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Space-time reflection symmetry in the Jones formalism in optics
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We provide a description of the space-time reflection operator (PT ) acting on the two-dimensional polarization
space of light represented by the linear algebra of Jones vectors and matrices. We establish the form of a
PT -symmetric Jones matrix. We present two examples of laser resonators whose polarization eigenstates are
described by PT -symmetric Jones matrices: one is based on the Faraday effect and a dichroic attenuation, while
the other is made of twisted anisotropic mirrors. Both possess a control parameter that experimentally covers the
exact and the broken PT -symmetry regions and their boundary, called an exceptional point, where the eigenstates
of the resonator coalesce into a single state. The exact PT -symmetric region produces laser polarization modes
emitting at the same frequency with different intracavity losses, while the broken PT -symmetric region features
polarization modes emitting at distinct frequencies with the same intracavity losses. By applying unitary
transformations, the concept of a PT -symmetric Jones matrix is extended to matrices that commute with any
antiunitary operator, thereby opening the prospect of a larger family of resonator geometries that also feature
real or complex-conjugate spectra.
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I. INTRODUCTION

Symmetries are operations that leave a physical system
unchanged; they reveal conservation laws, they enable a la-
beling and classification of eigenstates of a quantum system,
and they determine their degeneracy and the selection rules
for transitions between pairs of energy levels of a quantum
system interacting with an external perturbation [1–3]. One
of the most fundamental symmetries of nature is probably
the combined charge conjugation, parity, and time-reversal
(CPT ) symmetry, which states that every quantum system has
a symmetry operation that simultaneously takes the antipar-
ticle, and reverses the space coordinates and the direction of
time [4,5]. Lorentz invariance and a positive energy spectrum
are required for establishing CPT invariance in quantum field
theory [5,6]. The hermiticity of the Hamiltonian H, which is
an operator equal to its adjoint, i.e., H† = H , is generally
presented as a prerequisite for obtaining such a real energy
spectrum bounded below [7].

Bender and Boettcher, questioning this requirement, pos-
tulated instead that a Hamiltonian could possess space-time
(PT ) reflection symmetry [8]. They showed that such operator
can exhibit, like Hermitian systems, an entirely real eigen-
value spectrum. In addition, the authors constructed an oper-
ator C [9], similar to the charge-conjugation operator, that al-
lowed them to define a positive norm of the quantum state that
is constant in time, which is required for the conservation of
probability of a closed system. Doing so, the authors replaced
the hermiticity requirement of H by another one, apparently
more grounded in the symmetry of Nature. Now, when vary-
ing the value of a control parameter, PT -symmetric Hamilto-
nians, HPT , feature a transition between a so-called unbroken
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or exact symmetry region, where the eigenvalue spectrum is
entirely real and the eigenstates of HPT are shared with oper-
ator PT , and a broken symmetry region, where the spectrum
is no longer real and eigenstates of HPT differ from those of
PT . At the transition between the exact and broken symmetry
regions, some eigenstates and eigenvalues coalesce into a
single state, and upon entering the broken symmetry region,
the eigenvalue splits into a pair of complex conjugates [8,9].

Although the concept of a PT -symmetric Hamiltonian has
found limited applications in quantum mechanics so far, it
has been widely applied in the field of optics [10–12]. In
waveguide optics, it is well known that the equation describing
the propagation of coherent light in the paraxial approxima-
tion is isomorphic to the Schrödinger equation, with time t
replaced by the propagation direction z, the wave function
by the envelope of the electric field, and the potential V by
the refractive index, such as V (x) ↔ −2π h̄

λ
n(x), where x is

a transverse coordinate. In a PT -symmetric Hamiltonian, the
complex potential has the symmetry V (x) = V ∗(−x) [13]. In
coupled optical waveguides, this can be mimicked by making
the real part of the refractive index equal in both waveguides,
and having opposite values of its imaginary part, i.e., gain
in one waveguide perfectly balanced by loss in the other.
The transition between exact and broken symmetry in such
photonic structures was used to produce original effects, such
as loss-induced transparency in passive waveguides, nonrecip-
rocal light transmission, unidirectional reflectance, coherent
perfect absorption, and for achieving single mode laser oscil-
lation [10–12].

It was also shown that PT -symmetric lasers do not require
the interaction between coupled waveguides or resonators
and can be realized by harnessing PT symmetry in the
two-dimensional space of polarization [14,15]. In substance,
a resonator made of a pair of anisotropic mirrors with suitable
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optical characteristics can display PT symmetry; the relative
orientation of the two mirrors’ principal axes can be used as
a control parameter that spans regions of exact and broken
PT symmetry, including the transition at the branch point
singularity where the two states become degenerate. Now,
unlike the PT symmetry applied to the Schrödinger equation,
which uses a Hilbert vector space of high dimension, the
polarization vector space only has two dimensions. This
makes it easier to theoretically describe PT symmetry and to
realize it in the laboratory. To our knowledge, the topic of PT
symmetry in the polarization space has only been skimmed
over in the literature, with the demonstration of exceptional
points in the polarization space in metasurfaces or thin films
with [16] or without [17,18] reference to PT symmetry.

