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Nonlinear self-sustaining dynamics in cavity magnomechanics
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A recent experiment [R. C. Shen et al., Phys. Rev. Lett. 129, 123601 (2022)] has demonstrated the
occurrence of nonlinearity-induced asymptotic bistability in cavity magnomechanics. As an extension, we
explore the theoretical ground of diverse potential self-sustaining effects in cavity magnomechanics by
analyzing its nonlinear dynamics. The attractors which suggest dynamical multistability for the limit cycles are
mapped out to the parameter space by deriving the corresponding slow amplitude dynamics. Our quantitative
analysis also includes the fluctuation-dissipation process, which quantitatively predicts non-Gaussian phase
spreading, amplitude squeezing, and the mixture of multiple limit cycle states. We finally explore the quantum
self-sustaining dynamics by solving the full quantum master equation. The paper lays the foundation for
various applications, e.g., high-precision measurements, squeezed-state and non-Gaussian-state preparation,
and nonlinearly induced quantum phase transitions, based on cavity magnomechanics.
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I. INTRODUCTION

It has been recently revealed that in ferromagnetic sys-
tems, especially in yttrium iron garnet (YIG), the quanta
of collective excitations of a spin ensemble can be used
to realize strong light-matter interactions so that the corre-
sponding Kittel mode can strongly couple to the microwave
cavity photons [1–6]. In addition to such strong and ultra-
strong magnon-microwave photon interaction, Zhang et al.
demonstrated first in Ref. [7] that magnons can also couple
with phonons through magnetostrictive interaction leading
to magnomechanically induced transparency and absorption.
Subsequently, the impact of magnon-induced dynamical back-
action was also observed and analyzed [8,9]. The hybrid
magnon-photon-phonon system, known as cavity magnome-
chanics, is a new platform for studying quantum effects at
macroscopic scale, such as stationary entanglement [10–13],
coherence [13], blockade [14], steering [15], and squeez-
ing [16] for both magnons and phonons. In quantum
information processing the cavity magnonics or magnome-
chanical system is suitable for realizing mature schemes like
preparing Bell states (also Greenberger-Horne-Zeilinger and
NOON states) [17–19], cooling mesoscopic objects to their
ground states [20,21], and realizing quantum precision sens-
ing [22]. The intersection of cavity magnomechanics with
non-Markovian dynamics [23], accelerating adiabatic pas-
sages [24], and non-Hermitian quantum systems [25–27] are
also hotspots in quantum optics.

Unlike the microwave-magnon beam splitter interaction,
the magnetostrictive interaction is a radiation-pressure-like
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interaction with nonlinearity [7,10]. Most of the work men-
tioned above, especially in continuous variables, tends to
linearize this nonlinear interaction and restrict the quantum
state to the Gaussian form [10,12,13,22,28–31]. Under semi-
classical conditions, researchers have gradually focused on
the bistability induced by magnetostrictive interactions, and
a very recent experiment has confirmed some of those pre-
dictions [32]. These discussions focus on the fact that the
nonlinearity can support a bistable asymptotic steady state
but is not strong enough to excite the magnon to generate
self-sustained oscillation. A quantum self-sustaining dynam-
ics refers to a quantum evolution whose classical steady state
forms a limit cycle in the phase space [33,34]. It associates
with the mechanisms of diverse physics effects such as quan-
tum phase transitions [35] and the spontaneous breaking of
time-translation symmetry (quantum time crystal) [36,37],
and provides a prerequisite for quantum phenomena such as
quantum synchronization [38–40]. In the quantum regime,
nonlinear effects induce the system to deviate from the Gaus-
sian state and stabilize in a limit cycle state, which can be
regarded as a mixture of Gaussians distributed over all the
phases of the classical limit cycle orbit [41–44]. Previous
work explored self-sustaining dynamics in optomechanics
or van der Pol oscillators and has shown that some unique
phenomena, such as multistability [41,44–46] and noise sup-
pression [47], will emerge, which can never be observed in a
linear system or treating nonlinear systems from a mean-field
perspective. As an extension of optomechanics [48], cavity
magnomechanics owns a new degree of freedom (DOF), i.e.,
the microwave-cavity DOF, leading to additional interactions
and parameters (such as the coupling strength and detuning
between magnon and microwave photons), which intuitively
corresponds to a rich self-sustaining phase diagram. However,
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FIG. 1. Sketch of the considered cavity magnomechanics: A YIG
sphere is placed inside a microwave cavity. The magnon mode m is
coupled to the microwave mode a by the magnon-microwave photon
interaction and to the mechanical mode b by the magnetostrictive
interaction.

a systematic study of the self-sustaining dynamics in cavity
magnomechanics has been difficult to achieve because the
additional DOF complicates analytical analysis.

In this paper, we explore the nonlinear self-sustaining dy-
namics of standard cavity magnomechanics by generalizing
the analysis of Marquardt et al. [45] and Rodrigues and Ar-
mour [47] via including the microwave-magnon beam splitter
interaction. The microwave photon and magnon have high-
order sidebands whose frequencies are integer multiples of
the mechanical frequency, which can be solved by an iter-
ation. We map out the attractors which suggest dynamics
multistability for the limit cycles to the parameter space and
verify numerically the analytic analysis by applying stochastic
Langevin equations [41,44,49]. The results of the iterations
allow us to predict the fluctuation distribution of the system,
for example, phase spread, amplitude compression, and the
mixture of different limit cycles. Moreover, the iteration re-
sults also allow us to predict the fluctuation distribution of the
mechanical mode, such as phase diffusion, noise suppression,
and the mixture of different limit cycles. Finally, we discuss
the full quantum master equation of the self-sustaining sys-
tems to demonstrate the efficient range for observing quantum
properties.

