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Resonance nesting and mode degeneracy of bilayer spherical dielectric cavities
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Zero-index materials (ZIMs) have many peculiar properties such as supercoupling, directional radiation, and
large optical nonlinearity because of the near-zero electromagnetic parameters. Additionally, the index contrast
between the cavity and the ZIM can approach infinity, resulting in exotic properties such as resonance nesting
and mode degeneracy. However, the mode characteristics of bilayer spherical dielectric cavities within ZIMs
have not been studied thoroughly. Here, we investigate the resonance nesting and mode degeneracy effect in
bilayer spherical dielectric cavities embedded in ZIMs. First, we analytically deduce the Mie resonance condition
for each eigenmode of the bilayer spherical dielectric cavities. Based on the resonance conditions, we find
the resonance nesting effect, in which a set of cavities with different outer radii can possess the same type
of resonance at the same wavelength. We also reveal the mode degeneracy effect, wherein the modes with
different angular mode numbers such as 2l−TM and 2l+1−TE can be degenerated. Superior to monolayer
cavities, the electric field distribution in bilayer cavities can be manipulated by changing the inner radius.
The mode degeneracy in the bilayer cavity only happens with some specific radii, which is different from the
case in the monolayer cavity where the mode degeneracy always exists. These results can not only improve
our understanding of cavities within ZIMs, but can also have potential applications in deformable devices and
quantum information processes.
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I. INTRODUCTION

Zero-index materials (ZIMs), whose relative permittivity
or/and relative permeability are near zero, can be classified
as ε-near-zero (ENZ), μ-near-zero (MNZ), and both ε- and
μ-near-zero (EMNZ) materials. They have been experimen-
tally realized in various materials including metals [1,2],
doped semiconductors [3,4], phononic materials [5,6], and
structured materials such as waveguides [7], photonic crys-
tals (PCs) [8,9], and metamaterials [10,11]. ZIMs have many
attractive properties in light manipulation and light-matter
interaction, such as directive emission [12–14], supercoupling
[15–17], large optical nonlinearity [4,18], nonreciprocal and
nonlocal effects enhancement [19–21], and resonance pin-
ning effect [22,23]. These fundamental studies on ZIMs may
have some applications in phase pattern design [9,24], optical
antennas [22,23], cloaking [25], optical nanocircuits [26,27],
bending waveguides [28,29], etc.

Owing to the extreme parameter and the decoupling of
temporal and spatial field variations, studies combining ZIMs
and resonant cavities have shown many exotic properties, such
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as the geometry-invariant eigenfrequencies [30] and nonradi-
ating spatially electrostatic modes of open ENZ cavities [31].
The above studies mainly focused on the dipole resonance of
a dielectric cavity within a ZIM, but the behaviors of higher-
order resonances have not been studied systematically. By
investigating the resonance of a spherical cavity embedded in
an infinite ZIM, the resonance conditions for every eigenmode
have been deduced and the resonance nesting and degeneracy
effect have been found [32]. If a monolayer structure changes
to be bilayer, there may be some special properties. For ex-
ample, when a metal sphere is changed to a bilayer core-shell
structure, the plasmon modes will hybridize and couple with
each other, resulting in a tunable plasmon resonance [33,34].
However, the combination of ZIMs and bilayer cavities has
not been studied yet; it can possess both the characteristic of
cavities within ZIMs and bilayer structures.

In this work, we find that the resonance nesting and mode
degeneracy effects exist in bilayer spherical dielectric cavities
within ZIMs. First, we apply Mie theory to analytically de-
duce the resonance condition for every eigenmode of a bilayer
spherical dielectric cavity within a ZIM. Interestingly, for the
same inner radius, a series of cavities with different outer radii
can possess the same type of resonance at a fixed wavelength,
that is, the resonance nesting effect. We also reveal that when

2469-9926/2023/108(3)/033508(14) 033508-1 ©2023 American Physical Society

https://orcid.org/0000-0003-2803-2509
https://orcid.org/0000-0002-0661-5159
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.108.033508&domain=pdf&date_stamp=2023-09-14
https://doi.org/10.1103/PhysRevA.108.033508


WANG, MA, LIU, TIAN, WANG, GONG, AND GU PHYSICAL REVIEW A 108, 033508 (2023)

the inner radii have some special values, the 2l -TM (TE) and
2l+1−TE (TM) modes have the same resonance frequency
for the ENZ (MNZ) background while the 2l -TM and 2l -TE
modes have the same resonance frequency for the EMNZ
background, i.e., the mode degeneracy effect. It should be
pointed out that this degeneracy originates from the infinite
index contrast between the second layer of the cavity and
the ZIM. It is worth mentioning that although the resonance
nesting and mode degeneracy have been found in monolayer
cavities [32], the situation in the bilayer case is superior to
that in the monolayer case. Specifically, the electric field dis-
tribution in the bilayer case can be modulated by varying the
inner radius, while the electric field distributions in monolayer
spherical cavities cannot be changed. This unique property
can be used to realize deformable resonant devices with vari-
able field distributions. The modes in the monolayer case are
always degenerate, which cannot be controlled by changing
the radius, while the mode degeneracy only exists when the
bilayer cavity has some special radii, which can be controlled
by changing the cavity’s size. This innovative controllability
can be used to control the degeneracy and choose which mode
will be excited. Moreover, the analytical results are verified
by full-wave simulation (see Appendix G). The resonance
nesting and mode degeneracy effects not only have direct
significance in light-matter interaction but also can be applied
to deformable devices.