In this paper, we define the P and T operators of the
polarization state and provide their representations in different
orthogonal bases of polarization eigenstates. We introduce the
concept of a PT -symmetric Jones matrix, JPT , i.e., a Jones
matrix that commutes with the PT operator, and then provide
its form in different bases. We emphasize the antilinearity
of the PT operator, which is responsible for the possibility
that, although JPT commutes with PT , they do not share com-
mon eigenstates: this is the so-called broken PT symmetry.
We establish a criterion for a PT -symmetric matrix to share
common eigenvectors with PT , which corresponds to exact
PT symmetry, in which case the eigenvalues of JPT are real.
We show that, at the transition between the two regions, both
the eigenvalues and eigenvectors coalesce into a single entity.
Next, we present two architectures of PT -symmetric laser
resonators that possess a control parameter that allows one
to scan the exact and broken PT -symmetry regions but differ
by the kind of optical anisotropy involved. We show that these
two designs differ in that only one resonator enables the elimi-
nation of spatial hole burning, which is key to obtaining single
mode emission in microchip lasers. Finally, by using unitary
transformations of Jones matrices, the concept of PT symme-
try is shown to be a special case of a more general family of
matrices, dubbed P′T ′-symmetric, that commute with any an-
tiunitary operator. Such P′T ′-symmetric Jones matrix exhibits
the same features of purely real and complex-conjugate pairs
of eigenvalues separated by an exceptional point. We conclude
by showing that Hermitian and unimodular unitary matrices,
which, respectively, describe polarizers and retarders, form
special cases of P′T ′-symmetric matrices.

II. PARITY REFLECTION–TIME REVERSAL
OPERATOR IN POLARIZATION SPACE

The spatiotemporal dependence of the electric field vector
�E of an ideal coherent monochromatic electromagnetic plane
wave propagating in the z direction can be written as [19]

�E = E0x cos(kz − ωt + ϕx )î + E0y cos(kz − ωt + ϕy) ĵ, (1)

where E0x and E0y are the amplitude of the x and y compo-
nents of the electric field, î and ĵ are unit vectors in the x and
y directions, ϕx and ϕy are phase values of the two components
of the electric field, k is the modulus of the wave vector, ω is
the angular frequency, and t is time. At any given z value,
the tip of �E usually draws an ellipse as a function of time, as
shown in Fig. 1. The values of E0x, E0y, and phase difference
�ϕ ≡ ϕy − ϕx determine the orientation of the ellipse, its ec-

FIG. 1. Definitions of the (a) parity (P) and (b) time-reversal (T )
operators. (c) The effect of applying consecutively both P and T on
a given polarization state.

centricity, and the direction of rotation of the electric field with
respect to the direction of the wave vector �k [19]. The state of
polarization can be described in condensed notation by using
two-dimensional vectors of complex numbers called Jones
vectors [20]. For instance, the field in Eq. (1) can be described,
in the basis of horizontal and vertical polarizations, as

�u{h,v} = (E0x exp(iϕx ), E0y exp(iϕy))T , (2)

and the actual field �E can be retrieved by
�E = Re(�u exp[i(kz − ωt )]). (3)

The effect of passive optical polarizing elements on Jones
vectors can be obtained by using two-dimensional square ma-
trices called Jones matrices [20].

Let us define the parity-reflection and time-reversal opera-
tors, P and T , acting on the polarization state as follows: The
P operator consists in switching the sign of all three spatial
coordinates. Within a π rotation, it is equivalent to reflecting
the light with a standard mirror or taking the mirror image
of the polarization ellipse through a vertical plane, Fig. 1(a).
The time-reversal operator T , which is in fact better called the
motion-reversal operator, flips both the direction of rotation
and the orientation of �k, while keeping the same elliptical
shape, Fig. 1(b). Finally, the combination of P and T is equiv-
alent to reversing the direction of rotation of the electric field
without changing the ellipse of polarization nor the direction
of �k, Fig. 1(c).

Can P, T , and PT be represented by Jones matrices? For
P, the answer is yes. The exact form it takes depends in
which basis of (generally orthonormal) vectors it is expressed.
In the basis of horizontal, vertical polarization states {h, v},
oriented in the positive x, y directions, it is

P{h,v} =
(

−1 0

0 1

)
. (4)

A normal isotropic mirror produces exactly this, provided
the Jones vectors of the incoming and the reflected beam are
expressed with right-handed x, y, z coordinate axes with the
z axis always pointing in the direction of the k vector, the
vertical y axis is the same, and the horizontal x axis is reversed
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to obtain right-handed coordinates axes. This operator can be
expressed in any orthogonal basis {�u1, �u2} by using a unitary
transformation, such as

P{u1,u2} = R−1
{h,v}→{�u1,�u2}P{h,v}R{�u1,�u2}→{h,v}, (5a)

where R is a change-of-basis unitary matrix. In this work, we
focus our attention on the left and right circular polarization
states, {l , r}, in which P is expressed as