This paper is organized as follows: In Sec. II, we present
the dynamics of the system, including iteratively solving
attractors after deriving the slowly varying amplitude equa-
tion obtained after neglecting fast oscillating terms, and the
rescaled stochastic Langevin equations. In Sec. III, we analyze
the dynamical multistability in cavity magnomechanics. In
Sec. IV, we study in detail the non-Gaussian dynamics of
fluctuating distributions, such as phase diffusion, modulus
noise suppression, and mixture of different limit cycle states.
We finally show the quantum properties of the cavity mag-
nomechanics in Sec. V by simulating the Lindblad master
equation in a low excitation subspace. Conclusions and related
discussions are given in the last section.

II. SYSTEM DYNAMICS

As shown in Fig. 1, we consider a standard cavity mag-
nomechanics system consisting of a YIG placed inside a

microwave cavity and simultaneously in a uniform bias
magnetic field [10]. The system Hamiltonian including the
magnon-photon coupling and the magnetostrictive interaction
reads

H/h̄ = ωaâ†â + ωmm̂†m̂ + ωbb̂†b̂

− gm̂†m̂(b̂† + b̂) + gma(â† + â)(m̂† + m̂)

+ i�(m̂†e−iωd t − m̂eiωd t ), (1)

where â (â†), m̂ (m̂†), and b̂ (b̂†) are the annihilation (creation)
operators of the microwave cavity, the magnon mode, and
the mechanical mode, and ωa, ωm, and ωb are the corre-
sponding resonance frequencies, respectively. gma denotes the
magnon-microwave coupling rate, and g is the single-magnon
magnomechanical coupling rate. � is the Rabi frequency sat-
isfying � = √

5NγgB0/4 [10,16], which denotes the coupling
strength of the drive magnetic field with the magnon mode.
Here γg is the gyromagnetic ratio. B0 is the amplitude of
the drive magnetic field satisfying B0 = R−1(2Pμ0/πc)1/2,
where P is the pump power, R is the radius of YIG, and μ0

and c are the permeability and the speed of light in vacuum.
N = ρV is the total number of spins of the YIG, where ρ is
the spin density in the YIG sphere, and V is the volume of the
sphere.

The YIG and the cavity mode are coupled to their
corresponding thermal reservoir at temperature T through
fluctuation-dissipation processes yielding the following quan-
tum Langevin equations in the frame rotating at the drive
frequency ωd [48,50,51]:

˙̂a = (i�a − κa)â − igmam̂ +
√

2κaâin,

˙̂m = (i�m − κm)m̂ − igmaâ + igm̂(b̂† + b̂)

+ � +
√

2κmm̂in,

˙̂b = (−iωb − γ )b̂ + igm̂†m̂ +
√

2γ b̂in. (2)

In the above expressions, �a = ωd − ωa (�m = ωd − ωm) is
the the drive-microwave (magnon) detuning. κa, κm, and γ are
the dissipation rates of the cavity, magnon, and mechanical
modes. âin, m̂in, and b̂in are the input noise operators
corresponding to each modes. They are assumed to be white
Gaussian fields obeying zero mean and standard correlation
relations: 〈ô†

in(t )ôin(t ′) + ôin(t ′)ô†
in(t )〉 = (2n̄o + 1)δ(t − t ′)

for o ∈ {a, m, b}, where n̄o = [exp(h̄ωo/kbT ) − 1]−1 is
the mean thermal excitation number of the corresponding
mode [50]. Here we have adopted the rotating-wave approx-
imation (RWA) gma(â† + â)(m̂† + m̂) � gma(â†m̂ + âm̂†)
since the corresponding resonance frequencies ωa,m are much
larger than the coupling strength gma and the dissipation rates,
which is easily satisfied in laboratory.

The nonlinear magnomechanical interaction may induce
the mechanical mode to be in self-sustained oscillation, which
will only have nonclassical properties when the excitation
number is limited to several quanta and only corresponds
to a small parameter domain. In most parameter domains,
in contrast, the quantum state will remain non-negative in
the Wigner representation during the whole dynamic process
if the initial Wigner function is also non-negative [46,52].
Therefore the quantum Langevin equations in Eq. (2) can
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be well approximated by a set of stochastic Langevin equa-
tions in which we replace operators â, m̂, and b̂ with c-number
complex variables a, m, and b [41,44,46,49,53]. To get a
universal conclusion and avoid our analysis being confined
to some specific experimental parameters, we rescale the vari-
ables of our model as α = ga, M = gm, β = gb, and E = �g
and the stochastic Langevin equations for the rescaled vari-
ables read

α̇ = (i�a − κa)α − igmaM +
√

2κaαin,

Ṁ = [i(�m + (β∗ + β )) − κm]M− igmaα + E +
√

2κaMin,

β̇ = (−iωb − γ )β + i|M|2 +
√

2γ βin, (3)

while the input operators are also replaced by rescaled
classical complex random noises with modified correla-
tion functions: 〈o∗

in(t )oin(t ′)〉 = g2(n̄o + 1/2)δ(t − t ′) (o ∈
{a, m, b}) because the c numbers lose the commutation re-
lation [41,49]. For each mode o, the corresponding quantum
state can be solved by repeatedly calculating the stochastic
Langevin equations N times (N should be large) and char-
acterized by the expected value and the fluctuation, 〈X 〉 =
(1/N )

∑
i X i and 〈δ2X 〉 = 1/(N − 1)

∑
i[(X

i − 〈X 〉)2], where
X can be any characteristic variable, and also characterized by
the Wigner function, which is equivalent to the phase-space
probability distribution in its non-negative case [51,52], that
is,

Wo(Q, P) = lim
h→0

NQ,P

Nh2
, (4)

where NQ,P is the number of results satisfying Qi
o ∈

(Q − h/2, Q + h/2] and Pi
o ∈ (P − h/2, P + h/2], with Qi

o =
g(oi + oi∗) and Pi

o = ig(oi∗ − oi ) the two rescaled quadratures.
Here the oi is obtained by the ith stochastic trajectory in
the simulation. The modulus distribution function and phase
distribution function can also be defined in a similar logic as

