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Multimode perturbation modeling for cavity polygon and star modes
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Polygon and star modes enable unidirectional emission and single-frequency lasing in whispering gallery
microcavities. To understand their properties and facilitate design, we have adopted both two-dimensional
and three-dimensional full-wave perturbation methods to simulate these modes. Our simulation demon-
strates that a tapered optical fiber can be used as a weak perturbation to coherently combine multiple
whispering gallery modes into a polygon or star mode. Additionally, our simulation predicts an optical
quality factor as high as 107 for the polygon modes, which is in good agreement with the experimental
results.
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I. INTRODUCTION

Conventional optical whispering gallery microresonators
are known for their high-quality factors (Q) and small mode
volume, making them suitable candidates for a range of ap-
plications from sensing, frequency microcomb generation,
quantum information, to optomechanics [1–7]. When the az-
imuthal symmetry is lifted through structural deformation, a
whispering gallery microcavity may form chaotic modes that
evolve to star or polygon modes under certain conditions. In
the past, intriguing phenomena such as unidirectional emis-
sion have been found in these cavities [8–13]. However, due
to large optical loss arising from deformation, the high quality
factor needed for activating nonlinear optical effects does not
materialize. Recently, these modes were observed in lithium
niobate (LN) microdisks for which the azimuthal symmetry is
lifted through a weak perturbation from a tapered optical fiber
[14,15]. In contrast to deformed whispering gallery microres-
onators, these microdisks can have polygon and star modes
without degrading Q. Hence, they can be used in novel appli-
cations such as second harmonic generation, optomechanical
oscillation, and frequency microcomb generation due to the
high intracavity optical intensity.

For deformed cavities, the formation of these modes has
been explained by describing internal ray dynamics using the
Poincaré surface of a section [8–13]. However, obtaining a
full vector, three-dimensional (3-D) field profile, resonance
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wavelength, and quality factor of these modes remains a chal-
lenge. One way to obtain these parameters is to perform full
wave first-principle-based 3-D simulations on the structure.
However, such a 3-D simulation of nonsymmetric microcavi-
ties is computationally intensive. To accommodate this issue,
two-dimensional (2-D) approximations such as effective in-
dex methods (see details in Supplemental Material, Sec. S.1
[16]) are often applied [14,15,17–20]. Although proven to
be powerful for photonic structures with low refractive index
contrast profile, such approximation yields large inaccuracy in
the case of microcavity simulation due to the large refractive
index difference between the cavity material and ambient air.

In the past, perturbation methods were used as a power-
ful tool for chaotic mode analysis in microcavities [21–25].
In those implementations, the field profile of a whispering
gallery microcavity having structural deformation or in the
presence of a perturbed object was represented as a linear
superposition of ideal whispering gallery modes (WGMs)
field profile whose resonance wavelengths are close to the
probe laser wavelength [26,27] and nonzero superposition
coefficients are only available at a discrete number of reso-
nant wavelengths [27–29]. At certain wavelengths, different
polygon and star modes can be formed.

In this paper, through first-order perturbation, we in-
vestigate the formation of polygon and star modes in
fiber-perturbed cavities. In contrast to the previous formalisms
[27–29], we adopt a nonintegral azimuthal mode order of each
WGM to improve the phase estimation accuracy. In addition
to obtaining the field profile and resonance wavelength, we
also formulate a robust algorithm for quality factor estimation
[15,30].
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FIG. 1. Structure of a microdisk with radius R, thickness t , and
wedge angle θw and a tapered fiber being placed on top of it. The ver-
tical gap between the fiber and the microdisk top surface is denoted
by d .

II. MULTIMODE PERTURBATION FORMALISM

The photonic device to be studied is shown in Fig. 1. Here,
a tapered fiber is placed near an azimuthal-symmetric z-cut
LN microdisk with radius R, thickness t , and wedge angle θw,
along x̂; all are labeled in Fig. 1. The vertical gap between the
fiber and the top surface of the disk is defined as d . Xf is the
horizontal distance from the center of the fiber to the bottom
edge of the microdisk at φ = π

2 according to current settings.
Here a negative Xf represents the fiber being placed on top of
the microdisk.

The multimode perturbation formalism starts with the
Helmhöltz equations that characterize the electric �E (ρ, z, φ)
and magnetic �H (ρ, z, φ) field distributions of a nonmagnetic
photonic structure with relative permittivity profile εr (ρ, z, φ),

∇2 �E (ρ, z, φ) + εr (ρ, z, φ)k2
0

�E (ρ, z, φ) = �0,

∇2 �H (ρ, z, φ) + εr (ρ, z, φ)k2
0

�H (ρ, z, φ) = �0. (1)

Here, in a cylindrical coordinates (ρ̂, ẑ, φ̂) specified in Fig. 1,
the second-order differential operator ∇2 ≡ 1

ρ
∂
∂ρ

(ρ ∂
∂ρ

) +
1
ρ2

∂2

∂φ2 + ∂2

∂z2 . k0 = 2π
λ0

is the free-space wave number and λ0

the vacuum wavelength of the probe laser. By definition, an
ideal whispering gallery microcavity has an azimuthal in-
dependent relative permittivity profile εr (ρ, z, φ) = εr (ρ, z).
Through the separation of variables between φ and (ρ, z),
one may find a discrete set of resonance wavelengths
λ0 ∈ {λνμ; ν, μ = 1, 2, . . . , } that lead to nonzero solutions
�Eνμ(ρ, z, φ) and �Hνμ(ρ, z, φ) to the Helmhöltz equations,
which are called whispering gallery modes (WGMs) in the
form of