P{l,r} = R−1P{h,v}R =
(

0 1
1 0

)
, (5b)

where R = 1√
2
(1 −1

i i ){l,r}→{h,v} is the transformation matrix

from the {l, r} to the {h, v} basis.
As for the motion-reversal operator T , it consists in re-

versing the arrow of time, so the direction of rotation of the
electric field is reversed, which means that it also reverses the
angular momentum of any state of polarization. This cannot
be obtained with passive linear elements, although nonlin-
ear optical interactions can be used to achieve this function
[21–23]. Hence, T cannot be described merely by Jones ma-
trices. However, it can be described by a combination of a
Jones matrix and the complex-conjugate operator, C. In the
{h, v} basis, it can be expressed as

T{h,v} =
(

1 0
0 −1

)
C, (6)

while in the {l, r} basis, it is simply

T{l,r} = C. (7a)

In general, for any orthogonal basis of polarization states,
{�u1, �u2}, T is expressed as

T{u1,u2} = R−1
{l,r}→{u1,u2}T{l,r}R{u1,u2}→{l,r} = R−1CR = R−1R∗C,

(7b)

where ∗ stands for complex conjugate. Because R is unitary, so
is R−1R∗. Hence, in a given basis of orthogonal Jones vectors,
the T operator is expressed by a unitary matrix U, multiplied
by the complex conjugate; i.e.,

T{u1,u2} = UC. (8)

The complex-conjugation operator appearing in T makes it
antilinear; i.e., an operator � is antilinear if [1–3]

�(c1�u1 + c2�u2) = c∗
1�(�u1) + c∗

2�(�u2). (9)

Equation (8) has the same form as the time-reversal oper-
ator in quantum mechanics [1–4]. The unitarity condition on
U guarantees the conservation of the probability of finding
the particle under time reversal [1–3]. In quantum mechanics,
just like in optics, the U matrix depends on the considered
representation. For example, the time-reversed wave function
is given by

ψ (x)
T−→ ψ∗(x) (10a)

in the x representation, while it is slightly more complicated
in the px representation [2]:

φ(px )
T−→ φ∗(−px ). (10b)

In addition, in quantum systems, the square of T is either
the identity, I, or minus the identity, −I, depending on whether
the angular momentum quantum is integral or half integral,
respectively [1–3]. In the polarization space, we always have
T 2 = I , which is consistent with the fact that photons are
bosons with integral angular momentum.

The PT operator is formed by combining operators P and
T and this also makes PT an antilinear operator. In addition,
by inspection of Fig. 1 or from Eqs. (5b) and (7a), we see that
P and T commute,

PT = T P, (11a)

and that PT is involutive; i.e.,

(PT )2 = I. (11b)

III. PT -SYMMETRIC JONES MATRICES, JPT

A. Definition and the form of JPT

A Jones matrix, JPT , is PT symmetric if and only if it
commutes with PT :

[JPT , PT ] ≡ JPT PT − PT JPT = 0. (12)

Let us calculate JPT in the {h, v} basis; from Eqs. (4) and
(6), the PT operator then takes the following simple form:

PT{h,v} = −C. (13)

The minus sign in the right-hand side is a global phase
factor that has no important physical meaning. Let us
assume that

JPT{h,v} =
(

a b
c d

)
, (14)

where all matrix elements are a priori arbitrary complex num-
bers. Then, from (13) and (14) we have

PT JPT =
(−a∗ −b∗

−c∗ −d∗

)
C = JPT PT =

(−a −b
−c −d

)
C,

(15)

and we conclude that a, b, c, and d are real numbers with
no further restriction. In the {l, r} basis, JPT takes the
following form,

JPT {l,r} =
(

β + iγ δ + iη
δ − iη β − iγ

)
, (16)

where β, δ, γ , and η are real. In any given representation,
JPT has four free parameters. The most general expression
of JPT in any orthogonal basis of Jones vectors has six free
parameters and can be expressed as [24,25]

JPT =
(

A + iB cos θ + C sin θ (−iB sin θ + C cos θ + iD) exp (iε)
(−iB sin θ + C cos θ − iD) exp (−iε) A − iB cos θ − C sin θ

)
, (17)
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where A, B, C, and D are real, θ ∈ [0, π ], and ε ∈ [0, 2π ].
We will see that Hermitian matrices are a particular case of
PT -symmetric matrices.

B. Spontaneous breaking of PT symmetry
and the existence of exceptional points

Commuting operators play an important role in quantum
mechanics because they correspond to compatible physical
quantities that can be measured in any order without chang-
ing the physical predictions. Operators commuting with the
Hamiltonian also specify conserved quantities of a quantum
eigenstate. This property originates from a general theorem of
linear algebra stating that any two commuting diagonalizable
operators, M and N, can be simultaneously diagonalized and
thus share a common basis of eigenvectors [26]. If M or N
is not diagonalizable but still commutes, then M and N share
at least one eigenvector. Hermitian operators have orthogonal
eigenvectors; their associated matrix is thus diagonalizable
and commuting operators can share the same eigenvectors.