Pθ (θ ) = lim
h→0

Nθ

Nh
, PI (I ) = lim

h→0

NI

Nh
. (5)

In this paper, we mainly consider the self-sustaining so-
lution of the mechanical mode which sets itself into a
dynamics of the following form after an initial transient
regime [44,45,47]:

β(t ) = β0 + Ae−iωbt = β0 + |A|e−i(ωbt+θ ), (6)

where β0 and A are constants. The above treatment implies
discarding the possible chaotic motion of the oscillator be-
cause it occurs only at extremely large driving powers and
we will show in the follow-up discussions that this condition
is not physically meaningful for the cavity magnomechanics
we considered. In contrast, the nonlinear interaction will lead
to the microwave mode and magnon mode showing complex
dynamics accompanied by distinguishable higher-order side-
bands, satisfying the following form:

α(t ) := ᾱ + δα =
∑

n

αnein(ωbt+θ ) + δα,

M(t ) := M̄ + δM =
∑

n

Mnein(ωbt+θ ) + δM, (7)

where ᾱ(M̄) is the expected value solution obtained when the
stochastic force term αin (Min) is dropped and δα (δM) de-
scribes the perturbation of the corresponding input noise. We
first formally solve the stochastic Langevin equation (3) by
substituting Eqs. (6) and (7), and by neglecting the transient
term related to the initial value we have the expected value
parts:

ᾱ(t ) =
∫ t

0
dt ′eLa (t−t ′ )

[
−igma

∑
n

Mnein(ωbt ′+θ )

]
(8)

and

M̄(t ) =
∫ t

0
dt ′

{
eLm (t−t ′ )

[∑
n

α′
nein(ωbt ′+θ )

]

× exp

[
2i

∫ t

t ′
dt ′′|A| cos(ωbt ′′ + θ )

]}
, (9)

where we define La,m = i[�a,m + (β0 + β∗
0 )] − κa,m, α′

n =
−igmaαn + Eδ(n) for convenience. For a common oscillator
with a high Q factor [32], the order of the characteristic time
corresponding to the dynamics of amplitude is γ −1, which
is much slower than the fast oscillations at ωb. One thus can
adopt treating the amplitude as a constant in the integral over
t ′′ in Eq. (9), i.e., adopting the Markovian approximation.
Performing explicitly this integral, one gets

M̄(t ) = eiψ (t )
∫ t

0
dt ′eLm (t−t ′ )

[∑
n

α′
nein(ωbt ′+θ )

]
e−iψ (t ′ ),

(10)

where ψ (t ) = ξ sin(ωbt + θ ), with ξ = 2|A|/ωb. The phase
factor e−iξ sin φ can be expanded by the Jacobi-Anger expan-
sion e−iξ sin φ = ∑

n Jn(−ξ )einφ where Jn is the nth Bessel
function of the first kind. One obtains the following solutions
for the optical and magnon modes, after the integration:

ᾱ(t ) =
∞∑

n=−∞

−igmaMnein(ωbt+θ )

inωb − La
(11)

and

M̄(t ) =
∞∑

N,M,n=−∞

α′
N Jm(−ξ )JN+M−n(−ξ )ein(ωbt+θ )

i(N + M )ωb − Lm
. (12)

The coefficients in the above equations can be solved by the
iterative method under the condition that gma is relatively
weak (gma/ωb < 0.4 in the following calculations), and we
finally determine a series of iterative equations [54]:

α′ j
n = − igmaα

j
n + Eδ(n),

M j
n =

∞∑
N,M=−∞

α
′ j
N Jm(−ξ )JN+M−n(−ξ )

i(N + M )ωb − Lm
,

α j+1
n = −igmaM j

n

inωb − La
. (13)

The trial solution of the above equations is selected
as α0

n = 0 which leads to α′0
n = Eδ(n) and Mn =

E
∑

m Jm(−ξ )JM−n/(imωb − Lm). Physically, these trial
solutions correspond to the dynamics when the optical
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mode and the magnon mode are decoupled, so that they are consistent with the conclusions of the previous study on the
nonlinearity of single optomechanics [45]. Mn and αn can be finally determined after the errors have converged to an acceptable
range through several iterations, i.e., |M j+1

n − M j
n| < η and |α j+1

n − α
j
n| < η, where η < 10−20 is the criterion we set to

constrain the accuracy of the later results, and for most points on the phase diagram 10–20 iterations are sufficient to achieve
this accuracy.

Repeating the above substitution and removing the part of the expectation values given by Eqs. (8) and (9), the fluctuation
terms can be obtained as

δα(t ) =
√

2κa

∫ t

0
dt ′eLa (t−t ′ )

[
−i

gma√
2κa

δM(t ′) + αin(t ′)
]

(14)

and

δM(t ) =
√

2κmeiψ (t )
∫ t

0
dt ′eLm (t−t ′ )

[
−i

gma√
2κm

δα(t ′)e−iψ (t ′ ) + Min(t ′)
]
. (15)

Note that Min(t )e−iψ (t ) possesses the same correlation functions of Min(t ) and therefore the factor related to the magnon mode
can be practically neglected in the integral for convenience. Thus, the magnon term can be written as |M|2 � |M̄|2 + M̄δM∗ +
M̄∗δM, where

|M̄|2 =
∞∑

N,N ′,M,n=−∞

α′
Nα′∗

N ′Jm(−ξ )JN+M−n(−ξ )ein(ωbt+θ )

[i(N + M )ωb − Lm][−i(N + M − n)ωb − L∗
m]

. (16)

Substituting the magnon term |M|2 into the Langevin equations related to β, we have