The paper is organized as follows. In Sec. II, we set up
the physical model and deduce the resonance conditions to
analyze the mode properties of this system. The resonance
nesting and mode degeneracy effects for the ENZ, MNZ,
and EMNZ cases are demonstrated in Sec. III. Some realistic
situations and potential applications are discussed in Sec. IV.
Finally, we conclude in Sec. V.

II. MIE RESONANCE CONDITIONS OF THE BILAYER
SPHERICAL CAVITY WITHIN THE ZIM

The resonance conditions of all orders for monolayer
spherical cavity within ENZ, MNZ, and EMNZ materials have
been studied completely [32]. Based on this, the resonance
nesting effect and the previously unknown resonance degen-
eracy in the monolayer cavity have been discovered. However,
the mode characteristic of a bilayer cavity embedded in a ZIM
has not been studied yet, which may possess more specific
properties of resonance nesting and mode degeneracy. Such
unique effects may provide additional principles to control the
light propagation.

Here, for the case where a bilayer sphere cavity is em-
bedded in a ZIM, we expand the electromagnetic field in
Mie bases [35,36] and obtain the resonance conditions by
utilizing the boundary conditions. The structure we investi-
gated is a bilayer cavity embedded in the infinite ZIM, as
schematically shown in Fig. 1. The bilayer cavity includes
a dielectric sphere (region I, in light green) and a dielectric
concentric shell (region II, in white). The sphere has a radius
R1, dielectric constant ε1 and magnetic permeability μ1; the
concentric shell has a thickness R2 − R1, dielectric constant
ε2 and magnetic permeability μ2; the infinite ZIM (region
III, in light blue) has a dielectric constant ε3 and magnetic
permeability μ3. We assume the ZIM is infinite for the pur-

FIG. 1. The schematic diagram of a bilayer dielectric spherical
cavity within a ZIM. (a) is the three-dimensional diagram and (b) is
the yz section.

pose of obtaining simple analytical formulas. But the results
where the ZIM is finite will be consistent with our analytical
results when the ZIM is several wavelengths thick (see the
Discussion section for details). For convenience, the wave
numbers in regions I, II, and III are denoted by k1, k2, and
k3 respectively, and R1 and R2 are called the inner radius
and outer radius, respectively. The eigenmodes of spherical
cavities are classified as TM modes and TE modes with the
vanishment of the radical component of the magnetic and
electric field, respectively. The TM (TE) mode with mode
number i, l , m is called the TMilm (TEilm) mode where i
can be o or e which means odd mode or even mode, re-
spectively; l is the angular mode number or the multipole
order, such as l = 1 for dipole mode and l = 2 for quadrupole
mode; m is the azimuthal mode number satisfying |m| � |l|.
We can let m = 0, i = e to get the resonance conditions
because m and i only decide on angular distribution while
the boundary condition is only associated with the radical
distribution. Therefore, the resonance can be categorized as
2l−TM and 2l−TE.

We first consider the 2l -TM modes. According to Mie
theory, the electromagnetic field of a spherically symmetric
system can be expressed as the linear combination of two sets
of vector spherical harmonics M and N (see Appendix A).
Because the magnetic field has no radial component, the
magnetic field of the TM mode only includes the M. By
normalizing the coefficient of M(2)

l in region I, the electro-
magnetic field can be written as

Hl
TM =

⎧⎪⎨
⎪⎩

M(2)
l +A1M(1)

l , r < R1

B1M(2)
l + C1M(1)

l , R1 < r < R2

D1M(3)
l , r > R2

,

El
TM =

⎧⎪⎪⎨
⎪⎪⎩

− k1
iε1ε0ω

(
N(2)

l +A1N(1)
l

)
, r < R1

− k2
iε2ε0ω

(
B1N(2)

l + C1N(1)
l

)
, R1 < r < R2

− k3
iε3ε0ω

D1N(3)
l , r > R2

,

(1)

where A1, B1, C1, and D1 are the coefficients to

be solved, M( j)
l = − ∂Pl

∂θ
z( j)

l (kr)êφ , and N( j)
l = z( j)

l (kr)
kr l (l +

1)Pl êr + 1
kr

∂[(kr)z( j)
l (kr)]

∂ (kr)
∂Pl
∂θ

êθ . z(1)
l is the spherical Bessel func-

tions labeled as jl ; z(2)
l is the spherical Neumann functions

labeled as nl ; z(3)
l and z(4)

l are the first and second kind
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of spherical Hankel functions labeled as h(1)
l and h(2)

l ,
respectively, where h(1)

l = jl + inl and h(2)
l = jl − inl . Pl is

the Legendre functions with Pl (cos θ ) = 1
2l l!

dl

dcosl θ
(cos2θ−1)

l
.