Now, following an argument by Bender et al. [9], let us
suppose that the two commuting operators JPT and PT share
an eigenvector, �u; i.e.,

PT �u = λ�u (18)

and

JPT �u = ��u. (19)

Since PT acting on a scalar consists in taking the complex
conjugate, it is thus possible to define the global phase factor
of �u to force the eigenvalue λ of PT to be real. From Eq. (13),
we immediately see that the eigenvectors of PT are

�u{h,v} = (c1 c2)T , (20)

where c1 and c2 are any real numbers. Hence, the eigenstates
of PT are any rectilinear polarization state, and λ = 1. Now
we have

PT JPT �u = PT ��u = �∗λ�u (21)

and

JPT PT �u = JPT λ�u = �λ�u. (22)

Because the two operators commute, (21) and (22) are
equal and we conclude that � is real. From the theorem
outlined above, it seems that we have expanded the condition
of the reality of the eigenvalues from Hermitian to a larger set
of matrices: those that are PT symmetric.

But is it true? Let us look at JPT in the particular {h, v}
basis, Eq. (14). In that basis, the eigenvalues of JPT are

�± = a + d

2
±

√(
a − d

2

)2

+ bc (23)

and the eigenvectors are

�u±{h,v} =
(

b
�± − a

)
. (24)

We see that the eigenstates of JPT are shared by PT
[cf. Eq. (20)] only if the discriminant is positive, � =
(a−d )2/4 + bc � 0, in which case the eigenvalues are indeed
real. However, for �<0, the polarization eigenstates of JPT

are in general elliptical, and thus not shared with those of
PT , and then the eigenvalues are a pair of complex-conjugate
numbers.

When the eigenvectors of PT and JPT are shared, i.e.,
for ��0, the eigenvalue spectrum is purely real and the PT
symmetry is said to be exact or unbroken. Otherwise, the PT
symmetry is said to be broken. At the transition between the
two regions, � = 0, JPT becomes defective; i.e., it is no longer
diagonalizable. This point is called an exceptional point (EP)
[27]. At the EP, the pair of polarization eigenstates merge
into a single entity and so do the eigenvalues. Therefore, the
theorem stated above, that commuting linear operators share
common eigenvectors, does not apply to JPT and PT . This
peculiar behavior takes its origin in the fact that the theorem
only applies to linear operators, whereas here, one operator,
PT , is antilinear.

These results were derived for a particular basis of eigen-
vectors, but they are valid in general, independently of the
chosen basis. This is the consequence of an important theorem
that states that unitary equivalent observables have identical
spectra [2].

It will be convenient in the next section to express the
conditions of exact symmetry in the {l, r} basis, which is

χ ≡ γ 2/(δ2 + η2) � 1, (25)

whereas broken symmetry arises if

χ > 1. (26)

The reason for using χ , which is defined in the context of
the {l, r} basis, instead of the more natural discriminant �,
is that Hermitian matrices are special cases of PT -symmetric
matrices and they all correspond to a specific value of χ =
0, whereas they can take different positive � values. Note
that, in contrast to Hermitian matrices, the eigenvectors of
PT -symmetric matrices are in general nonorthogonal.

IV. PT -SYMMETRIC LASER RESONATORS
IN THE POLARIZATION SPACE

Polarization eigenstates play an important role in laser
science. In many applications, laser sources emitting at a
single frequency are needed. These include optical sources for
telecommunications [28], nonlinear optics [29–31], metrol-
ogy [32,33], and more recently lidar for autonomous vehicles
[34]. Even when the laser operates in a single transverse,
longitudinal mode, dual polarization may produce dual fre-
quency emission because of residual anisotropy that lifts the
degeneracy between the two polarization eigenstates. Hence,
pure polarized emission is important for sources emitting at
a single frequency. PT -symmetric lasers in the polarization
space will be defined as laser resonators whose round-trip
Jones matrices are PT -symmetric. We will see that they offer
the possibility to eliminate dual polarization at the root by
operating at an EP, where only one polarization eigenstate
exists. We will also see that one kind of PT -symmetric laser
is also useful for suppressing multiple longitudinal mode
emission, by canceling the intensity contrast of the standing
wave, thereby eliminating axial spatial hole burning (SHB).
Otherwise, when SHB takes place, axial modes other than
the dominant one can tap into unsaturated, high-gain regions
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FIG. 2. Two designs of PT -symmetric lasers. (a) The dichroic Faraday resonator has a nonreciprocal mirror M1 that displays the Faraday
effect, and a dichroic mirror M2 with two orthogonal principal axes. An external magnetic field is used as a control parameter to scan the exact
and broken symmetry region. (b) The twisted-mode resonator has two mirrors that feature both a π phase shift and diattenuation in orthogonal
axes. The rotation angle α between the two mirrors’ principal axes, shown at the right of (b), is the control parameter.

of the active medium where destructive interference of the
counterpropagating waves takes place, thereby allowing these
other axial modes to oscillate [35,36].

