracted at a specific cavity-
pump detuning that gives the maximal efficiency ηSHG. In the
weak-coupling regime, the population ratio of the SH photon
number increases with the stronger pump. When the strong
coupling is accessed, the population ratio in the eigenstates
becomes independent of the pump power due to the steady
hybridization of the SH and FW modes (depicted in the inset).
Through the derivation, the fixed population ratio of the FW
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FIG. 2. (a) Nonlinear conversion efficiency ηSHG vs pump power
Pin with different cavity-pump detuning �p. The dash-dotted red
line denotes the maximum of ηSHG for varied �p. Parameters:
2κ1,0(ex)/2π = κ2,0(ex)/2π = 774.2 MHz, g/2π = 5 MHz. (b) Pho-
ton population proportion of the FW and SH modes against pump
power, when tracking the maximum efficiency with different �p. The
shaded area highlights the strong-coupling regime. Inset: Sketches
of the field distribution for the FW and SH modes in weak- and
strong-coupling regimes. (c) SHG efficiency vs the pump power Pin

and coupling loss κ2,ex with �p = 0. The black curve outlines the
strong-coupling regime. (d) Dependence of the normalized efficiency
on pump power Pin with different κ2,ex/κ2,0.

to SH modes in the strong-coupling regime is presented as
|̃b|2/|̃a|2 = �p/2�SH (see Appendix A). Therefore, the SH
and FW modes are superposed with an amplitude ratio of
1:2 when δm = 0. This ratio, rather than equal distribution
in linear systems [43], arises from multiphoton processes in
nonlinear strong coupling and is irrelevant to the coupling
strength G and modal losses κ1,2. Thus, the efficiency at the
supermode resonance remains constant in the strong-coupling
regime, under a fixed cavity-waveguide coupling condition.

Although the strong coupling may suppress the conversion
from FW to SH, the SHG efficiency can be improved by
controlling the cavity-waveguide coupling condition. As dis-
played in Fig. 2(c), the higher efficiency is achieved under the
over-coupling condition (κ2,ex > κ2,0), where a larger external
coupling loss κ2,ex hinders the back conversion to the FW
field and enhances the coherent output. Meanwhile, a larger
κ2,ex would increase the overall loss of the system, imposing
a trade-off for the conversion efficiency. The maximum effi-
ciency appears at the boundary of the strong-coupling regime,
as outlined by the black curve where 8G2/κ1κ2 = 1. Nev-
ertheless, with the increased κ2,ex, the normalized efficiency
η̃SHG = ηSHG/Pin declines due to more consumption of the
pump power. The coupling loss for FW mode κ1,ex would
affect the efficiency in a similar way.

In order to improve the conversion efficiency without con-
suming much more pump power, we propose a self-injection

FIG. 3. (a) Schematic of the SHG process with self-injection.
(b) Left: The conversion efficiency ηSHG varying with the phase ϕ

under the pump Pin = 0.3 mW. The star symbol denotes ϕ = 0.31π

at which ηSHG reaches its maximum. Right: The spectra of SH
power with (red curve) and without (gray curve) self-injection, at
ϕ = 0.31π . (c) The conversion efficiency ηSHG (solid curves) and
normalized efficiency η̃SHG = ηSHG/Pin (dashed curves) vs pump
power with (red curves) and without (gray curves) self-injection.
Here, ϕ is set as zero and detuning �p is scanned for the maximum.

interference configuration to control the population of the
FW mode. As sketched in Fig. 3(a), an add-drop structure
is employed with a feedback loop, in which the propagation
of the FW mode is described by γ eiϕ . Here, γ and ϕ denote
the amplitude and phase that FW photons experience through
the waveguide, respectively. γ = 1 is safely assumed for ex-
perimental conditions. By designing the waveguide geometry
and coupling gap [44], the intracavity SH light cannot couple
into the feedback loop at C1, so that only the FW light is
reinjected. The coupled mode equations for the self-injection
configuration can be written as

d̃a

dt
=

(
i�p − κ1

2
− κ1,exγ eiϕ

)̃
a − 2ig̃a∗b̃

+ √
κ1,ex(1 + γ eiϕ )ain,

db̃

dt
= i�SHb̃ − κ2

2
b̃ − ig̃a2. (3)

Accordingly, the dispersion and loss of the FW mode can be
dynamically engineered through the interference between the
photons injected at C1 and C2, which is controlled by the
propagation phase ϕ. The dispersion affects the population
ratio of the FW and SH modes, and the mode loss influences
the FW light field that could be excited inside the resonator.