According to the boundary conditions at r = R1 and r =
R2, we can get the general resonance conditions for 2l -TM
modes of bilayer spherical cavity embedded in an arbitrary
medium (see Appendix B for details):∣∣∣∣∣

ε3
ε2

ζ ′
l (ρ22) ξ ′

l (ρ32)
ζl (ρ22) k2

k3
ξl (ρ32)

∣∣∣∣∣∣∣∣∣∣
ε3
ε2

η′
l (ρ22) ξ ′

l (ρ32)
ηl (ρ22) k2

k3
ξl (ρ32)

∣∣∣∣∣
=

∣∣∣∣∣
ε1
ε2

ζ ′
l (ρ21) η′

l (ρ11)
ζl (ρ21) k2

k1
ηl (ρ11)

∣∣∣∣∣∣∣∣∣∣
ε1
ε2

η′
l (ρ21) η′

l (ρ11)
ηl (ρ21) k2

k1
ηl (ρ11)

∣∣∣∣∣
, (2)

in which we let x ≡ kr, ηl (x) ≡ x jl (x), ζl (x) ≡ xnl (x),
ξl (x) ≡ xh(1)

l (x); ρ11 ≡ k1R1, ρ21 ≡ k2R1, ρ22 ≡ k2R2, ρ32 ≡
k3R2.

When the background is a ZIM, k3 ≈ 0, so ξl (k3r) can be
expanded as a power series of (k3r)−1:

ξl (k3r) ≈ ik3r[nl (k3r)] = i
∞∑

n=0

an(k3r)2n−l ≈ ia0(k3r)−l ,

ξ ′
l (k3r) ≈ i(−l )[a0(k3r)−l−1], (3)

in which, a0 is a real constant number. Therefore, the reso-
nance condition for the TM mode of a bilayer spherical cavity
within an infinite ZIM background can be obtained as

lζl (ρ22) + ε3
ε2

ρ22ζ
′
l (ρ22)

lηl (ρ22) + ε3
ε2

ρ22η
′
l (ρ22)

=

∣∣∣∣∣
ε1
ε2

ζ ′
l (ρ21) η′

l (ρ11)
ζl (ρ21) k2

k1
ηl (ρ11)

∣∣∣∣∣∣∣∣∣∣
ε1
ε2

η′
l (ρ21) η′

l (ρ11)
ηl (ρ21) k2

k1
ηl (ρ11)

∣∣∣∣∣
. (4)

Because of the extreme parameters of ZIMs, the terms
ξl (ρ32) and ξ ′

l (ρ32) are in opposite phases so this equation
does not have any imaginary component (see Appendix C
for a discussion of phase). Therefore, the resonance condition
for the ZIM case can be exactly solved in the real number
field and the cavity can possess an ideal resonance while the
general resonance condition can only be exactly solved in the
complex number field. Moreover, because the refractive index
of the ZIM is zero, this resonance does not depend on μ3.
Therefore, the TM modes for the ENZ (ε3 = 0) case and the
EMNZ (ε3 = 0, μ3 = 0) case always have the same resonance
conditions, shown in the following equation (5).

Because ε3 ≈ 0 for the ENZ and EMNZ cases, the condi-
tion can be simplified as

ζl (ρ22)

ηl (ρ22)
=

∣∣∣∣∣
ε1
ε2

ζ ′
l (ρ21) η′

l (ρ11)
ζl (ρ21) k2

k1
ηl (ρ11)

∣∣∣∣∣∣∣∣∣∣
ε1
ε2

η′
l (ρ21) η′

l (ρ11)
ηl (ρ21) k2

k1
ηl (ρ11)

∣∣∣∣∣
. (5)

In the following, with the same procedure, we can ana-
lytically obtain the resonance conditions for the 2l -TE mode.
Its electromagnetic fields inside and outside the cavity can be

expressed as

El
TM =

⎧⎪⎨
⎪⎩

M(2)
l +A2M(1)

l , r < R1

B2M(2)
l + C2M(1)

l , R1 < r < R2

D2M(3)
l , r > R2

,

Hl
TM =

⎧⎪⎪⎨
⎪⎪⎩

k1
iμ1μ0ω

(
N(2)

l +A2N(1)
l

)
, r < R1

k2
iμ2μ0ω

(
B2N(2)

l + C2N(1)
l

)
, R1 < r < R2

k3
iμ3μ0ω

D2N(3)
l , r > R2

,

(6)

where A2, B2, C2, and D2 are the coefficients to be solved.
Based on the boundary conditions, the resonance condition

for the TE modes of a bilayer spherical cavity within an
infinite ZIM background can be obtained by using the same
method as that for the TM case (see Appendix B for details):

lζl (ρ22) + μ3

μ2
ρ22ζ

′
l (ρ22)

lηl (ρ22) + μ3

μ2
ρ22η

′
l (ρ22)