�Eνμ(ρ, z, φ) = êνμ(ρ, z)e− jmνμφ,

�Hνμ(ρ, z, φ) = ĥνμ(ρ, z)e− jmνμφ. (2)

Here, the integer subscripts (ν, μ) represent the azimuthal and
transverse mode order, respectively. mνμ is a complex number
whose real part Re{mνμ} = ν is equal to the azimuthal mode
order to satisfy the single value condition �Eνμ(ρ, φ, z) ≈
�Eνμ(ρ, φ + 2π, z) when neglecting the optical losses. The
imaginary part Im{mνμ} characterizes the loss and is related
to the optical quality factor Q according to Q = Re{mνμ}

2Im{mνμ} .

êνμ(ρ, z) and ĥνμ(ρ, z) are the electric and magnetic mode
field distributions at transverse cross section that satisfy the
φ-independent mode equations

∇2
⊥êνμ(ρ, z) +

[
εr (ρ, z)k2

νμ − m2
νμ

ρ2

]
êνμ(ρ, z) = �0,

(3)

∇2
⊥ĥνμ(ρ, z) +

[
εr (ρ, z)k2

νμ − m2
νμ

ρ2

]
ĥνμ(ρ, z) = �0,

with ∇2
⊥ ≡ 1

ρ
∂
∂ρ

(ρ ∂
∂ρ

) + ∂2

∂z2 and kνμ = 2π
λνμ

. When Im{mνμ} is
sufficiently small, WGMs are quasi-orthogonal and êνμ(ρ, z)
and ĥνμ(ρ, z) are normalized such that

πε0

∫∫
εr (ρ, z)ê∗

ν ′μ′ · êνμρdρdz = δνν ′δμμ′, (4)

with δ being the Kronecker delta. When a perturbation ele-
ment such as a tapered fiber is placed in close proximity to the
cavity, the relative permittivity becomes azimuthal dependent
by a small amount [�εr (ρ, z, φ) 
 εr (ρ, z)]. A probe laser
light at a wavelength λl and wave number kl = 2π

λl
delivered

to the cavity through the tapered fiber may distribute its energy
to several WGMs coherently. Therefore, the field around the
cavity can be expressed as

�E (ρ, z, φ) =
∑
ν,μ

aνμêνμ(ρ, z)e− jm′
νμφ,

(5)
�H (ρ, z, φ) =

∑
ν,μ

aνμĥνμ(ρ, z)e− jm′
νμφ,

with the summation over N whispering gallery modes whose
resonance wavelengths λνμ are close to λl . By assuming pho-
tons at both wavelengths, λνμ and λl travel at the same optical
path length and experience the same optical loss, we obtain
[31,32]

Re{m′
νμ} = λνμ

λl
ν,

Im{m′
νμ} = Im{mνμ}. (6)

Unlike in [27] where the azimuthal mode number for WGMs
in Eq. (5) does not change with wavelength, here we modify
it to reduce the phase error. Substituting Eq. (5) into Eq. (1),
we obtain

∇2
∑
νμ

aνμêνμ(ρ, z)e− jm′
νμφ + [εr (ρ, z) + �εr (ρ, z, φ)]

× k2
l

∑
νμ

aνμêνμ(ρ, z)e− jm′
νμφ = �0. (7)

For simplicity, we relabel subscripts (ν, μ) with a single
integer (γ ; γ ∈ 1, 2, . . . , N), replace all subscript pairs ac-
cordingly, and define �kγ and �mγ according to

kl = kγ + �kγ ,

m′
γ = mγ + �mγ . (8)

Following the perturbation approximation, we keep the first-
order perturbation terms and neglect all higher-order terms
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and obtain

∑
γ

aγ

{
∇2

⊥êγ (ρ, z) +
[
εr (ρ, z)k2

γ − m2
γ

ρ2

]
êγ (ρ, z)

+
[

2εr (ρ, z)kγ �kγ + k2
γ �εr (ρ, z, φ) − 2mγ �mγ

ρ2

]

× êγ (ρ, z)

}
e− jm′

γ φ = �0. (9)

Since the first two terms on the left side of the equation vanish
according to Eq. (3), we have

∑
γ

aγ

[
2εr (ρ, z)kγ �kγ + k2

γ �εr (ρ, z, φ) − 2mγ �mμ

ρ2

]

× êγ (ρ, z)e− jm′
γ φ = �0. (10)

Finally, multiplying the remaining terms by
{ê∗

γ ′(ρ, z)e jm′
γ ′ φ ; γ ′∈1, 2, . . . , N} and integrating over full

space, we get N homogeneous linear equations with N
unknowns, which can be expressed in a matrix form


̃(λl )�a =

⎡
⎢⎣


11 ... 
1N
...

. . .
...


N1 ... 
NN

⎤
⎥⎦

⎡
⎢⎣

a1
...

aN

⎤
⎥⎦ =

⎡
⎢⎣

0
...