In the feedback loop, the FW fields consist of two parts: the
out-coupling from the cavity at C1 and the direct transmission
of the input light. The out-coupled FW light is reinjected at C2

[described by the term κ1,exγ eiϕ in Eq. (3)] to destructively
interfere with the backaction 2iga∗b by regulating the phase
ϕ, improving the intracavity power of both the FW and SH
modes. Meanwhile, the reinjection of the transmitted FW light
[i.e.,

√
κ1,exγ eiϕain in Eq. (3)] leads to interference with the

input light. In this way, the SHG conversion efficiency can be
effectively improved by the collaborative actions.
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FIG. 4. (a) Phase diagram of the coupled system. The orange (gray) area denotes the bistable (unstable) state. (b) Conversion efficiency
ηSHG against time, with detuning �p scanned in opposite directions at a speed of 0.05 THz/s under the pump power of 1 mW [marked by a
black line in (a)]. (c) SH photon number showing the bistable behavior. The blue and gray arrows depict the evolution trajectories with opposite
scanning directions. Inset: Schematic of the FW spectra at the points s1 and s2 in (b), with the same pump (red arrows) applied.

Quantitatively, the dependence of the efficiency ηSHG on
the propagation phase ϕ is plotted in Fig. 3(b), where the
efficiency refers to the optimum by adjusting the detuning
�p at a fixed pump power. It indicates that SH light vanishes
at ϕ = π due to the destructive interference of pump light,
and the maximum ηSHG appears at ϕ = 0.31π (star symbol).
The SH power spectrum is displayed in the right panel (red
curve) exhibiting an improvement of ∼ two fold. As shown in
Fig. 3(c), with self-injection (i.e., γ = 1), the conversion effi-
ciency is improved by ∼2 times compared to the case without
self-injection (γ = 0), while it does not consume more pump
power, in contrast to the approach of adjusting the coupling
rate κ1,ex (κ2,ex).

IV. BISTABILITY AND INSTABILITY

As the pump grows stronger without self-injection, the
bistable and unstable states emerge, as presented by a phase
diagram in Fig. 4(a). To investigate the behaviors of these two
states, we present the dependence of the conversion efficiency
on the cavity-pump detuning with a fixed pump power of 1
mW. Specifically, in Fig. 4(b), the detuning �p/2π is forward
scanned from −7.5 to 7.5 GHz (blue curve) and then swept
reversely (gray curve). The bistability with the hysteresis ap-
pears with the asymmetric doublet and the abrupt change of
ηSHG, which are the typical behaviors in nonlinear systems
[1,45,46].

The physical origin of this bistability by strong coupling is
illustrated in Fig. 4(c). At the detuning range of 2.9–4.5 GHz,
the intracavity SH photon numbers have three solutions: two
stable ones (s1 and s2) and one unstable one. Note that the
bistable efficiencies s1 and s2 at the same cavity-pump de-
tuning result from the superposed modes of different Rabi
splitting in the strong-coupling regime [inset of Fig. 4(c)]. For
the solution s1, a strong excited intracavity FW field results in
a large mode splitting, 2G = 2

√
N1g. When a small redshift

perturbation to the mode happens, the mode-pump detuning
decreases, leading to the increasing intracavity power. Thus,
a larger splitting appears, i.e., the mode is blueshifted, pre-
senting an effective negative feedback. Similarly, a blueshift
perturbation results in a redshift response. Consequently, the
system could return to its original state in the presence of

mode perturbation and remain stable. The circumstance of the
stable solution s2 is that the intracavity power is affected by
mode perturbation in vain, leaving this state stable with no
feedback. As for the unstable solution, the red- (blue)shift per-
turbation to the mode would lead to the mode to further red-
(blue)shift, leaving an unstable solution. It is different from
the unstable state around �p = 0, which will be discussed in
the following.