Here, we present two designs of PT -symmetric res-
onators. They both require a combination of diretardance
(i.e., direction-dependent phase shift) and diattenuation (i.e.,
direction-dependent dichroism) and both also possess a con-
trol parameter that allows one to scan the broken and exact
symmetry regions and probe the vicinity of an EP as well.
These laser architectures [37,38] were previously introduced
to study the excess quantum noise, also known as the Pe-
termann noise factor [39,40], produced when two modes of
a resonator, either with different transverse or longitudinal
indices or polarization states, merge into a single state. Their
PT -symmetric character, however, had remained unnoticed
until recently. In the following, we analyze each resonator
from its round-trip Jones matrix, JRT. Before that, we provide
an interpretation for the eigenvectors and eigenvalues of this
matrix.

A. Interpretation of the eigenvectors and eigenvalues of JRT

In the calculation of JRT, we neglect the gain inside the
active material and assume that the latter is isotropic. Let �u[n]

be the state of polarization of the wave propagating in some
direction at a fixed position inside the resonator after the nth
round trip. After the next round trip, it becomes

�u[n+1] = JRT�u[n]. (27)

According to (3), the electric field is transformed as

�E [n+1] = JRT �E [n] exp (−iωTRT), (28)

where TRT is the round-trip time of the resonator. Let �U+ and
�U− be the eigenvectors of JRT, with respective eigenvalues

�±
�= |�±| exp(±iϕ), with ϕ = 0 in the exact and |�+| =

|�−| in the broken symmetry regions. We then have

�U [n+1]
± = �± exp (−iωTRT) × �U [n]

± . (29)

We note that the magnitude of the eigenvalues indicates the
modal round-trip losses of the passive cavity due to the cavity
mirrors. Their phase is connected to the oscillation frequency:
when oscillation takes place, the round-trip phase shift must
be an integral multiple of 2π , p; for the same modal transverse
and longitudinal indices, we have the following for the two

polarization eigenstates:

ϕ − ω+TRT = −ϕ − ω−TRT = 2π p. (30)

Hence, in the exact symmetry region, the oscillation fre-
quencies are the same because ϕ = 0, while in the broken
symmetry region, the oscillation frequencies of the two modes
differ by

v+ − v− = �vFSR × ϕ/π, (31)

where �vFSR = T −1
RT is the free spectral range of the resonator.

It is worth noting that the structure of the eigenvalue spec-
trum of PT -symmetric Jones matrices differs from that of
a two-level quantum system or its equivalent in optics. The
exact PT -symmetric phase in the latter generally corresponds
to distinct emission frequencies but equal dissipation in the
two eigenmodes: this is exactly the opposite to PT -symmetric
Jones matrices of a laser resonator in the exact PT -symmetric
phase, where the two modes have the same emission fre-
quency but different losses. The reversed situation takes place
in the broken PT -symmetric phase. The reason for this is the
presence of the imaginary factor i in Schrödinger’s equation,
which is absent in the equivalent differential equation in the
Jones formalism, as outlined in the Appendix.

B. Dichroic Faraday resonator

The first PT -symmetric design, shown in Fig. 2(a), in-
volves a resonator with a nonreciprocal mirror M1, that
presents the Faraday effect and a diattenuating mirror M2,
with different reflectance values in the orthogonal axes but no
diretardance. Upon reflection at M1, the right- and left-circular
polarization states are swapped, like an ordinary mirror, but a
phase shift, 2ϕ, proportional to the magnetic field component
parallel to the z axis, Bz, is produced between different circu-
larly polarized states. In the {l, r} basis, the Jones matrix of
the Faraday mirror M1 is then given by

M1 =
(

0 exp (iϕ)
exp (−iϕ) 0

)
{l,r}

. (32)

The Jones matrix of the dichroic mirror M2 is given by

M2 =
(

r1 0
0 −r2

)
{h,v}

=
(

�r r
r �r

)
{l,r}

, (33)
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where r1 and r2 are (different) real positive reflection coef-
ficients, �r ≡ 1

2 (r1 − r2) and r ≡ 1
2 (r1 + r2). The round-trip

Jones matrix of this resonator, JF, is given by

JF = M1M2 =
(

r exp (iϕ) �r exp (iϕ)

�r exp (−iϕ) r exp (−iϕ)

)
{l,r}

. (34)

JF has the form of Eq. (16), so it is PT symmetric, and the
control parameter, χ , defined in (25), is given by

χ = r2sin2ϕ(Bz )/�r2. (35)

Hence, the amplitude of the z component of the magnetic
field serves as a control parameter that allows us to scan the
exact and broken symmetry regions. At zero field, ϕ = 0, JF is
Hermitian, and the polarization eigenstates are orthogonal and
rectilinear; at low field values (χ<1), the eigenstates remain
rectilinear but rotate towards each other as the magnetic field
increases; they eventually merge into a unique rectilinear state
bisecting the x and y axes at the EP for r sin ϕ(Bz ) = ±�r;
then they become elliptical at higher field values and the
eccentricity of the elliptical polarization increases until sin(ϕ)
= ±1 and then goes down again at even higher field, etc.