0

⎤
⎥⎦. (11)

Here, the matrix element 
γ ′γ (λl ) is λl dependent


γ ′γ (λl )

=
∫∫∫ [

2εr (ρ, z)kγ �kγ + k2
γ �εr (ρ, z, φ) − 2mγ �mγ

ρ2

]

× ê∗
γ ′(ρ,z) · êγ (ρ, z)e− j(m′

γ −m′
γ ′ )φ

ρdρdzdφ. (12)

The coefficient’s vector �a = [a1, a2, . . . , aN ]T has nonzero
values only for a discrete number of wavelength λl where
the corresponding determinant of the matrix is zero. The
corresponding eigenvector gives the complex amplitudes aγ

in Eq. (5) and determines the field profile of the mode. We
normalize these amplitudes according to

N∑
γ=1

|aγ |2 = 1(J ). (13)

A. Quality factor estimation

Since, under the current formalism, the resulting perturbed
field is the superposition of unperturbed WGMs, therefore, the
power coupled to the fiber cannot be derived directly from
the field pattern. Instead, the total quality factor (Qt ) has to
be derived from a separate estimation of intrinsic Q (Qi) and
coupling Q (Qc). Note

1

Qt
= 1

Qi
+ 1

Qc
= Pabs + Prad

ω × Ucav
+ Pcoupling

ω × Ucav
, (14)

where Ucav is the total energy stored in the cavity and Pabs, Prad,
and Pcoupling are the power lost through absorption, radiation,
and coupling to the fiber. Here we ignore the scattering-
induced loss, which can be estimated through Mie or Rayleigh
scattering theory if the surface roughness and cavity mate-
rial defects distributions are known [33,34]. In this case, the

polygon field pattern obtained in our method can be used for
such a calculation. Additionally, one may also incorporate
the scattering loss as part of the imaginary part of the cavity
refractive index, in which case the intrinsic Q obtained in
our model will automatically include scattering induced Q.
Pabs, Prad, and the resulting Qi can be estimated from the field
distributions (see details in Supplemental Material, Sec. S.2
[16]). Alternatively, since the polygon mode is a linear com-
bination of unperturbed whispering gallery modes (WGMs) in
the absence of the coupling loss, Qi can also be derived from
the complex resonance wavelength λl in Eq. (11)

Qi = Re{λl}
2Im{λl} . (15)

To estimate the coupling loss, the coupled mode theory
(CMT) needs to be used [35]. Assuming a Cartesian coor-
dinate system (x′, y′, z′) for the fiber with ẑ′ the direction of
propagation as shown in Fig. 1, the fiber field can be written
as

�E f (x′, y′, z′) = b(z′)ê f (x′, y′),

�Hf (x′, y′, z′) = b(z′)ĥ f (x′, y′). (16)

Here, the fiber electric and magnetic mode field distribu-
tions {ê f (x′, y′), ĥ f (x′, y′)} are normalized such that the power
propagating along the z′ direction is |b(z′)|2. As b(−∞) = 0,
b(+∞) only contains the field coupled to the fiber output from
the cavity [30,36], we have

|b(z′)|2 =
∣∣∣∣ k0

4η0

∫ z′

−∞
dz′′

∫∫
�E (x′′, y′′, z′′)

· [�ε̃ f ,r ê∗
f (x′′, y′′)]e jβ f z′′

dA

∣∣∣∣
2

, (17)

where β f is the propagation constant for the fiber mode.
Coupling loss then can be derived from Pcoupling = |b(+∞)|2.
A detailed discussion on coupling the Q calculation can be
found in the Supplemental Material, Sec. S.3 [16].

B. 2 + 1-D simplification

Under 2-D approximation by using the effective index
method to reduce the three-dimensional photonic structure
to a two-dimensional one with the refractive index profile
invariant along the ẑ direction ( ∂

∂z ≡ 0), WGMs decouple to
ẑ-independent TE and TM modes with nonzero field profiles
{eγ ,z(ρ), hγ ,ρ (ρ), hγ ,φ (ρ)} and {hγ ,z(ρ), eγ ,ρ (ρ), eγ ,φ (ρ)}, re-
spectively. The polygon and star modes can still be obtained
following the formalism above except that the matrix elements
in Eq. (12) should be obtained from


γ ′γ =
∫ 2π

φ=0

∫ ∞

ρ=0

[
2εr (ρ, z)kγ �kγ + k2

γ �εr (ρ, φ)

− 2mγ �mγ

ρ2

]
ê∗
γ ′ (ρ) · êγ (ρ)e− j(m′

γ −m′
γ ′ )φ

ρdρdφ.

(18)

Since the variations in the z direction are mapped to the 2-D
problem, we call this method 2 + 1-D simplification. In gen-
eral, the 2-D WGM field profiles can be obtained numerically
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FIG. 2. (a) The resonance wavelengths of TE WGMs at different azimuth mode orders ν. Black lines connect the same transverse mode
order μ. Transverse mode orders of 5 and 82 are shown with pink and blue lines. Subsets of WGMs with (p, q) pairs of (7,2), (4,1), (5,1), and
(6,1) are shown in the figure with black circles. (b) The determinant |det(
̃)| in the range [632.05,632.11] nm. For the first case (orange line),
Xf = −7μm and for the second case (blue line), Xf = 2μm. (c) The amplitudes |aγ | for the modes I to IV in labeled in subplot (b). (d)–(g)
The intensity profiles of the modes. (h)–(k) The zoom-in plots of electric field profiles Ez for each mode.

according to

1

ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
êνμ(ρ) +

[
εr (ρ)k2

νμ − m2
νμ

ρ2

]
êνμ(ρ) = �0,

1

ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
ĥνμ(ρ) +

[
εr (ρ)k2

νμ − m2
νμ

ρ2

]
ĥνμ(ρ) = �0.