Besides the bistable states, the instability is also evidenced
by the rapid oscillation of ηSHG around �p = 0 [in Fig. 4(b)].
The frequency spectrum of the oscillation versus the pump
power is extracted from the Fourier transform of ηSHG at a
fixed detuning �p/2π = 0.57 GHz, as shown in Fig. 5(a).
The single-period, multiple-period, and chaotic oscillations
successively occur under increased pump power, which are

FIG. 5. (a) Frequency spectra F of ηSHG in the unstable state vs
pump power with a constant �p/2π = 0.57 GHz. (b) The temporal
oscillation of the FW and SH fields at the pump power of 8 mW
with �p/2π = 0.57 GHz. (c) Steady solutions for Gb − Ga vs cavity-
pump detuning �p and pump power Pin. The dashed curve presents
the boundary of the instability.
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typical features in nonlinear dynamics [47–50]. The tempo-
ral dynamics under the pump power of 8 mW is shown in
Fig. 5(b). The periodic oscillation with the energy exchange
of the FW and SH fields indicates the dynamical competition
between the down-conversion and up-conversion processes.

In order to understand the physical origin of the insta-
bility, a linear approximation description of Eq. (1) [51] is
introduced for discussion. Considering that the FW (SH) field
consists of the average expectation and fluctuation, i.e., a =
〈a〉 + δa, b = 〈b〉 + δb, the linearized Hamiltonian governing
the dynamics of fluctuations δa and δb reads

H lin = ω1δa†δa + ω2δb†δb + 2g〈a〉∗δa†δb + 2g〈a〉δaδb†

+ g〈b〉(δa†)2 + g〈b〉∗(δa)2, (4)

where the higher-order terms are neglected. Equation (4)
is then rotated to the frame with δ̃a = δae−iωpt and δ̃b =
δbe−i2ωpt for further analysis. The FW fluctuation experiences
two paths in the SHG strong-coupling regime under strong
pump power. First, under a strong FW mean field, the FW
fluctuation would be converted to the SH field with a term of
2ig〈a〉δ̃a and then back to the FW field with a term 2ig〈a〉∗δ̃b,
exhibiting thus a phase change of π , i.e., a destructive in-
terference with the FW field (see Appendix B). This path is
governed by a converting rate Ga = g|̃a|. Second, with a rate
of Gb = g|̃b|, the FW fluctuation is generated through a down-
conversion process under a strong mean SH field and converts
back, oppositely presenting a constructive interference. These
two paths bring loss and gain for the FW field, respectively,
and the instability emerges once the gain channel exceeds
the loss channel. Such competition process is quantitatively
shown in Fig. 5(c), where the decay rates of both modes
are set to be the same to exclude the attribution from the
mode loss difference. The instability condition of Gb − Ga >

0 matches well with the boundary of the unstable state (gray
dashed curve), which is obtained from the same criterion in
Fig. 4(a) [52].

V. EIGENVALUES ANALYSIS

Furthermore, the spectral characteristics of the strong-
coupling system are investigated by the analysis of the
eigenstates. According to Eq. (4), in the rotating frame, the
complex eigenvalues � j ( j = 1, 2, 3, 4) for the eigenmodes

EM j constituted by (δ̃a, δ̃b, δ̃a
†
, δ̃b

†
)T are calculated as

a function of the pump power Pin with a fixed detuning
�p/2π = 1 GHz, shown in Fig. 6(a) (see Appendix B). At
weak pump (e.g., point “i”), the states EM2,3 account for
the FW field with the same losses and opposite frequencies,
while EM1,4 are for the SH field. Once the strong coupling is
reached with the growing pump power, where the boundary
reads Re[�1 − �2] = Im[�1 + �2]/2 (vertical gray line), an
evident splitting is observed by the rapidly increased fre-
quency gap between Re[�1,2] (or Re[�3,4]).