=

∣∣∣∣∣
μ1

μ2
ζ ′

l (ρ21) η′
l (ρ11)

ζl (ρ21) k2
k1

ηl (ρ11)

∣∣∣∣∣∣∣∣∣∣
μ1

μ2
η′

l (ρ21) η′
l (ρ11)

ηl (ρ21) k2
k1

ηl (ρ11)

∣∣∣∣∣
. (7)

Furthermore, for MNZ and EMNZ materials, μ3 ≈ 0, the
condition can be simplified as

ζl (ρ22)

ηl (ρ22)
=

∣∣∣∣∣
μ1

μ2
ζ ′

l (ρ21) η′
l (ρ11)

ζl (ρ21) k2
k1

ηl (ρ11)

∣∣∣∣∣∣∣∣∣∣
μ1

μ2
η′

l (ρ21) η′
l (ρ11)

ηl (ρ21) k2
k1

ηl (ρ11)

∣∣∣∣∣
. (8)

It should be emphasized that the resonance condition of the
bilayer spherical cavity within a ZIM is general. For example,
it is true for arbitrary wavelengths such that the background
material is a ZIM. Also, it remains valid for any value of
the electromagnetic parameters of the bilayer cavity. Further-
more, the deduction of resonance conditions can be easily
extended to a multilayer spherical cavity within the ZIM.

The resonance condition [32] of the monolayer case has
only one geometry variable resulting in it being a set of points
in the R axis (R is the radius of the monolayer cavity), but
the resonance condition of the bilayer cavity has two geom-
etry variables: the inner radius R1 and the outer radius R2,
resulting in it being a set of curves in the R1, R2 coordinates.
Both the points for the monolayer case and the curves for
the bilayer case imply the existence of resonance nesting
and mode degeneracy. Additionally, by some mathematical
transformation, we verified that the resonance condition of the
bilayer cavity is the same as that of the monolayer cavity when
R1 = 0 or R1 = R2.

III. RESULTS

A. Resonance nesting of bilayer cavities within ZIMs

There is a resonance nesting effect in monolayer cavities
within the ENZ background [32]. With the same background,
we predict that this effect should exist in bilayer cavities.
Take the 2-TM mode as an example (similar discussions on
other modes can be found in Appendix D1); according to
Eq. (5), the curves satisfying the resonance condition for the
case where λ = 630 nm, ε1 = 2.25, μ1 = 1, ε2 = 1, μ2 = 1,
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FIG. 2. The resonance nesting of the 2-TM mode for the ENZ
case. (a) The curves satisfying the resonance condition. These curves
have many branches, representing the multiplicity of solutions of the
resonance condition. Here, λ = 630 nm, ε1 = 2.25, μ1 = 1, ε2 =
1, μ2 = 1, ε3 = 0, μ3 = 1. (b) The normalized power spectra and
electric fields (modulus) taken at A1, B1, and C1 in (a). The peaks
of resonance and the consistency of the electric field evidence the
existence of resonance nesting.

ε3 = 0, and μ3 = 1 are plotted in Fig. 2(a). It is found that
the resonance curves have many branches, i.e., when R1 =
200 nm, a set of R2 represented by the nested points A1,
B1, and C1 can satisfy the resonance condition. As shown in
Fig. 2(b), the peaks of the power spectra at these three points
are almost at 630 nm; that is, for the same inner radius, a series
of cavities with different outer radii can possess the same type
of resonance at a fixed wavelength, called the resonance nest-
ing effect. It can be seen from the insets of Fig. 2(b) that the
electric field distributions inside three cavities are completely
consistent while just the number of wave nodes increases
with R2. These evidence the existence of resonance nesting.
Moreover, there are a few blueshifts of resonant wavelengths
in radiation power spectra in Fig. 2(b) due to the imaginary
part of ε3 = 0.01i. The resonant wavelengths of three nesting
cavities deviate slightly from the ideal value. The electric field
distribution of the 2-TM mode is discontinuous at the interface
because the radical component of the electric field suddenly
changes. Especially at the interface between the cavity and
the ENZ, the electric field is drastically enhanced due to the
ultrahigh contrast ratio of ε2 and ε3.

As we expected, although the resonance conditions for
the ENZ, MNZ, and EMNZ cases are different, the reso-
nance nesting effect also appears in the bilayer spherical
cavities embedded in the MNZ and EMNZ backgrounds (see
Appendixes D2 and D3 for details). Therefore, the resonance
nesting is a universal property of bilayer spherical cavities
within ZIMs.