(19)

In the special case where the wedge angle θw = 90◦, the ana-
lytic solution is obtainable [27] as shown in the Supplemental
Material Sec. S.4 [16]. In this case, Eq. (18) can be solved
through the analytical mode solution efficiently.

III. RESULTS AND DISCUSSION

A. 2 + 1-D perturbation results

We first model polygon modes under the 2-D approxi-
mation and assume the wedge angle θw = 90◦ so that the
analytical solution of WGMs can be adopted. The disk ge-
ometry is identical to the actual disk demonstrated in [14]
with R = 42μm, t = 700 nm, d = 0 nm and at wavelengths
around 632 nm. The ordinary and extraordinary refractive
index of LN is set to ne = 2.2033 and no = 2.287. The imag-

inary parts of both refractive indices are calculated from
κ = λα

4π
, where α = 0.0019 cm−1 is the linear absorption co-

efficient [37]. Figure 2(a) shows the resonance wavelengths
of unperturbed TE WGMs as a function of the azimuthal
mode order ν. Straight lines connect the modes with the same
transverse mode order μ. In particular, μ = 5 and μ = 82 are
shown as blue and pink lines in the plot and the black lines
between them correspond to modes with μ in between. The
WGMs with azimuthal and transverse mode orders of ν(n) =
ν0 + n × p and μ(n) = μ0 − n × q are nearly degenerate for
(p, q) pairs of (7,2), (4,1), (5,1), and (6,1) at the subsets shown
within the black ellipse in Fig. 2(a). Here, n is an integer
and ν0 and μ0 are the azimuthal and transverse mode order
of the first member in the subset. The near degeneracy of
certain subsets of WGMs would lead to solutions for which
the only nonnegligible coefficients in Eq. (5) belong to this
subset. The shape of the resulting polygon or star mode then
can be predicted from the (p, q) pair. p shows the number of
bouncing points along the boundary and q shows the number
of windings until we return to the initial point [27]. Therefore,
the subsets with q = 1 correspond to polygon modes and the
subsets with q > 1 correspond to star modes.

In general, to find the mode of a particular polygon shape,
it is sufficient to select the WGMs of the corresponding
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(p, q) pairs within the black circle in Fig. 2(a). Here, for
demonstration purposes, we select all the 79 WGMs whose
transverse mode orders are between 5 and 82, and resonance
wavelengths within one mean free spectral range (FSR,
0.8 nm) of the center wavelength [632 ± 0.4 nm, shown be-
tween the horizontal red lines in Fig. 2(a)]. These modes are
inserted into Eq. (5) for two different cases. In the first case,
fiber is placed on top of the microdisk with Xf = −7μm and
in the second case, fiber is placed far away from the microdisk
with Xf = +2μm. Figure 2(b) shows the determinant |
̃|
versus λl for both cases. As shown, a set of dips can be found
in both the first case (orange solid line) and the second case
(blue solid line). Each dip represents a resonant mode of the
perturbed cavity since |
̃| = 0 leads to nonzero solutions to �a
that are the coefficients of the contributing WGMs coherently
forming the resonance mode. Here, we selected two modes in
each case and labeled them by I to IV on the plot for further
investigation.

The WGMs amplitudes |aγ | for all the four labeled modes
are shown in Fig. 2(c). In the second case where Xf = +2μm,
the coupling quality factor, Qc for modes I and II are 5.5 ×
1020 and 1.4 × 1021, indicating a weak interaction between
the fiber and disk. Consequently, only one nonzero aγ is
present for mode I (orange bar) and mode II (blue bar), leading
to pure WGM modes as shown from the intensity distributions
in Figs. 2(d) and 2(e) since the perturbation is too weak to ex-
cite multiple WGMs. For Xf = −7μm where the perturbation
is relatively strong, the Qc of modes III and IV are 7.2 × 108

and 2 × 108, respectively. With such strong fiber-to-disk inter-
actions, there are multiple nonzero aγ values that coherently
combine the WGMs into a polygon as shown in Figs. 2(f) to
2(g). The intensity of these modes is shown in Figs. 2(d) to
2(g) with the corresponding zoom-in images of electric field
distributions in Figs. 2(h) to 2(k). For the square modes III
and IV, the nonzero amplitudes around ν = 40 correspond
to the subset with (p, q) = (4, 1). The total quality factor Qt

for modes I to IV are 1.1 × 108, 1.1 × 108, 9.6 × 107, and
7.1 × 107, respectively.

To obtain polygon and star modes of different shapes, we
placed the fiber at different Xf with fiber in direct contact with
the disk top (d = 0). As shown in Fig. 3(a), when Xf is at
−7μm, two modes were observed at resonance wavelengths
λl of 632.0838 nm and 632.0107 nm and labeled as I and II.
The significant values of �a fall into (p, q) = (4, 1) and (6,1),
respectively, suggesting the creation of square and hexagon
modes. The top view intensity profiles showing as the insets
in Fig. 3(b) confirmed that these two modes are the shapes
suggested. We further placed the fiber at Xf = −2μm to find a
pentagon mode (III) at λl = 632.067 nm with (p, q) = (5, 1).
Finally, a heptagram mode (IV) was located at Xf = −1μm
with (p, q) = (7, 2) and λl = 632.0627 nm, both of which
are also confirmed by the insets in Fig. 3(b). The main plot
of Fig. 3(b) further shows the optical power coupled to the
fiber (|b(z′)|2) for these modes. The coupling Q calculated for
the modes I to IV based on b(+∞) is 7.2 × 108, 2.5 × 109,
6.4 × 109, and 2.7 × 109, respectively. It is worth mentioning
that for modes II and III, even though the fiber is placed in
contact with the disk surface and the perturbation is strong,
the overlap between the mode intensity to the fiber remains
small. Consequently, the coupling loss is low, making a high