As the pump power further increases, a singularity emerges
at point “ii” (also point “iii”) with the coalescent real and
imaginary parts of the eigenvalues �2,3, which belongs to the
pseudo-Hermitian degeneracy reported in four-wave mixing

FIG. 6. (a) Real and imaginary parts of the eigenvalues � j ( j =
1, 2, 3, 4) vs the pump power Pin. The orange area denotes the de-
generate region, and the gray area denotes the unstable state. The
vertical dashed line denotes the boundary of the strong-coupling
region. (b) The evolution of eigenmodes with the growing Pin on
a Bloch sphere. θ (φ) presents the relative intensity (phase) of the
uncoupled modes. (c) Spectrum response with a weak probe light
under different pump power. The red dashed line marks the frequency
of the SH light. (d) The intracavity photon numbers of the FW and
SH modes normalized by Pin as a function of pump power Pin.

and stimulated scattering processes [53,54]. Note that this
pseudo-Hermitian degeneracy arises from the dissipative cou-
pling in the subspace of (δ̃a, δ̃a

†
)T and satisfies the symmetry

Haa† = σzH
†
aa† (σz )−1 (where σz is the Pauli matrix).

Between the two singularities, it is found in Fig. 6(a)
that EM2,3 share the same frequency and repulsive imaginary
parts, with which the pump light is on resonance (Re[�2,3] =
0). Here, the degenerate region is also accompanied by the
emergence of time-reversal symmetry breaking. Besides the
eigenvalues, this singularity is also verified by the coalescence
of eigenmodes EM2,3. In Fig. 6(b), the evolutions of EM2,3

are projected on a Bloch sphere with δ̃a = cos (θ/2) and
δ̃a† = eiφ sin (θ/2). Starting from the north and south poles,
states EM2,3 first coalesce at point “ii,” and then evolve along
the equator toward opposite directions until the next coales-
cence at point “iii.” These singularities with the coalescent
eigenvalues and eigenstates in the pseudo-Hermitian system
exhibit similar characteristics to the conventional exceptional
point (EP) arising from a non-Hermitian system with PT
symmetry [55].

Numerical simulations are conducted to examine the spec-
tral response of the pseudo-Hermitian system, by introducing
a weak probe light at the SH band. As shown in Fig. 6(c), the
transmission of the probe light is obtained by scanning its fre-
quency, ωprobe, with a fixed cavity-pump detuning, �p/2π =
1 GHz. Entering the degenerate region, the resonances of the
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high-frequency branch of the supermode remain fixed and
synchronized with ωp at the FW band and 2ωp at the SH
band. As a result, the pump light would experience a stronger
resonant enhancement in the degenerate region, leading to the
significant rise of both the FW and SH photon numbers, as
shown in Fig. 6(d).

Besides the degeneracy, the eigenvalues in Fig. 6(a) also
indicate the emergence of instability (shaded gray area).
The value of Im[� j] > 0 (i.e., Pin > 3 mW) verifies that
the system becomes unstable due to the amplification of
fluctuations.

VI. CONCLUSION

In conclusion, we have studied the strong coupling for
SHG in a microresonator and presented the exotic dynamics,
including intensity-dependent Rabi oscillation, bistability, and
instability. In addition, the singularity with pseudo-Hermitian
degeneracy is found in the strong-coupling regime, featur-
ing the coalescence of the eigenstates and eigenvalues. This
singularity by nonlinear interaction is different from the
conventional EPs which usually appear in linear systems asso-
ciated with PT symmetry [43,56], and may enrich the studies
of non-Hermitian physics. The clamped conversion efficiency
in the strong-coupling regime owing to the formation of non-
linear supermodes is also revealed, which is broken by a
self-injection configuration, providing guidance for designing
high-efficiency nonlinear photonic devices. Our results can be
further extended to the studies of multimode interaction or
cascaded nonlinear processes [41], which may provide new
strategies to regulate nonlinear optical fields. In addition, once
the coupling accesses the single-photon anharmonicity regime
with g/κ � 1, the nonclassical phenomena may appear, such
as photon blockade or squeezing [57], where high-order
operators are included to take the photon correlations into
account [58].
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APPENDIX A: ON-RESONANCE
CONVERSION EFFICIENCY