C. Twisted-mode resonator with diattenuation

The second example of a PT -symmetric resonator is the
diattenuating twisted-mode resonator, in which both mirrors
have a π phase shift diretardance between two orthogonal
principal axes and at least one mirror shows diattenuation with
respect to the same principal axes, i.e.,

M1 =
(

r11 0

0 r12

)
{h,v}

=
(

r1 �r1

�r1 r1

)
{l,r}

(36)

and

M2 =
(

r21 0
0 r22

)
{h,v}

=
(

r2 �r2

�r2 r2

)
{l,r}

, (37)

with similar definition for ri and �ri as for the Faraday
resonator. Note that positions of ri and �ri in the ma-
trix are exchanged compared to the previous case because
of the π phase shift in the present case. One mirror is
twisted by an α angle with respect to the other. Assuming
an isotropic gain medium, the round-trip Jones matrix, JTM,
defined in the {h, v} basis defined by the x, y axes shown in
Fig. 2(b), is

JTM = �M1��M2�, (38)

where

� =
(

exp(iα/2) 0
0 exp(−iα/2)

)
{l,r}

(39)

is the transformation matrix that accounts for the angular twist
between the two mirrors. The transformation expressed in
Eq. (38), without term with �−1, arises because the reflected
beam is expressed in a different basis from the incoming
beam, since the z axis always points in the direction of the
propagation of light, which comes along with a reversal of
the horizontal axis upon reflection to keep the coordinate axes
right handed [41]. The round-trip Jones matrix is given by [14]

JTM =
(

r1r2 exp(2iα) + �r1�r2 r1�r2 exp(iα) + �r1r2 exp(−iα)

r1�r2 exp(−iα) + �r1r2 exp(iα) r1r2 exp(−2iα) + �r1�r2

)
{l,r}

, (40)

which has PT -symmetric form, Eq. (16), and the control pa-
rameter is

χ = r2
1r2

2sin2(2α)

r2
1�r2

2 + r2
2�r2

1 + 2r1r2�r1�r2 cos(2α)
. (41)

Hence, the angle α between the two mirrors’ principal axes
can be used as the experimental control parameter to scan
the exact symmetry region (χ�1) at small α values and the
broken symmetry region at α > αEP (i.e., χ>1).

Important characteristics of the polarization eigenstates of
the Faraday and twisted-mode PT -symmetric resonators are
shown in Fig. 3 as a function of their respective control pa-
rameter, ϕ or α. The eigenvalue spectra, in magnitude and
phase, are shown in Figs. 3(a) and 3(b): the two modes have
a pure real eigenvalue spectrum in the neighborhood of ϕ =
0 or α = 0, and the eigenvalues become a complex-conjugate
pair beyond a critical value ϕ = ϕEP or α = αEP. In the exact
PT -symmetry region, the magnitude of the two eigenvalues
is different; hence, the polarization eigenstate with the larger
magnitude will preferentially oscillate, while the other one
will likely be suppressed due to gain saturation in the active

medium, although SHB phenomena may allow the oscillation
of the polarization mode with higher losses at pump power
values well above threshold [15]. In the broken PT -symmetry
region, the magnitude of the two eigenvalues is the same, so
dual polarization emission is expected, which can take the
form of alternate oscillation of each mode (mode hopping)
or simultaneous oscillation. The different phase, �ϕ, of the
two modes in the broken symmetry region implies a different
oscillation frequency of the two modes.

The polarization eigenstate can be mapped to (x, y, z)
coordinates on the Poincaré sphere, Figs. 3(c) and 3(d). For
each resonator, the state of polarization of the two modes is
rectilinear (z = 0) and rotates from the {h, v}states at ϕ = 0
or α = 0 to a unique diagonal state (x, y, z) = (0, ±1, 0) at
the EP, ϕ = ϕEP or α = αEP. At higher ϕ or α values, each
eigenstate becomes elliptical, with one axis of the ellipse ori-
ented in the diagonal direction; i.e., x = 0 and tends towards
a circularly polarized state, z = ±1, as the ϕ (or α) value is
increased.

It is in the contrast of the standing wave that these two
resonators differ the most, Figs. 3(e) and 3(f). For the Faraday
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FIG. 3. Important characteristics of the eigenstates of the Faraday (a), (c), (e) and twisted-mode (b), (d), (f) PT -symmetric resonators as a
function of ϕ or α. For each mode, (a), (b) shows the magnitude and phase of the eigenvalues, (c), (d) shows the coordinates localization of the
polarization eigenstates on the Poincaré sphere, and (e), (f) shows the contrast of the standing wave. For the Faraday resonator, the parameters
are �r = 0.2 and r = 0.7. For the twisted-mode resonator, they are �r1 = �r2 = 0.15 and r1 = r2 = 0.85, with identical mirrors. The two
eigenmodes are plotted with red solid and green dashed lines.

resonator, the polarization states of the two counterpropagat-
ing waves of each mode remain similar for any value of the ϕ

parameter. Hence, the intensity contrast of the standing wave
remains close to the maximum value of one. On the other
hand, for the twisted-mode resonator, the intensity contrast of
the counterpropagating waves, which is maximum at α = 0,
steadily decreases as α increases in the exact PT -symmetry
region; it reaches zero at the EP and remains at zero ev-
erywhere inside the broken PT -symmetry region. It is thus
possible to eliminate SHB by operating a twisted-mode PT -
symmetric laser in that region. Operating such a laser near
an EP is a privileged point of operation for achieving true
single mode emission from a microchip laser, because both
dual polarization emission and spatial hole burning will likely
be suppressed [14,15].