FIG. 3. (a) |aγ | of the square (I), hexagon (II), pentagon (III), and
heptagram (IV) modes when Xf = −7μm for I and II, while Xf =
−2μm for III and Xf = −1μm for IV. (b) Optical power (|b(z′|2)
propagating along the tapered fiber in the absence of light from its
input end. Insets are the top-view intensity profiles of these modes.
The coupling Q of these modes are 7.2 × 108, 2.5 × 109, 6.4 × 109,
and 2.7 × 109, respectively.

overall quality factor possible. In contrast, a normal WGM
would have low coupling Q due to overcoupling when the
fiber is at the same location. Our simulation results further
confirm the experiment observation in [14,15] that a polygon
mode may have a high Qt even when the fiber is placed on the
disk top.

B. 3-D perturbation results

In this subsection, we apply the 3-D full vector perturbation
to polygon mode analysis. Here, we adopt a disk similar to the
one that has been experimentally demonstrated in [15] with
R = 14.53μm, t = 700 nm, a wedge angle θw = 61.6◦, and at
wavelengths around 970 nm. The ordinary and extraordinary
refractive index and linear absorption coefficient of LN are
set to ne = 2.1615, no = 2.2385. As the absorbance of the
crystal is supplier dependent and the value of thin film used
in [14,15] is not available, we use α = 0.0019 cm−1 accord-
ing to [37]. The fiber has a diameter of 600 nm centered at
Xf = −2.53μm. The vertical gap between the fiber and the
microdisk is d = 150 nm. In total, we illustrated three modes
by sweeping the wavelength from 972.39 nm to 972.53 nm
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FIG. 4. The top view intensity profile at z = 0 of (a) star mode,
(b) square mode at 45◦, and (c) horizontal square mode. Their reso-
nant wavelength and quality factor (λl , Q) are (972.4097 nm, 7.1 ×
107), (972.4165 nm, 4.6 × 106), and (972.4314 nm, 2.1089 × 106),
respectively. The intensity (I), electrical field along radial (Eρ), and
vertical (Ez) at φ = 45◦ are displayed in (d)–(f), (g)–(i), and (j)–(l).

and labeled them as I, II, and III in Fig. 4. The top-view
intensity profiles of these modes at z = 0 cross section in
Figs. 4(a) to 4(c) show that mode I is a weakly formed star
mode while modes II and III are square modes, one oriented
45◦ from x̂ while the other is horizontal. The side-view at
φ = 45◦ of intensity (I), electrical fields along radial (Eρ),
and vertical (Ez) directions are shown on Figs. 4(d) to 4(f),
4(g) to 4(i), and 4(j) to 4(l), respectively. The total quality
factor (Qt ) for the modes I to III are 7.1 × 107, 4.6 × 106,
and 2.1 × 106, respectively. A video showing the 3-D field
distribution is available in the Supplemental Material.

C. Comparison between 2 + 1-D and 3-D approaches

To compare with 2 + 1-D perturbation method, we further
investigate the polygon mode evolution by varying the slant
wedge angle θw and setting d = 200 nm.

In 2 + 1-D perturbation, the analytic solution of 2-D
WGMs is no longer available due to the appearance of the
slant wedge angle and we adopted the numeric solution
through COMSOL instead to obtain the WGMs (see Supple-
mental Material Sec. S.5 [16]). To evaluate the quality of the
square mode, we defined a visibility V2d at φ = 45◦ according
to

V2d =
∫ ρh2

ρh1
I (ρ, φ = 45◦)dρ∫ ∞

−∞ I (ρ, φ = 45◦)dρ
. (20)

Here ρh1 and ρh2 are the locations of the full width at half
maximum (FWHM) of the mode intensity I (ρ, φ = 45◦) at
φ = 45◦. In this simulation, we sweep the wedge angle from
57◦ to 80◦ to obtain a resonant mode at each angle. Using a
Windows-10 computer with single Intel i7-7700K CPU op-
erating at 4.20GHz and 64 GB memory, it takes around 850
seconds to obtain each resonant mode. Shown as the red curve
in Fig. 5(a), the resonance modes are WGM in nature when

FIG. 5. Top: Visibility (V ), intrinsic quality factor (Qi), and total
quality factor (Qt ) as a function of wedge angle calculated for the
same structure using 2 + 1-D and 3D methods. Bottom: Intensity
distribution top-view of modes I, II, III, and IV labeled in the top
plot.

we start to increase θw till 76◦, as evident from the top-view
intensity profile below the main plot (II). When the wedge
angle reaches 77◦, a sharp rise of visibility to 0.4 suggests
the formation of a square mode, which is confirmed by the
intensity profile (I).