According to the coupled-mode equations in Eq. (2), the
steady-state solutions of the system can be obtained by setting
d̃a/dt = db̃/dt = 0. The coupled-mode equation of the FW
mode is then rewritten as

i�eff ã − κeff

2
ã − √

κ1,exain = 0. (A1)

The effective mode detuning and effective mode loss for the
FW mode is thus expressed as

�eff = �p − 2g2 |̃a|2�SH

�2
SH + κ2

2 /4
,

κeff/2 = κ1/2 + 2g2 |̃a|2κ2/2

�2
SH + κ2

2 /4
. (A2)

It is understood that the SHG process can modulate both the
dispersion and the loss of the cavity modes. Assuming �eff =
0, i.e., adjusting the frequency of the pump light to realize
on-resonance excitation, the solution is obtained as

�1
p = 0 or

�s
p

�s
SH

= 2g2 |̃as|2(
�s

SH

)2 + κ2
2 /4

,

ãs = −√
κ1,exain

κ1/2 + �s
p

�s
SH

κ2/2
. (A3)

Here, �s
p(SH) (s = 2, 3) is the effective cavity-pump detuning.

According to b̃ = −ig̃a2/(i�SH + κ2/2), the proportion of in-
tracavity photon numbers of the two modes is shown as

|̃bs|2
|̃as|2 = �s

p

2�s
SH

. (A4)

The photon-number ratio for the two modes presents a
constant 1/4 with δm = 0 once �2,3

p = ±
√

16g2 |̃a|2 − κ2
2

is satisfied. The conversion efficiency under on-resonance
strong-coupling conditions is thus

ηSHG = PSH,out

Pin
= ω2

ωp

κ2,exκ1,ex

(κ1 + κ2/2)2
, (A5)

which is independent of the pump power.

APPENDIX B: LINEARIZATION AND EIGENVALUES

The linearized approximation is applied to this nonlinear
process to analyze the eigenvalues and eigenstates of the mi-
croresonator. Based on Eq. (4), the linearized coupled-mode
equations in the rotating frame are expressed as

dδ̃a

dt
= i�pδ̃a − κ1

2
δ̃a − 2ig〈a〉∗δ̃b − 2ig〈b〉δ̃a

∗
,

dδ̃b

dt
= i�SHδ̃b − κ2

2
δ̃b − 2ig〈a〉δ̃a,

dδ̃a
∗

dt
= −i�pδ̃a

∗ − κ1

2
δ̃a

∗ + 2ig〈a〉δ̃b
∗ + 2ig〈b〉∗δ̃a,

dδ̃b
∗

dt
= −i�SHδ̃b

∗ − κ2

2
δ̃b

∗ + 2ig〈a〉∗δ̃a
∗
. (B1)

Here, δ̃a, δ̃b, and their complex conjugates represent the fluc-
tuations of the photon numbers for the FW and SH modes.
From these linearized equations, the evolution matrix is
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extracted as

M =

⎛
⎜⎜⎜⎝
�p + i κ1

2 −2g〈a〉∗ −2g〈b〉 0
−2g〈a〉 �SH + i κ2

2 0 0
2g〈b〉∗ 0 −�p + i κ1

2 2g〈a〉
0 0 2g〈a〉∗ −�SH + i κ2

2

⎞
⎟⎟⎟⎠.

(B2)

The eigenvalues � j ( j = 1, 2, 3, 4) of the fluctuations are then
obtained by solving det(M) = 0. According to Eq. (B2), ig-
noring the losses, the interaction in the subspace for [δ̃a, δ̃a

†
]T

can be described as

Haa† =
(

�p −2g〈b〉
2g〈b〉∗ −�p

)
, (B3)

which satisfies the definition of the pseudo-Hermiticity
Haa† = ηH†

aa† (η)−1 (where η = σz).
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