B. Difference in resonance nesting between bilayer cavities
and monolayer cavities within ZIMs

The difference in the resonance nesting effect of bilayer
cavities compared to that of monolayer cavities is that the
electric field distributions in the bilayer spherical cavities can
be manipulated by changing the inner radius while main-
taining resonance nesting. This result is very different from
that in the monolayer cavities [32] where the electric field
distribution is unchangeable. For the electromagnetic field
expressions, Eqs. (1) and (6), the coefficients of field will
approach infinity when resonance occurs so that it is difficult

FIG. 3. The superposition coefficients of the field in region II for
the 2-TM mode. The variation of superposition coefficients results
in the modulation of electric field distribution. The insets are corre-
sponding electric fields at different R1.

to analyze the field distribution. Therefore, we can rebuild the
expression by normalizing A1 for TM modes in Eq. (1) and
normalizing A2 for TE modes in Eq. (6). Let us take the TM
modes as an example:

Hilm
TM =

⎧⎪⎨
⎪⎩

M(1)
ilm, r < R1

b1M(2)
ilm + c1M(1)

ilm, R1 < r < R2

d1M(3)
ilm, r > R2

,

Eilm
TM =

⎧⎪⎪⎨
⎪⎪⎩

− k1
iε1ε0ω

N(1)
ilm, r < R1

− k2
iε2ε0ω

(
b1N(2)

ilm + c1N(1)
ilm

)
, R1 < r < R2

− k3
iε3ε0ω

d1N(3)
ilm, r > R2

,

(9)

where b1, c1 are the new coefficients. By substituting the
general resonance condition, Eq. (2), into them, we can obtain

b1 = B1

A1
=

∣∣∣∣∣ η′
l (ρ11) ε1

ε2
η′

l (ρ21)
k2
k1

ηl (ρ11) ηl (ρ21)

∣∣∣∣∣∣∣∣∣ ε1
ε2

ζ ′
l (ρ21) ε1

ε2
η′

l (ρ21)
ζl (ρ21) ηl (ρ21)

∣∣∣∣
;

c1 = C1

A1
=

∣∣∣∣∣ η′
l (ρ11) ε1

ε2
ζ ′

l (ρ21)
k2
k1

ηl (ρ11) ζl (ρ21)

∣∣∣∣∣∣∣∣∣− ε1
ε2

ζ ′
l (ρ21) − ε1

ε2
η′

l (ρ21)
ζl (ρ21) ηl (ρ21)

∣∣∣∣
. (10)

The coefficients b1 and c1 are only dependent on R1 and
the electromagnetic parameters of the bilayer cavity. There-
fore, for a fixed R1, the field distributions inside the cavity
within different backgrounds are identical while just R2 and
the number of wave nodes are different.

For a monolayer dielectric cavity embedded in a ZIM, once
the mode numbers are selected, its field distribution is fixed
[32], but this is not the case in a bilayer cavity because the field
in the region II is decided by the superposition coefficients.
For the 2-TM mode, the coefficients b1, c1 as a function of
R1 are shown in Fig. 3. It is found that the position of the
maximum of the electric field in the region II changes with R1

(the insets of Fig. 3). Similar analysis is true for the TE mode
(see Appendix F).
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The cavities within ENZ materials can support spatially
“electrostatic” eigenmodes whose resonant frequency is in-
dependent of the geometry of the ENZ materials bounded by
perfectly electric conducting (PEC) walls. This result can be
used to realize deformable resonant devices [30]. Owing to the
tunability of bilayer cavities, deformable devices with variable
electric fields can be achieved.

Therefore, the resonance nesting effect exists in bilayer
cavities within ZIMs including the ENZ, MNZ, and EMNZ
cases; i.e., for the same inner radius, a series of cavities with
different outer radii can possess the same type of resonance
at a fixed wavelength. The mode characteristics for differ-
ent backgrounds is quite different; for example, the 2-TM
mode in the ENZ case is a nonradiating mode but not in the
MNZ cases [31]. The main text only includes the results of
the 2-TM mode, while the same findings hold true for other
modes as well, such as the 2-TE, 4-TM, and 4-TE modes (see
Appendixes D1–D3). It is worth mentioning that the reso-
nance nesting effect of bilayer cavities is superior to that in the
monolayer case because the electromagnetic field distribution
of the bilayer cavity can be tuned by changing the inner radius.

C. Mode degeneracy of bilayer cavities within ZIMs

There is mode degeneracy between the 2l -TM and 2l+1-TE
modes in monolayer spherical cavities within the ENZ back-
ground [32]. With the same background, it seems that this
effect should also exist in bilayer cavities. But the situation
is very different. From the following analysis, it is found
that the 2l -TM and 2l+1-TE modes of bilayer cavities within
the ENZ background are degenerated only at some special
nested points. In what follows, we first analytically prove this
conclusion based on the resonance conditions. According to
Eq. (7), the 2l+1-TE modes satisfy the following:

(l + 1)ζl+1(ρ22) + ρ22ζ
′
l+1(ρ22)

(l + 1)ηl+1(ρ22) + ρ22η
′
l+1(ρ22)