In 3-D, similar to the 2 +1-D case, we define a 3-D visibil-
ity V3d of the square modes as

V3d =
∫∫

Sh
I (ρ, z, φ = 45◦)dρdz∫ ∞

−∞
∫ ∞
−∞ I (ρ, z, φ = 45◦)dρdz

. (21)

Here, I (ρ, z, φ) is the intensity profile and Sh is the area
where the intensity is above the half maximum intensity.
Similarly, we perform a wedge angle sweep to compute the
resonant modes accordingly. Using the same computer, the
computation of each mode takes around 5,700 seconds. In this
simulation, we observe two clear polygon modes with high
visibility at θ = 61.6◦ and θ = 67◦. The higher visibility at
θ = 61.6◦ is due to the fact that the resonance wavelengths of
the contributing WGMs are closer (see Supplemental Material
Sec. S.6 [16]). Note that the large departure of the wedge
angle between the 2 + 1-D and 3-D simulation suggests that
although 2 + 1-D is a fast algorithm with reasonable accuracy
in generating field patterns, it is less accurate in the presensce
of highly sensitive parameters such as the wedge angle. A
video showing the polygon mode evolution versus the wedge
angle is available in the Supplemental Material.
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Further, we compare the intrinsic Q (pink curve with cross
markers for 2 + 1-D and brown curve with cross markers for
3-D) and total Q (green curve with circle markers for 2 + 1-D
and black curve with circle markers for 3-D) in Fig. 5(a).
As shown, in our 2 + 1-D model, Qi varies around (6.6 ∼
6.7) × 107 and Qt around (0.3 ∼ 5.1) × 107, both with rel-
atively smooth changes with wedge angle. In contrast, our
3-D model shows that Qi is around (7.2 ∼ 7.8) × 107 and Qt

around (0.8 ∼ 3.8) × 107. Our 2 + 1-D and 3-D results agree
quite well even though the effective index method is known
to be less accurate to capture the field fluctuation along ẑ.
On the other hand, the relatively rich fluctuations of Q versus
wedge angle in our 3-D simulation indicate that the 3-D model
has higher sensitivity and accuracy to take the vertical light
confinement into account.

In the next comparison, we study the evolution of the
polygon modes by varying the fiber-to-disk distance d , with
the wedge angle in 2 + 1-D and 3-D simulations set at each of
their optimum value (77◦ for 2 + 1-D and 61.6◦ for 3-D). Fur-
ther, we optimize the Xf = −1.33μm in 2 + 1-D simulation
so that the visibility reaches the highest. Figure 6(a) shows
Qt (blue curve with cross markers to the left axis), Qc (green
curve with diamond markers), Qi (black dashed line), and V2d

(yellow curve with plus markers to the right axis) versus d .
The right inset of the intensity distribution at d = 325 nm
indicates that when the gap between the fiber and the disk top
is larger than a half wavelength, the perturbation is negligible
and only WGM can be formed with a poor square mode
visibility of 0.36. The mode also has an Qi = 6.8 × 107, Qc =
9.7 × 107, and a total quality factor Qt = 4×107, indicating
that the fiber is at an undercoupled regime. When the fiber
moves closer to the disk top with decreasing d , the resonance
mode gradually evolves to the square mode with increasing
visibility till reaches the best square shape at = 75 nm (left
inset) at a resonance wavelength of 971.4453 nm and with
visibility of 0.6 as a result of increased perturbation. On the
other hand, due to the increased power coupling to the fiber,
both Qc and Qt drop to 3.6 × 105, indicating that the fiber is
at the overcoupled regime.

Figure 6(b) displays the 3-D simulation on intrinsic,
coupling, and total quality factors and visibility evolution. Ac-
cording to the visibility curve (yellow line with plus markers),
the sharpest square mode occurs at d = 150 nm with an Qi

(black dashed line and circle markers) of 7.7×107, Qc (green
line with diamond markers) of 4.9 × 106, and Qt (blue line
with cross markers) of 4.6 × 106. The d for the best visibility
is almost twice as far as the 2 + 1-D case, confirming that,
although 2 + 1-D perturbation provides fast modeling of the
cavity polygon modes, it cannot accurately predict the exact
wedge angle and fiber position as these parameters are sen-
sitive to vertical light confinement. Further, the plot of 3-D
Qc and Qt shows a “shoulder” pattern at d around 250 nm to
300 nm, which is also visible in 2 + 1-D at a lower d . This
is caused by the loss redistribution when the mode transits
from a single WGM to multiple WGMs for polygon mode
formation. It is also worth mentioning that the intrinsic Q
obtained from Eq. (14) (black circles) and Eq. (15) (black
dashed line) reach excellent agreement, indicating that both
can be used for Qi estimation. Further, we compared our
3-D simulation result with the measured Qt reported in [15].

FIG. 6. (a) 2 + 1-D simulation shows the intrinsic, coupling, and
total quality factors and visibility evolution versus d . The disk wedge
angle is 77◦. The black dashed line shows the intrinsic quality factor
(Qi ) when d is sufficiently large. The left inset is the intensity
distribution of the square mode with the highest visibility of 0.6 and
Qt = 3.6×105 at d = 75 nm while the right inset displays the inten-
sity distribution of the WGM at d = 325 nm with V2d = 0.36 and
Qt = 4×107. (b) 3-D simulation of a structure identical to (a) except
for a wedge angle of 61.6◦. The dashed black line shows the (Qi )
calculated from Eq. (14) and the circles are those from Eq. (15)
The top-view and side-view intensity profiles are also shown at
d = 150 nm (I) and d = 725 nm (II). The experimentally measured
total Q in [15] is shown as the red dashed line.