β̇0 = (−iωb − γ )β0 + i
∞∑

N,N ′,M=−∞

α′
Nα′∗

N ′Jm(−ξ )JN+M (−ξ )

[i(N + M )ωb − Lm][−i(N + M )ωb − L∗
m]

(17)

and

Ȧ =
⎛
⎝−γ − i

|A|
∞∑

N,N ′,M=−∞

α′
Nα′∗

N ′Jm(−ξ )JN+M+1(−ξ )

[i(N + M )ωb − Lm][−i(N + M + 1)ωb − L∗
m]

⎞
⎠A +

√
2γ βin, (18)

and the other terms with different frequencies are neglected by RWA. Here we define a dimensionless auxiliary function:

F (|A|,�m,a, gma, γ ) = − i

γ |A|
∞∑

N,N ′,M=−∞

α′
Nα′∗

N ′Jm(−ξ )JN+M+1(−ξ )

[i(N + M )ωb − Lm]][−i(N + M + 1)ωb − L∗
m]

, (19)

which leads Eq. (18) to be in the following compact form:

Ȧ = [−γ (1 − F )]A + ξ, (20)

where ξ = √
2γ βin + i(M̄δM∗ + M̄∗δM) is a modified

noise composed of white Gaussian noise (the first term) and
color noise (the last two terms). Calculating the correlation
function of color noise involves more tedious iterative so-
lutions, but its magnitude can be roughly estimated from
the results of the zeroth-order iteration, that is, following
the related research on optomechanics [47]. In the case of
(κm/�m)2 � 1, the effect of the color noise scales with
g2�2J0(−ξ )2n̄m/κm�2

m = E2J0(−ξ )2n̄m/κm�2
m while the ef-

fect of the white noise is γ n̄b. Thus, by assuming that the
reservoir surrounding each mode corresponds to the same
temperature, the effects of thermal and microwave-magnon
noises are comparable only when the cooperativity C =
E2J0(−ξ )2/κmγ�2

m is comparable to n̄b/n̄m = ωm/ωb. With
the parameters we have chosen, this condition is always far
from being satisfied, even if we consider a high Q-factor
mechanical mode (Q = ωb/γ = 106).

The F function contains all the information about the self-
sustaining dynamics of the cavity magnomechanics system
except for the input noise terms, and we will explain in detail

how to analyze the corresponding nonlinear properties accord-
ing to the F function in a later section.

III. DYNAMICAL MULTISTABILITY
IN CAVITY MAGNOMECHANICS

We first analyze the dynamical multistability of the con-
sidered cavity magnomechanics by establishing stability
conditions and deriving corresponding attractors, which can
give all the information of the nonlinear properties com-
pared with a numerical simulation. By rewriting Eq. (21) in
terms of the modulus and phase of the complex amplitudes
A = |A|eiφ := Ieiφ and adopting the mean-field approxima-
tion, the corresponding noiseless equation of the modulus
reads

İ = [−γ (1 − Re(F ))]I, (21)

and this equation describes the self-sustaining dynamics of
the cavity magnomechanics. For the occurrence of stable dy-
namics, the modulus of the limit cycle Is should satisfy the
following two conditions:

1 − Re[F (Is)] = 0 (22)
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FIG. 2. Multistability phase diagram and attractors in terms of
Y = log10[(γ /ωb)Re(F )] in the modulus-rescale driving plane. The
dash, solid, and dot lines denote the contour lines −4, −5, and −6
and the corresponding red cycles are the simulation results with
γ /ωb = 10−4, 10−5, and 10−6, respectively. The other dimensionless
parameters are �a = −1, �m = 1, gma = 0.2, and κa = κm = 0.1
with ωb = 1 as the unit. The bottom panel shows the correspondence
of the attractor to the steady states. The blue line in the right inset is a
cross-sectional view of the phase diagram with E = 0.03 and on the
left are the long-time dynamics with different initial states under the
corresponding parameters.

and

d

dI
[Re(F )]|I=Is < 0. (23)

The first condition describes the dissipation-gain balance
mechanism of the mechanical mode, while the second condi-
tion ensures that the error will converge to these equilibrium
points, i.e., the equilibrium point should correspond to a sta-
ble equilibrium, but not unstable equilibrium or intermediate
equilibrium. Since the function F is composed of Bessel
functions that have periodicity, Eq. (22) may have multiple
solutions, which means the occurrence of multistability.

In Fig. 2, we show the multistability phase diagram in
terms of Y = log10[(γ /ωb)Re(F )] in the modulus-rescale
driving plane. Each contour line with a value of s means
that Eq. (22) is satisfied under the parameter condition of
γ /ωb = 10s, which is a necessary condition for forming a
steady state as we mentioned above. In addition, the F
function has a peak-trough structure so that the sign of
the corresponding derivative changes alternately, while the
greater-than-zero part denotes metastable states. Excluding
the metastable states, the remaining contour lines still have
multiple intersections with those lines paralleling to the longi-
tudinal axis representing constant values of E , which indicates
the occurrence of multistability. The red points in Fig. 2 de-
note the numerical results corresponding to different initial
values. They are obtained by simulating (3) without noise
terms until their evolution converges. They show a perfect fit
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FIG. 3. (a) The contour line corresponding to γ /ωb = 10−5 in
the phase diagram 2. (b), (c) Multistable mechanical modulus and
spectra of microwave modes vs the drive power. In (c), Sa

1 =
105× max[Sa(0.96ωb–1.06ωb)], that is, the amplitude of the first
main peak. The arrows indicate the starting point and direction of
sweeping the parameter. The variance of the related noise we set in
this simulation is n̄′

b = 10−9 and the other parameters are the same as
in Fig. 2.

with the upper half of each elliptical contour and never touch
the lower half of the orbit as expected. Figure 2 also shows the
number of steady limit cycles and their corresponding radii
increase with the increase of driving and oscillator quality
factors, consistent with our physical intuition.