=

∣∣∣∣∣
μ1

μ2
ζ ′

l+1(ρ21) η′
l+1(ρ11)

ζl+1(ρ21) k2
k1

ηl+1(ρ11)

∣∣∣∣∣∣∣∣∣∣
μ1

μ2
η′

l+1(ρ21) η′
l+1(ρ11)

ηl+1(ρ21) k2
k1

ηl+1(ρ11)

∣∣∣∣∣
. (11)

Given the mathematical identities,

(l + 1)ζl+1(x) + xζ ′
l+1(x) = xζl (x),

(l + 1)ηl+1(x) + xη′
l+1(x) = xηl (x), (12)

Eq. (11) can be simplified to

ζl (ρ22)

ηl (ρ22)
=

∣∣∣∣∣
μ1

μ2
ζ ′

l+1(ρ21) η′
l+1(ρ11)

ζl+1(ρ21) k2
k1

ηl+1(ρ11)

∣∣∣∣∣∣∣∣∣∣
μ1

μ2
η′

l+1(ρ21) η′
l+1(ρ11)

ηl+1(ρ21) k2
k1

ηl+1(ρ11)

∣∣∣∣∣
. (13)

By comparing Eq. (13) with Eq. (5), it is found that the
left-hand sides (LHSs) of the resonance conditions of the
2l -TM and 2l+1-TE modes are the same but the right-hand
sides (RHSs) are usually unequal. However, for some special
R1, they can be the same, allowing these two modes to be
degenerate. Additionally, when R1 is fixed at such a value,

FIG. 4. The degeneracy between the 2-TM and 4-TE modes of
bilayer spherical cavities for the ENZ case. (a) The resonance condi-
tions of the 2-TM and 4-TE modes. The nested points where the red
curves intersect with the blue curves represent the degeneracy. (b)
The normalized radiation power spectra of the 2-TM and 4-TE modes
at point B4. The insets are corresponding electric field distributions
(modulus).

a succession of R2 can satisfy the two resonance conditions
simultaneously due to the resonance nesting and the identity
between the LHSs. In other words, if one resonant cavity
satisfies the degeneracy criterion, then so will all of the others
that are nested with it.

Then, take the 2-TM and 4-TE modes as an example.
The resonance condition curves are plotted in Fig. 4(a). The
degeneracy exists at the nested points where the red curve
intersects with the blue one, such as A4, B4, and C4 with
R1 = 300.4 nm. The 2-TM and 4-TE modes’ radiation power
spectra at point B4 are shown in Fig. 4(b). The peaks of the
power spectra are almost at 630 nm, representing the mode
degeneracy. Additionally, the 4-TE mode’s linewidth and
slight blueshift from the ideal resonant wavelength (630 nm)
are smaller than the counterpart of the 2-TM mode because
the higher-order mode suffers from less radiation loss. The
resonant wavelengths of the 2-TM and 4-TE modes devi-
ate slightly from the ideal value. The cavities at the nested
points A4 and C4 (see Appendix E1) also exhibit the same
results, demonstrating the nesting nature of degenerate points.
Therefore, for the ENZ case, the 2l -TM and 2l+1-TE modes
of bilayer cavities at some special nested points will be
degenerated.

Similarly, the 2l+1-TM and 2l -TE modes of bilayer cavities
on some special sizes will be degenerated for the MNZ case
(see Appendix E2 for details) and the 2l -TM and 2l -TE modes
of bilayer cavities on some specific sizes will be degenerated
for the EMNZ case (see Appendix E3 for details). Therefore,
although the degenerated modes are different, the mode de-
generacy is a general property of bilayer spherical cavities
within ZIMs.

D. Difference in mode degeneracy between bilayer cavities
and monolayer cavities within ZIMs

The difference in the mode degeneracy effect of bilayer
cavities from that of monolayer cavities is the controllabil-
ity. For monolayer cavities embedded in ENZ materials, the
2l -TM and 2l+1-TE modes are always degenerated when the
permeabilities of the cavity and the background media are
equivalent, but for bilayer cavities, the modes only degenerate
when the cavity has some specific sizes. It is challenging to
separately excite the 2l -TM or 2l+1-TE mode in monolayer
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FIG. 5. (a) The resonant wavelengths of three nested cavities
when the ENZ background is finite. The parameters are R1 =
200 nm, ε1 = 2.25, ε2 = 1, ε3 = 0.01i, μ1 = μ2 = μ3 = 1. The
thickness of the ENZ material is labeled as d . (b) The resonant
wavelengths of the 2-TM and 4-TE modes when the ENZ back-
ground is finite. The parameters are R1 = 300.4 nm, R2 = 631.8 nm,
ε1 = 2.25, ε2 = 1, ε3 = 0.01i, μ1 = μ2 = μ3 = 1.

cavities, but now this controllability of bilayer cavities allows
us to choose which mode will be excited by altering the
geometrical size. These modes will couple together and pos-
sess the coherent superposition field, so the controllability of
bilayer case enables us to modulate the electromagnetic field.