Although the surface roughness-induced scattering loss and
precise fiber location of the disk reported in [15] were not
known due to the resource limitation, the experiment result of
Qt = 2.2 × 107 shown as the red dashed line is in line to our
simulation at good visibility.

IV. CONCLUSION

In conclusion, through numerical analysis with 2 + 1-
D and 3-D perturbation methods, we confirmed that the
polygon and star modes experimentally observed in [14,15]
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ewre due to fiber-induced perturbation. We further veri-
fied our experimental observation that the polygon modes
may reach high overall quality factors even with the fiber
placed close to the disk surface, which in general will cause
overcoupling for conventional WGM. Furthermore, although
the 2 + 1-D perturbation method is a fast algorithm and

provides reasonable accuracy in predicting field distribution
and quality factors, it is less accurate in estimating parameters
such as wedge angle and fiber-to-disk distance, which are
highly sensitive to vertical light confinement. Under these
situations, a more accurate 3-D perturbation approach is
recommended.

[1] K. J. Vahala, Optical microcavities, Nature (London) 424, 839
(2003).

[2] T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser,
R. C. Flagan, and K. Vahala, High sensitivity nanoparticle de-
tection using optical microcavities, Proc. Natl. Acad. Sci. USA
108, 5976 (2011).

[3] M. D. Baaske, M. R. Foreman, and F. Vollmer, Single-molecule
nucleic acid interactions monitored on a label-free microcavity
biosensor platform, Nat. Nanotechnol. 9, 933 (2014).

[4] T. J. Kippenberg, R. Holzwarth, and S. A. Diddams,
Microresonator-based optical frequency combs, Science 332,
555 (2011).

[5] T. J. Kippenberg and K. J. Vahala, Cavity optomechanics: Back-
action at the mesoscale, Science 321, 1172 (2008).

[6] S. Honari, S. Haque, and T. Lu, Fabrication of ultra-high q silica
microdisk using chemo-mechanical polishing, Appl. Phys. Lett.
119, 031107 (2021).

[7] W. Yu, W. C. Jiang, Q. Lin, and T. Lu, Cavity optomechanical
spring sensing of single molecules, Nat. Commun. 7, 12311
(2016).

[8] B. Redding, L. Ge, Q. Song, J. Wiersig, G. S. Solomon, and
H. Cao, Local Chirality of Optical Resonances in Ultrasmall
Resonators, Phys. Rev. Lett. 108, 253902 (2012).

[9] W. Fang, H. Cao, and G. S. Solomon, Control of lasing in fully
chaotic open microcavities by tailoring the shape factor, Appl.
Phys. Lett. 90, 081108 (2007).

[10] J. Unterhinninghofen, J. Wiersig, and M. Hentschel, Goos-
hänchen shift and localization of optical modes in deformed
microcavities, Phys. Rev. E 78, 016201 (2008).

[11] T. Harayama, S. Sunada, and K. S. Ikeda, Theory of two-
dimensional microcavity lasers, Phys. Rev. A 72, 013803
(2005).

[12] J. Wiersig and M. Hentschel, Combining Directional Light Out-
put and Ultralow Loss in Deformed Microdisks, Phys. Rev. Lett.
100, 033901 (2008).

[13] N. B. Rex, H. E. Tureci, H. G. L. Schwefel, R. K. Chang, and
A. D. Stone, Fresnel Filtering in Lasing Emission from Scarred
Modes of Wave-Chaotic Optical Resonators, Phys. Rev. Lett.
88, 094102 (2002).

[14] Z. Fang, S. Haque, S. Farajollahi, H. Luo, J. Lin, R. Wu, J.
Zhang, Z. Wang, M. Wang, Y. Cheng et al., Polygon Coherent
Modes in a Weakly Perturbed Whispering Gallery Microres-
onator for Efficient Second Harmonic, Optomechanical, and
Frequency Comb Generations, Phys. Rev. Lett. 125, 173901
(2020).

[15] J. Lin, S. Farajollahi, Z. Fang, N. Yao, R. Gao, J. Guan, L.
Deng, T. Lu, M. Wang, H. Zhang et al., Electro-optic tuning of
a single-frequency ultranarrow linewidth microdisk laser, Adv.
Photonics 4, 036001 (2022).

[16] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevA.108.033520 for an estimation of the in-
trinsic quality factor from the field distribution; derivation for
coupling quality factor; analytical solution of 2-D WGM; the
effective index method; and WGMs used in 3-D perturbation
modeling. See also Refs. [27,31,32,36].

[17] S.-Y. Lee, S. Rim, J.-W. Ryu, T.-Y. Kwon, M. Choi, and C.-M.
Kim, Quasiscarred Resonances in a Spiral-Shaped Microcavity,
Phys. Rev. Lett. 93, 164102 (2004).

[18] J. Wiersig, Boundary element method for resonances in dielec-
tric microcavities, J. Opt. A: Pure Appl. Opt. 5, 53 (2003).

[19] C.-L. Zou, Y. Yang, Y.-F. Xiao, C.-H. Dong, Z.-F. Han,
and G.-C. Guo, Accurately calculating high quality factor
of whispering-gallery modes with boundary element method,
J. Opt. Soc. Am. B 26, 2050 (2009).

[20] C.-L. Zou, H. G. Schwefel, F.-W. Sun, Z.-F. Han, and G.-C.
Guo, Quick root searching method for resonances of dielectric
optical microcavities with the boundary element method, Opt.
Express 19, 15669 (2011).