A dynamic detection process is usually accomplished by
continuously and weakly measuring the evolution in a specific
experiment instead of repeating the same experiment many
times and observing the system at different moments. The
whole process will correspond to a single stochastic trajec-
tory and the room-temperature environment is not sufficient
to support its transition to other steady states based on the
fluctuation effect alone. In this case, the multistability can be
manifested by observing the hysteresis loop after scanning
the parameters along different paths, i.e., slowly increasing
the pump intensity from zero to a fixed value Ec and then
gradually decreasing it to zero. Such hysteresis loop can also
be predicted from the phase diagram. As an example, we
discuss the case of γ /ωb = 10−5, which corresponds to the
solid contour line in Fig. 2 and we also plot it in Fig. 3(a). A
complete parameter scan in the monostable interval (e.g., the
dashed path on the left) gives exactly the same trend in ampli-
tude in both directions (a → b → a), i.e., no hysteresis effect
occurs. It is worth noting that the appearance of bistability
does not mean that hysteresis effects must be observed, since
the lower-energy steady state “c” prevents the system from
being excited to another steady state “g.” Such a higher-energy
steady state occurs until the pump is sufficiently strong to sup-
port the jump (d → e) when the lower steady state disappears.
Accordingly, decreasing the pump at this point will not bring
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FIG. 4. Spectrum analysis of microwave mode (a) and magnon
mode (b) corresponds to accidental degenerate points at E = 0.018.
The blue solid line corresponds to the blue mark and the red dotted
line corresponds to the red mark in Fig. 3. The other parameters are
the same as in Fig. 2.

the system back to steady state “d” immediately, but only
after point “g,” when the higher steady state disappears. We
thus obtain the path of the amplitude variation as a → d →
e → f → g → c → a, where the range of hysteresis effects is
E ∈ [c, d], corresponding to the right dashed path in Fig. 3(a).
Under similar logic, the corresponding path for the tristable
state is a → d → e → f → h → i → j → g → c → a.

In Fig. 3(b) we sweep the pump intensity E bidirectionally
in the range [0,0.03] and [0,0.05], respectively, and plot the
simulation result of the steady-state modulus. It can be seen
that the scattering point as well as the hysteresis effects have
a consistent correspondence with the paths we predicted in
Fig. 3(a), implying that there are at least two steady states. In
addition, two hysteresis paths and the triple steady state (three
separate points at E = 0.018) can also be observed. Tak-
ing g = 2π×1(0.1) Hz gives g/ωb = 10−7(10−8) for ωb =
2π×10 MHz, so the original parameter corresponding to
the critical drive (point “d”) for observing bistability will be
�/ωb ≈ 2×105(106), and 5×105(106) for observing tristabil-
ity. The requirements for observing tristability can be further
reduced to E = 0.15, leading to �/ωb ≈ 1.5×105(106) un-
der the condition of γ /ωb = 10−6. This driving intensity is
achievable under existing experimental conditions.

The dynamics of the mechanical mode can be probed by
the homodyne detection and spectral analysis of the output
field of the microwave mode, which is proportional to the
microwave mode itself while neglecting the vacuum noise,
that is,

Sa
out(ω) =

∣∣∣∣ 1√
2π

∫
dt{Im[

√
κaα(t ) + αin]}

∣∣∣∣
2

,

∝ Sa(ω) =
∣∣∣∣ 1√

2π

∫
dt{Im[α(t )]}

∣∣∣∣
2

. (24)

Equations (11) and (12) reveal that both the magnon mode
and the microwave mode are excited into their higher-order
sidebands [55,56], which will be shown later in Fig. 4. Here
we consider the height of the first-order sideband peak during
the parameter scanning to characterize the multistability and

FIG. 5. Multistability phase diagram and attractors in terms
of Y = log10[(γ /ωb)Re(F )] in the modulus-magnon-microwave
coupling plane (a) and in terms of Y ′ = (γ /ωb)Re(F ) in the
modulus-detuning plane (b). The absence of logarithmic coordinates
in (b) is due to the presence of negative values (the left end of the
colorbar is −0.05) and we magnified the data 106 times for conve-
nience. The black solid lines correspond to γ /ωb = 10−6.5. Here we
set E = 0.02 and the other parameters are the same as in Fig. 2.

show the related hysteresis curves in Fig. 3(c). It shows a
perfect correspondence between the magnon hysteresis and
the mechanical hysteresis. The only thing worth noting is
that the nonlinear mapping causes Sa

1 ∝ A no longer to hold
and Sa

1 (A) = S′a
1 (A′) is not sufficient to infer A = A′, i.e., the

microwave spectra of two different moduli have the same
value at the first-order sideband, such as the overlapping blue
and red markers at E = 0.018 in Fig. 3(c). We call such a
case “accidental degeneracy,” and they can be distinguished
by comparing the corresponding high-order sidebands. In
Fig. 4(a), we plot the spectrum of this accidental degenerate
point. It shows intuitively that although they have a similar
peak at the first-order sideband the rest of the high-order
sidebands are entirely different, implying that they hide two
steady limit cycles. We also demonstrate that the magnon
mode has diverse higher-order sideband peaks, as expected
and shown in Fig. 4(b). Moreover, Fig. 4 also verifies an
assumption in our derivation, namely, that the sidebands of the
system are distinguishable so that their respective dynamics
are sufficiently independent [57].