V. DISCUSSION AND CONCLUSION

A. Connection between PT-symmetric
with antiunitary-symmetric operators

The P and T operators were defined in the most intuitive
way in Fig. 1: P is the inversion of space and T is the reversal
of motion. With these definitions, JPT has the specific form
of Eq. (16) in the {l, r} basis with four free parameters, but
can take the general form shown in Eq. (17) with six free
parameters by choosing a different orthogonal basis, {�u1, �u2},
parametrized as

�u1 = (cos θ/2, sin θ/2 exp(iϕ))T
{l,r} (42a)

and

�u2 = exp(iε)(− sin θ/2, cos θ/2 exp(iϕ))T
{l,r}, (42b)
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FIG. 4. Behavior of P′ and T ′ operators, defined on the figure,
on a given state of polarization. The T and PT operators bear little
resemblance to the actual P and T operators but the P′T ′-symmetric
operator JP′T ′ has the same spectrum as JPT .

where θ and ϕ are the polar angle and the longitude on the
Poincaré sphere, and ε is an arbitrary phase factor. Whatever
the chosen basis, the eigenvalues are the same. It is thus pos-
sible to generalize the PT -symmetric operator in polarization
space by redefining the P and T operators in such a way that
their representation that we found in one specific basis does in
fact correspond to another basis.

For example, let us represent new operators P′ and T ′ in
the {h, v} basis, respectively, as

P′{h,v} =
(

0 1
1 0

)
(43)

and

T ′{h,v} = C, (44)

which are the actual P and T representations found in the
{l, r} circular basis. We then find that the P′ and T ′ op-
erators behave quite differently from P and T , as shown in
Fig. 4: P′ does reverse the handedness of the polarization as
expected for a parity operator, but it also mirrors the ellipse of
polarization around the plane bisecting the x, y axes. The T ′
operator reverses the rotation direction without reversing the k
vector; this is perplexing because this causes a reversal of the
handedness of the polarization, in stark contrast with the true
time-reversal operator T , which does not. Yet, although the P′
and T ′ operators are different from P and T , operators JP′T ′

commuting with P′T ′ will share the same spectrum as JPT

because JP′T ′ and JPT differ only by a unitary transformation.
Hence, the notions of broken and exact symmetries apply to
these operators just as well. In this example, the structure of
JP′T ′ will be

JP′T ′{h,v} =
(

β + iγ δ + iη
δ − iη β − iγ

)
(45)

in the {h, v} basis instead of the {l, r} basis, as in Eq. (16).
Therefore, the concept of the PT operator in polarization

space can be extended to any pair of operators that are equiv-
alent to PT by a unitary transformation. Such P′T ′ operator
is just an arbitrary antiunitary operator, whose general form is
the association of a unitary matrix with the complex-conjugate
operator, as in Eq. (8). This fact that an operator commuting
with an antiunitary operator must either have a real spectrum
or the latter appears in complex-conjugate pairs was pointed
out by Bender et al. [42]. Hence, the concepts of broken and
exact symmetries also exist for Jones matrices that commute
with an antiunitary operator. Such Jones matrices still take the
form of Eq. (17). We thus conjecture that there exists a larger
class of resonator geometries that can probe the exact and

broken symmetries, as well as the EP at the transition between
the two regions, that are “antiunitary-symmetric” rather than
PT symmetric and that are yet to be discovered.

B. JPT englobes all Hermitian and unimodular
unitary matrices

It is interesting to consider the PT -symmetric Jones matri-
ces in the broader context of polarization optics. We generally
divide polarization optical components into two families: the
polarizers, which have different values of transmittance for or-
thogonal states, and the retarders, which have different phase
delays between orthogonal states.

Pure polarizers are described, within a global phase factor,
by Hermitian matrices, H; they show different values of the
modulus of the transmission (or reflection) coefficient for
orthogonal Jones states, without relative phase shifts between
them. In any orthogonal basis of Jones vectors, they have the
property of being self-adjoint:

H† = H. (46)

Any Hermitian Jones matrix is also PT symmetric. This
can be seen by taking B = 0 and ε = 0 in the general form,
Eq. (17):

H = JPT |B=0,ε=0 =
(

A + C sin θ C cos θ + iD
C cos θ − iD A − C sin θ

)

≡
(

E G + iD
G − iD F

)
, (47)

where arbitrary real values of E, F, and G can be obtained
from suitably chosen real values of A, C, and θ . We just saw
in Sec. V A that there exists an orthogonal basis {�u1, �u2} where
JPT takes the following form:

JP′T ′{�u1,�u2} =
(

β + iγ δ + iη
δ − iη β − iγ

)
. (48)

This basis is {l, r} when P and T are defined in the
conventional way. Since this matrix is Hermitian for γ =
0, we see from Eq. (25) that the χ value corresponding to
the Hermitian matrix is χ = 0, which could be described as
extreme exact PT symmetry. Note that the identity matrix, as
well as a real multiple of it, is Hermitian with undefined χ

values.
The second category, the retarders, corresponds to unitary

elements U, wherein

U −1 = U †. (49)

There exists an orthogonal basis that diagonalizes U as

U = exp (iα)

(
β + iγ 0

0 β − iγ

)
, (50)

where β2 + γ 2 = 1. If we set the global phase shift α to
0 or π , then U has a determinant equal to 1 and also has
PT -symmetric form with δ2 + η2 = 0, which implies that
χ → ∞, which is an extreme case of broken PT symmetry.