[21] I. Teraoka, S. Arnold, and F. Vollmer, Perturbation approach
to resonance shifts of whispering-gallery modes in a dielectric
microsphere as a probe of a surrounding medium, J. Opt. Soc.
Am. B 20, 1937 (2003).

[22] S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer,
Shift of whispering-gallery modes in microspheres by protein
adsorption, Opt. Lett. 28, 272 (2003).

[23] I. Teraoka and S. Arnold, Theory of resonance shifts in
te and tm whispering gallery modes by nonradial perturba-
tions for sensing applications, J. Opt. Soc. Am. B 23, 1381
(2006).

[24] M. R. Foreman and F. Vollmer, Theory of resonance shifts of
whispering gallery modes by arbitrary plasmonic nanoparticles,
New J. Phys. 15, 083006 (2013).

[25] J. D. Swaim, J. Knittel, and W. P. Bowen, Detection limits
in whispering gallery biosensors with plasmonic enhancement,
Appl. Phys. Lett. 99, 243109 (2011).

[26] H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C.
Hill, Time-independent perturbation for leaking electromag-
netic modes in open systems with application to resonances in
microdroplets, Phys. Rev. A 41, 5187 (1990).

[27] J. Lee, S. Rim, J. Cho, and C.-M. Kim, Resonances near the
Classical Separatrix of a Weakly Deformed Circular Microcav-
ity, Phys. Rev. Lett. 101, 064101 (2008).

[28] H. Türeci, H. Schwefel, P. Jacquod, and A. D. Stone, Modes
of wave-chaotic dielectric resonators, in Progress in Optics
(Elsevier, Amsterdam, 2005), pp. 75–137.

[29] N. Korneev, Perturbation approximation for higher modes in
nearly regular two-dimensional cavities, Cogent Physics 3,
1262725 (2016).

033520-8

https://doi.org/10.1038/nature01939
https://doi.org/10.1073/pnas.1017962108
https://doi.org/10.1038/nnano.2014.180
https://doi.org/10.1126/science.1193968
https://doi.org/10.1126/science.1156032
https://doi.org/10.1063/5.0051674
https://doi.org/10.1038/ncomms12311
https://doi.org/10.1103/PhysRevLett.108.253902
https://doi.org/10.1063/1.2535692
https://doi.org/10.1103/PhysRevE.78.016201
https://doi.org/10.1103/PhysRevA.72.013803
https://doi.org/10.1103/PhysRevLett.100.033901
https://doi.org/10.1103/PhysRevLett.88.094102
https://doi.org/10.1103/PhysRevLett.125.173901
https://doi.org/10.1117/1.AP.4.3.036001
http://link.aps.org/supplemental/10.1103/PhysRevA.108.033520
https://doi.org/10.1103/PhysRevLett.93.164102
https://doi.org/10.1088/1464-4258/5/1/308
https://doi.org/10.1364/JOSAB.26.002050
https://doi.org/10.1364/OE.19.015669
https://doi.org/10.1364/JOSAB.20.001937
https://doi.org/10.1364/OL.28.000272
https://doi.org/10.1364/JOSAB.23.001381
https://doi.org/10.1088/1367-2630/15/8/083006
https://doi.org/10.1063/1.3669398
https://doi.org/10.1103/PhysRevA.41.5187
https://doi.org/10.1103/PhysRevLett.101.064101
https://doi.org/10.1080/23311940.2016.1262725


MULTIMODE PERTURBATION MODELING FOR CAVITY … PHYSICAL REVIEW A 108, 033520 (2023)

[30] M. L. Gorodetsky and V. S. Ilchenko, Optical microsphere res-
onators: Optimal coupling to high-q whispering-gallery modes,
J. Opt. Soc. Am. B 16, 147 (1999).

[31] X. Du, S. Vincent, and T. Lu, Full-vectorial whispering-gallery-
mode cavity analysis, Opt. Express 21, 22012 (2013).

[32] X. Du, S. Vincent, M. Faucher, M.-J. Picard, and T. Lu, Gener-
alized full-vector multi-mode matching analysis of whispering
gallery microcavities, Opt. Express 22, 13507 (2014).

[33] M. Borselli, T. Johnson, and O. Painter, Beyond the Rayleigh
scattering limit in high-Q silicon microdisks: Theory and ex-
periment, Opt. Express 13, 1515 (2005).

[34] M. Borselli, K. Srinivasan, P. E. Barclay, and O.
Painter, Rayleigh scattering, mode coupling, and optical
loss in silicon microdisks, Appl. Phys. Lett. 85, 3693
(2004).

[35] D. Rowland and J. Love, Evanescent wave coupling of whis-
pering gallery modes of a dielectric cylinder, IEE Proc. J
Optoelectron. UK 140, 177 (1993).

[36] A. W. Snyder and J. Love, Optical Waveguide Theory (Springer
Science & Business Media, New York, 2012).

[37] D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete
Survey (Springer Science & Business Media, New York, 2006).

033520-9

https://doi.org/10.1364/JOSAB.16.000147
https://doi.org/10.1364/OE.21.022012
https://doi.org/10.1364/OE.22.013507
https://doi.org/10.1364/OPEX.13.001515
https://doi.org/10.1063/1.1811378
https://doi.org/10.1049/ip-j.1993.0028