Compared with the standard cavity optomechanical sys-
tem, the magnon DOF allows us to control the self-sustaining
dynamics of the mechanical mode under the guidance of the
F function and attractors. In Fig. 5(a), we show the quanti-
tative dependence of the F function on magnon-microwave
coupling gma and mark a set of contours corresponding to
γ /ωb = 10−6.5. It can be seen that the increased gma gradually
inhibits the emergence of low-energy limit cycles, that is, if we
choose a thermal state as the initial mechanical state, which is
typically the case, we can directly excite it to a larger limit
cycle by adjusting gma without being “intercepted” by those
low-energy steady states. The mechanism can lead to a strong
phonon laser with high energy in cavity magnomechanics. In
Fig. 5(b), we discuss the influence of the frequency detuning
�a on self-sustaining dynamics with a fixed pump intensity
and gma. In contrast, the influence of �a on the F function
is relatively insignificant, and it only affects the steady state
at an integer multiple of the sideband (for example, the con-
tour is broken at �a = −1, meaning that a steady state is
forbidden under this parameter). It can be considered that the
self-sustaining system is robust to the detuning.
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FIG. 6. (a) Phase probability distribution of the mechanical mode
at t = 0 s (solid) and 0.025 s (dashed) in the case of γ /ωb = 10−4.
(b) The phase probability distribution of the mechanical mode at
t = 0.005 s corresponds to the initial state satisfying 〈β〉 = 0 (solid)
and 〈β〉 = 0.96 (dash). The data corresponding to the solid line in
(b) is tripled for ease of presentation. The inset plot shows the evo-
lution of the phase fluctuations, where the circle, square, and cross
markers denote the cases γ /ωb = 10−4 and E = 0.01, γ /ωb = 10−5

and E = 0.004, and γ /ωb = 10−6 and E = 0.002, respectively, and
the dashed lines are the corresponding fit results. The results are
obtained by 100 000 realizations of the stochastic Eqs. (3). In this
simulation we set n̄′

b = 10−4 and the other parameters are the same
as in Fig. 2.

IV. PHASE DIFFUSION, MODULUS NOISE SUPPRESSION,
AND MIXTURE OF MULTIPLE LIMIT CYCLE STATES

The fluctuation-dissipation process and the corresponding
distribution of the self-sustained dynamics are relevant to
a variety of studies such as phonon lasers, precision sig-
nal detection, quantum synchronization, etc. In this section,
we analyze it analytically through the properties of the F
function, thus avoiding the incompleteness of the mean-field
approach and the time consumed by numerical simulations.
Let us reconsider Eq. (21) but with the noise term, and the
corresponding modulus and phase equations are

İ = [−γ (1 − Re(F ))]I +
√

2γ Iin (25)

and

φ̇ = − Im(F )γ

Iωb
+

√
2γ

I
φin. (26)

Equation (26) describes stochastic dynamics with only fluctu-
ating processes but no corresponding dissipation processes,
meaning that the growth of phase variance is never sup-
pressed. Physically, infinite phase variance means that the
probability distribution of the system will uniformly disperse
on the classical limit cycle in the phase space. Complete
dephasing occurs at this time since the oscillator completely
loses its phase. Under the condition that a stable limit ring can
be formed, the order of the phase free diffusion rate is

ηP ∼ γ nth

I2
s

, (27)

and the time for complete phase diffusion is approxi-
mately t ≈ π2/ηP = π2I2

s /γ nth. In Fig. 6(a), we simulate the
phase probability distribution of the oscillator in the monos-
table parameter region with the initial state selected as a

translational thermal state centered at the noiseless limit cycle
orbit. The probability distribution becomes flatter, meaning
the oscillator deviates from the Gaussian state. In the inset, we
plotted the evolution of phase fluctuations 〈δθ2〉 over time. We
find that they can be perfectly linearly fitted with the slopes
satisfying k/ηP = 1.048 for γ /ωm = 10−4, k/ηP = 1.029 for
γ /ωm = 10−5, and k/ηP = 1.014 for γ /ωm = 10−6, respec-
tively, meaning that the numerical results are consistent with
the derived diffusion rate. It can also be inferred that the prob-
ability distribution of the mechanical mode will completely
disperse on the limit cycle after γ t ≈ 105.

The transient dynamics in the initial stage will be more
complicated if the initial state is far away from the limit
cycle. In particular, the initial state in experiments usually
corresponds to a thermal state while the mechanical mode
is pumped to the limit cycle by the gain effect accompanied
by an inflation of the fluctuation, thereby accelerating the
phase diffusion degree of the oscillator as shown in Fig. 6(b).
Therefore, for the nonlinear self-sustained magnomechanics,
the Gaussian mean-field approximation and the linearization
analysis of fluctuations are no longer reliable, although they
may hold in a short regime [49,53,58], that is, the non-
Gaussianity caused by the dephasing process is not obvious,
which depends on the nonlinear parameters as well as the bath
temperature.

The dephasing phenomenon can also be explained from an-
other perspective: We have divided the Langevin equation into
two equations for variables β0 and A and each of which corre-
sponds to an effective Hamiltonian consisting of Heff(β0) and
Heff(A), where Heff(A) satisfies the U(1) symmetry although
Heff(β0) is asymmetric, resulting in the Hamiltonian (1) hav-
ing no such symmetry. Under the occurring limit cycle, β0

only describes the translation distance of its center in the
phase space and satisfies A � β0. Heff(A) occupies a dominant
position, and the total Hamiltonian we considered degenerates
into U(1) symmetrical so that the steady state corresponding
to a Markovian dynamics must be a phase independent state in
phase space. The modulus, as another observable information
of the magnomechanics, can be used to determine certain
parameters of the system, such as the intensity of the nonlinear
interaction [59], or the amplification of weak signals in some
designed measurement schemes represented by the “latch-
ing” measurement [45,60]. Thus, compressing the modulus
fluctuation could improve the signal-to-noise ratio of these
schemes or avoid false positive signals, thereby improving
the measurement accuracy. Moreover, the self-sustained dy-
namics of the mechanical mode can also be used to achieve
a phonon laser, whose coherence requires the case of low-
energy fluctuations [61]. The fluctuation of the modulus is
calculated by the standard linearization method, i.e., consider
I as a sum of its expectation value and a small fluctuation (δI)
near the expectation value. By removing terms related to the
expectations from Eq. (25), we have