In summary, polarizers and retarders are PT symmetric
within a global phase factor; Hermitian (χ = 0) and uni-
tary matrices with unit determinant (χ → ∞) are at opposite
ends of the spectrum of the exact and broken symmetries.
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FIG. 5. Venn diagram of PT -symmetric matrices. Hermitian ma-
trices and unimodular unitary matrices are special cases of exact and
broken symmetry, respectively.

These results are summarized in a Venn diagram in Fig. 5.
As explained in Sec. V A, this diagram applies equally well
for Jones matrices that commute with antiunitary operators,
because the latter are unitarily similar to PT -symmetric Jones
matrices.

C. Concluding remarks

In summary, we defined a parity reflection–time reversal
(PT ) operator for arbitrary polarized pure states of light. We
then established the form of Jones matrices JPT that com-
mute with PT . We showed that JPT can display either real or
complex-conjugate eigenvalue spectra depending on the value
of a control parameter χ , and the two eigenstates merge to
a single state at the transition between the two regions. We
traced the origin of this peculiar phenomenon to the fact that
the PT operator is antilinear. We described PT -symmetric
laser resonators, which are concrete experimental examples
of PT -symmetric Jones matrices that possess a control pa-
rameter that enables one to experimentally cover the exact and
the broken PT -symmetric regions. One resonator, the twisted-
mode resonator, shows a null contrast of the standing wave
in the broken PT -symmetry region, which eliminates spatial
hole burning in microchip lasers and makes it suitable for
single mode emission. Finally, by using unitary transforma-
tions, we extended the concept of PT operator to other similar
operators that differ appreciably from the PT operator but
retain all the features of broken and exact PT symmetry. We

showed that Hermitian and unitary operators with determinant
equal to 1 are special cases of PT -symmetric Jones matrices,
the former belonging to the exact PT -symmetry region, the
latter to the broken PT -symmetry region.
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APPENDIX: PT SYMMETRY IN JONES MATRICES
VERSUS QUANTUM SYSTEMS

We point out one important difference between the eigen-
value spectrum of PT -symmetric Jones matrices and that of
a PT -symmetric quantum system. In quantum mechanics,
a two-level quantum system is generally described by the
Schrödinger equation which, in the matrix formalism, is given
by the following equation:

ih̄
d

dt

(
u1

u2

)
=

(
H11 H12

H21 H22

)(
u1

u2

)
, (A1)

where u1 and u2 are two linearly independent states. Such
equation is used to represent, e.g., coupled systems, such as
waveguides displaying both gain and loss. The diagonal terms
may represent the oscillation frequency in the absence of
coupling and nondiagonal elements are coupling coefficients.
The diagonalization of H yields eigenstates and eigenvalues,
the real part of which is the eigenenergy or emission frequency
and the imaginary part describes loss or gain.

It is possible to express the evolution of the polarization
of a laser resonator with an equation similar to (A1). From
Eq. (27), we have

�u[n+1] − �u[n] = (JRT − I )�u[n]. (A2)

If we perform a coarse-graining approximation, where
the intracavity round-trip time, TRT, is assumed to be much
smaller than other relevant timescales, the evolution of �u as a
function of time at a fixed position inside the resonator will
approximately follow

d �u
dt

� (JRT − I )

TRT
�u �= M�u, (A3)

which is similar to (A1). Note that the eigenstates of JRT and
M in (A3) are the same. One could analyze the eigenvalues
λMi of M instead of those of JRT and would find that the
real part of λMi describes loss or gain, while the imaginary

TABLE I. Differences in the interpretation of the eigenvalue spectrum of two-dimensional PT -symmetric Hamiltonian and Jones matrices
of a laser resonator.

PT symmetry Eigenvalues Two-level quantum system [Eq. (A1)] Jones matrix of a laser resonator

Exact Pure real Distinct emission frequencies Same emission frequency
Same loss or gain Different loss or gain

Broken Complex-conjugate pair Same emission frequency Distinct emission frequencies
Different loss or gain Same loss or gain
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part describes the phase shift after a round trip. Although
this coarse-graining approximation was not needed for our
analysis, such view is helpful to highlight a key difference
between (A1) and (A3), namely, that the imaginary i is absent
in the left-hand side for the latter. As a result, the interpreta-

tion of the eigenvalue spectrum is opposite for PT-symmetric
Jones matrices compared to PT-symmetric Hamiltonians, as
shown in Table I. However, the general form of a 2 × 2
PT -symmetric Hamiltonian remains as that outlined for the
Jones matrix in (17).
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