The situations connected to degeneracy are thoroughly ex-
amined and listed as follows: the mode degeneracy is present
in bilayer spherical dielectric cavities at some special nested
points, including the degeneracy between the 2l -TM and
2l+1-TE modes for the ENZ case, 2l -TE and 2l+1-TM modes
for the MNZ case, and 2l -TM modes and 2l -TE modes for the
EMNZ case. Superior to the case of monolayer cavities, mode
degeneracy of bilayer cavities and the related electromagnetic
field can be controlled by changing their sizes.

IV. DISCUSSION

The situation we considered is that a bilayer spherical
cavity is located in an infinite ZIM, which is unrealizable.
However, according to our COMSOL simulation, within several
wavelengths, the computation results will be consistent with
the theoretical results. Take the ENZ case as an example; we
calculated the relationship between the resonant wavelength
and the thickness of the ENZ material. First, as shown in
Fig. 5(a), when the thickness is 4λ, the resonant wavelengths
of the 2-TM mode of three nested cavities all approach the
analytical results. Also, as shown in Fig. 5(b), when the
thickness is 2.5λ, the resonant wavelengths of the 2-TM and
4-TE modes both near the analytical results. Therefore, the
minimum thickness needed to realize resonance nesting and
mode degeneracy in this situation is about 4λ. The results in
other situations are similar.

We also discuss the sensitivity of resonances to the imagi-
nary part of the electromagnetic parameters of the zero-index
materials. Take the 2-TM mode of the ENZ case as an exam-
ple; the quantitative results of how the resonant wavelength
and linewidth vary with the imaginary parts of ε3 and μ3 are
shown in Fig. 6. The resonant wavelength varies by 6.4 nm
while the linewidth changes from 1 nm to 41.6 nm, as the
imaginary part of ε3 increased from 0.001 to 0.05. Thus,
the resonant wavelength of the TM mode is less sensitive to
the imaginary part of ε3, but the linewidth is more sensitive.

FIG. 6. (a) The resonant wavelengths and the linewidths of the
2-TM mode when the imaginary part of ε3 of the ENZ material is
considered. The parameters are R1 = 200 nm, R2 = 374.6 nm, ε1 =
2.25, ε2 = 1, μ1 = μ2 = μ3 = 1. (b) The resonant wavelengths and
linewidths of the 2-TM mode when the imaginary part of μ3 of the
ENZ material is considered. The parameters are R1 = 200 nm, R2 =
374.6 nm, ε1 = 2.25, ε2 = 1, ε3 = 0.01i, μ1 = μ2 = 1.

Moreover, as shown in Fig. 6(b), three radiation power spectra
of the 2-TM mode are almost completely coincident so that
the resonant wavelength and linewidth almost do not change
with the imaginary part of μ3.

The special mode feature of cavities within ZIMs may
have potential applications in cavity quantum electrodynamics
(CQED) and controlling entanglement. Research on sponta-
neous emission of the emitter in a monolayer spherical cavity
within the ZIM has been reported [37], where the inhibition
and enhancement of spontaneous emission have been realized.
The entanglement between emitters in ENZ waveguides has
been reported [38], where the efficient long-range entangle-
ment has been obtained, so the entanglement between emitters
located in a cavity within the ZIM should also exist. These
applications can be better manipulated through the flexible
controllability of the bilayer cavities within ZIMs.

V. CONCLUSION

In this work, we have deduced the Mie resonance condi-
tions for all modes of a bilayer spherical cavity embedded
in ENZ, MNZ and EMNZ materials respectively. Based on
the resonance conditions, the resonance nesting and mode
degeneracy effects are found in this cavity system. Addition-
ally, the electric field distribution in the bilayer cavity can be
manipulated by altering the inner radius while maintaining
the resonance nesting. This property is not present in the
monolayer case and allows for designing deformable devices
with adjustable field distribution. Also, we have found that
the mode degeneracy occurs in bilayer spherical cavities with
some specific radii, so that the degeneracy can be controlled
by varying the cavity’s size. It is superior to the monolayer
situation where two modes are always degenerated, and can
be used to modulate the electromagnetic field. Thus, the
most unique property of the bilayer cavity compared with the
monolayer cavity is the controllability of modes and electric
field distributions. Moreover, the resonance nesting effect is
a general consequence of cavities within ZIMs, so a similar
effect should also exist in the bilayer cylindrical cavities and
bilayer rectangular cavities within ZIMs. But the mode degen-
eracy effect discussed here results from the combination of the
extreme parameters of ZIMs and spherical symmetry. These
results enable flexible control of the electric field, which may
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have potential applications in CQED and the manipulation of
entanglement.
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APPENDIX A: EXPRESSIONS OF MIE BASES M AND N

According to Mie theory [35,36], the Mie bases M and N
satisfy that

M = ∇ × (rψ ), N = 1

k
∇ × M.