δİ =
[
−γ

(
1 − Re(F ) − I

dRe(F )

dI

)]
δI +

√
2γ Iin. (28)

When a stable limit cycle occurs, the term 1 − Re(F ) will
vanish from the right-hand side of the above equation, and we
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FIG. 7. Amplitude noise compression ratios as a function of
rescale pump intensity E corresponding to γ /ωb = 10−4 (dash) and
γ /ωb = 10−5 (solid), respectively. The red cycles are corresponding
simulation results obtained by 20 000 realizations of the stochastic
equations. The other parameters are the same as in Fig. 2.

can therefore define the compression ratio as follows:

ηI = In

Inth

= 2

4 − π

(
−IS

dRe(F )

dI
|I=Is

)−1

, (29)

where In = 〈δI2〉 is the amplitude fluctuation when the os-
cillator is driven to the limit cycle, and Inth is the amplitude
fluctuation when the oscillator is not driven, i.e., in a thermal
state. The correction factor (4 − π )/2 comes from the fact
that the modulus of a thermal state satisfies the Rayleigh
distribution. In Fig. 7, we show a series of analytically
derived compression ratios with varied rescaled driving in-
tensity E . The solid and dashed lines distinguish the cases of
γ /ωb = 10−4 or 10−5, and the cycles denote numerical results
as supporting evidence. It demonstrates that the modulus is
not always compressed. However, a heating effect occurs in a
small range of E , corresponding to a weak driving regime.
With the parameters considered, the optimum compression
ratio can be of the order of 10−2. In addition, there are multiple
different compression ratios under the same parameters due to
the multistability. In practical application scenarios, one can
select the optimal one by designing the parameter scan path
mentioned above.

For a system with multistability, the input noise and initial
fluctuation may induce the stochastic trajectory to jump to
different stable states, resulting in a distribution function that
is no longer a single cycle but a mixture of multiple limit
cycle states. The inset in Fig. 8 shows that the probability
distribution function owns a double-ring structure in the phase
space. A more quantitative description is shown in Fig. 8
by plotting its corresponding modulus distribution function,
which owns a bimodal structure. Each peak is relatively inde-
pendent, satisfying our analysis of the unimodal distribution
above, and can be well described by Eq. (28). The distribution
will be more inclined to the steady state with higher energy
by increasing the noise or nonlinear coupling g while holding
E = g� constant. It is worth emphasizing that, as a nonlinear
effect, the critical rescale noise of the double-ring structure
under the selected parameters is of the order of n̄ = 10−1 in
which case the corresponding g should be a few kilohertz
at room temperature. It is several orders of magnitude larger
than the bare magnomechanical coupling strength achieved in

FIG. 8. Modulus distribution function of the mechanical mode at
γ t = 5 corresponding to n̄′

b = 0.04 (solid), 0.25 (dash), and 1 (dot),
respectively. The subfigure denotes the Wigner function (phase-space
probability distribution) of the mechanical mode corresponding to
the dash line case. The results are obtained by 100 000 realizations
of the stochastic equations and the other parameters are the same as
in Fig. 2.

the experiments [7,32]. Heating the thermal reservoir around
the mechanical mode, which makes the Brownian effect more
significant, can reduce the critical nonlinear coupling [62]. On
the other hand, the disturbance of the experimental equipment
itself will cause parameters such as gma, g, and � to have
fluctuations, which can be seen as additional noise terms in
the dynamical equations, e.g., replace g in Eq. (2) with g + N ,
where N is a white Gaussian noise. These disturbing noises
may also induce the double-ring distribution function with
lower nonlinearity.

V. FULL QUANTUM SELF-SUSTAINING DYNAMICS

In the semiclassical analysis, the driving and nonlinear
coupling strength degenerate into a joint parameter E = �g,
rather than affecting the dynamics of the rescaled variables
independently. Considering the mapping between the actual
dynamics of the oscillator and the rescaled variables b = β/g
and the fact that the modulus A = |β| on a scale of less than
101, the excitation of the oscillator will reduce to several
quanta in the strong nonlinearity regime, which refers to the
coupling coefficient g in the same magnitude as ωm. The
quantum effect will become significant in this interval, and
the system will deviate from semiclassical dynamics. The full
quantum dynamics of the cavity magnomechanics is described
by the following master equation [63]:

ρ̇ = i[ρ, H] + κaD[â]ρ + κmD[m̂]ρ

+ γ (nth + 1)D[b̂]ρ + γ (nth)D[b̂†]ρ, (30)

where D[o]ρ = 2ôρô† − ô†ôρ − ρô†ô is the standard form
of the Lindblad superoperator. The density matrix ρ corre-
sponding to a steady state can be described by taking the
left-hand side of the above expression to zero, and we solve it
by representing the whole equation in the Hilbert space with
Fock basis and truncate the high-dimensional space because
the number of excitations is not high. The quantum state of
the mechanical mode is fully characterized by the Wigner
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FIG. 9. (a), (b) Full quantum Wigner function W q
b correspond-

ing to g/ωb = 1 and 0.7 respectively. (c) Minimum value of the
Wigner function as a function of the magnomechanical coupling
g. The simulation results were obtained by solving the steady-state
solutions of Eq. (31) in a truncated Hilbert space whose dimen-
sion is from (3×3)a ⊗ (3×3)m ⊗ (35×35)b to (3×3)a ⊗ (3×3)m ⊗
(60×60)b depending on the convergence of the results [64]. Here we
set γ /ωb = 10−5, E = 0.02, and n̄th = 0. The other parameters are
the same as in Fig. 2.

function, which is defined as follows [51]:

W q
o (x, p) = 1

π

∫ ∞

−∞
dy〈x − y|ρo|x + y〉e2ipy, (31)

where ρo is the reduced density operator of the mode o.
In Fig. 9(a), we show the Wigner function correspond-

ing to full quantum analysis and find that it has significant
nonclassical properties, manifested in the appearance of neg-
ative values of the Wigner function, under conditions where
g is comparable to ωb in magnitude. In Fig. 9(b), we reduce
the magnomechanical coupling to g/ωb = 0.7 while increas-
ing the drive � keeping E constant and the whole system
corresponds to a smaller “quantum parameter” [41,65]. It
can be seen that the the Wigner function is non-negative
in this case, meaning that the mechanical mode degenerates
into a “classical” state. A more detailed demonstration is
plotted in Fig. 9(c) where we plot the minimum value of
the Wigner function as a function of the magnomechanical
coupling g. Under the parameters we consider, the critical con-
dition for observing the quantum nature of the self-sustained
dynamics is g/ωb = 1, a very stringent requirement for the
existing experimental techniques. It, therefore, proves that the
semiclassical stochastic Langevin equations adopted in the
above sections are accurate enough for general parametric
conditions.

VI. DISCUSSION AND CONCLUSION

Here we summarize the parameter conditions correspond-
ing to all the nonlinear phenomena predicted in the above
section. In addition to the rescaled parameters, we also
consider a realistic scenario corresponding to ωa = ωm =
2π×10 GHz, gma = 2π×2 MHz, κa = κm = 2π×1 MHz,
and γg = 2π×28 GHz/T [7,32]. As examples, we consider

TABLE I. Critical parameters in realistic scenarios.

B0 (µT) Power (mW)

Q E YIG 1 YIG 2 YIG 1 YIG 2

Bistability 105 0.019 13.1 25.8 1.0 0.63
106 0.006 4.1 8.2 0.10 0.062

Tristability 105 0.046 31.6 62.5 5.9 3.7
106 0.014 9.6 19.0 0.54 0.34

ANC 104 0.0055 3.8 7.5 0.084 0.052
105 0.0017 1.2 2.3 0.0080 0.005

two YIG spheres, where YIG 1 is of R = 125 µm and
g = 2π×50 mHz and YIG 2 is of R = 50 µm and g =
2π×100 mHz [66]. Under the two sets of parameters, we list
in Table I the minimum magnetic fields and the correspond-
ing powers for which bistable, tristable, and amplitude noise
compression (ANC) can be observed. A much higher power
P > 10 mW has been used in Ref. [32], which is sufficient to
observe the above phenomena. However, the observation of
noise-induced jumps between multistable states must include
an additional noise source unless the current strength of the
magnetostrictive interaction is increased by four orders of
magnitude. Note that although the smaller YIG 2 gives a
stronger magnomechanical coupling g compared to YIG 1,
its corresponding magnon-microwave coupling gma however
becomes weaker because it is proportional to the square root
of the volume of the sphere. Our discussion uses a relatively
weak magnon-microwave coupling gma < 2π×4 MHz, and
both the YIG spheres can achieve this coupling since a very
strong coupling gma = 2π×143 MHz has been realized for the
YIG sphere with the diameter of 0.8 mm [5]. Furthermore, al-
though the parameters we have chosen are not strict, we must
emphasize that our method is general and the corresponding
qualitative properties of the nonlinear dynamics do not depend
on specific parameters.

Our analysis is based on one assumption that the mechani-
cal mode exhibits single mode oscillatory rather than chaotic
dynamics in a range with maximum rescale pump intensity
E = 0.05, which corresponds to B0 = 34.4(68.0) µT and P =
6.9(4.3) mW for YIG 1(2). By directly simulating the original
Langevin equation (3) without any approximations, we find
that chaotic behavior still does not appear even at E = 30
corresponding to B0 = 0.020(0.041) T and P = 2.50(1.56)
kW, which is an extremely large pump power [10]. Therefore,
the formal solution (6) is a sufficiently universal hypothesis to
analyze nonlinear phenomena in our model, while we will not
discuss the situation where it is broken, unless the experimen-
tal conditions can support a significant increase in magnitude
of the magnetostriction interaction.

In summary, we have explored the effect of nonlinear
self-sustaining dynamics of cavity magnomechanics by gen-
eralizing the analysis corresponding to optomechanics via
including the microwave-magnon beam splitter interaction.
We have shown a multistability phase diagram by map-
ping out the attractors to the parameter space and have
verified the analytical analysis numerically by applying
stochastic Langevin equations. We have studied the influence
of driving and microwave photon-magnon coupling on the
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multistability. The fluctuation distribution of the system, for
example, phase spread, amplitude compression, and the mix-
ture of different limit cycles, is also shown by studying the
corresponding Wigner functions. Finally, we have discussed
the quantum-classical crossover of self-sustaining systems
to demonstrate the efficient range of stochastic Langevin
equations.

Our analytic derivation can free both theoretical and
experimental researches of self-sustaining dynamics from
time-consuming numerical simulations and provide a the-
oretical basis for applications related to limit cycles or
multistability, such as phonon laser and weak signal detec-
tion. In addition, our paper can be generalized to multimode
magnomechanics and transform the dynamic equations of
multimechanical modes into Kuramoto types [44,67], which
can provide a basis for studying quantum synchronization in
cavity magnomechanics. It is worth noting that our derivation
neglects the microwave and magnon mode perturbation by
noise and the effect of these perturbations acting back on
the mechanical mode due to the weak cooperativity [44,47].
Moreover, the restriction of the dimension of the Hilbert
space can be extended by employing a method similar to the
laser theory for optomechanics, which was proposed by Lörch

et al [63]. The related discussion would be an interesting
subject for future investigations.
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