ψ is the solution of scalar wave equation ∇2ψ + k2ψ = 0.
Therefore, the Mie bases can be expressed as

M( j)
elm = − sin(mφ)

m

sin θ
Plm(cos θ )z( j)

l (kr)êθ − cos(mφ)
∂Plm(cos θ )

∂θ
z( j)

l (kr)êφ

M( j)
olm = cos(mφ)

m

sin θ
Plm(cos θ )z( j)

l (kr)êθ − sin(mφ)
∂Plm(cos θ )

∂θ
z( j)

l (kr)êφ

N( j)
elm = z( j)

l (kr)

kr
l (l + 1) cos(mφ)Plm(cos θ )êr + 1

kr

∂
[
(kr)z( j)

l (kr)
]

∂ (kr)
cos(mφ)

∂Plm(cos θ )

∂θ
êθ

+ 1

kr

∂
[
(kr)z( j)

l (kr)
]

∂ (kr)
(− sin mφ)

m

sin θ
Plm(cos θ )êφ

N( j)
olm = z( j)

l (kr)

kr
l (l + 1) sin(mφ)Plm(cos θ )êr + 1

kr

∂
[
(kr)z( j)

l (kr)
]

∂ (kr)
sin(mφ)

∂Plm(cos θ )

∂θ
êθ

+ 1

kr

∂
[
(kr)z( j)

l (kr)
]

∂ (kr)
cos(mφ)

m

sin θ
Plm(cos θ )êφ, (A1)

in which Plm is the associated Legendre functions with

Plm(cos θ ) = (1−cos2θ )
m/2

2l l!
dl+m

dcosl+mθ
(cos2θ−1)

l
.

APPENDIX B: GENERAL RESONANCE CONDITIONS
OF BILAYER SPHERE CAVITIES WITHIN

AN ARBITRARY MEDIUM

For the 2l -TM modes, according to the boundary condition,
the tangential electric field is continuous at r = R1, which
requires

k1

ε1

1

k1R1

{
∂[(k1R1)nl (k1R1)]

∂ (kr)
+ A1

∂[(k1R1) jl (k1R1)]

∂ (kr)

}

= k2

ε2

1

k2R1

{
B1

∂[(k2R1)nl (k2R1)]

∂ (kr)
+C1

∂[(k2R1) jl (k2R1)]

∂ (kr)

}
.

(B1)

The tangential magnetic field is also continuous at r = R1

because there is no free surface current on the interface, which
requires

B1nl (k2R1) + C1 jl (k2R1) = A1 jl (k1R1) + nl (k1R1). (B2)

The same boundary conditions also exist at r = R2, so

k3

ε3
D1

1

k3R2

∂
[
(k3R2)h(1)

l (k3R2)
]

∂ (kr)

= k2

ε2

1

k2R2

{
B1

∂
[
(k2R2)nl (k2R2)

]
∂ (kr)

+C1
∂
[
(k2R2) jl (k2R2)

]
∂ (kr)

}
,

(B3)

B1nl (k2R2) + C1 jl (k2R2) = D1h(1)
l (k3R2). (B4)

Let x ≡ kr, ηl (x) ≡ x jl (x), ζl (x) ≡ xnl (x), ξl (x) ≡
xh(1)

l (x); ρ11 ≡ k1R1, ρ21 ≡ k2R1, ρ22 ≡ k2R2, ρ32 ≡ k3R2, so
the coefficients determined by boundary conditions can be
solved as follows:

D1 =

∣∣∣∣∣∣∣∣∣

−η′
l (ρ11) ε1

ε2
ζ ′

l (ρ21) ε1
ε2

η′
l (ρ21) ζ ′

l (ρ11)
− k2

k1
ηl (ρ11) ζl (ρ21) ηl (ρ21) k2

k1
ζl (ρ11)

0 ε3
ε2

ζ ′
l (ρ22) ε3

ε2
η′

l (ρ22) 0
0 ζl (ρ22) ηl (ρ22) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−η′
l (ρ11) ε1

ε2
ζ ′

l (ρ21) ε1
ε2

η′
l (ρ21) 0

− k2
k1

ηl (ρ11) ζl (ρ21) ηl (ρ21) 0
0 ε3

ε2
ζ ′

l (ρ22) ε3
ε2

η′
l (ρ22) −ξ ′

l (ρ32)
0 ζl (ρ22) ηl (ρ22) − k2

k3
ξl (ρ32)

∣∣∣∣∣∣∣∣∣

.

(B5)

Here, we only present the expression of D1. According
to Cramer’s rule, all the denominators of the coefficients are
the same as the determinant of the coefficient matrix. If it
were zero, the coefficients would take the maximum values
resulting in the resonance of the cavity. Consequently, the
general resonance conditions for the 2l -TM modes of a bi-
layer spherical cavity embedded in an arbitrary medium are
as follows:

∣∣∣∣∣∣∣∣∣

−η′
l (ρ11) ε1

ε2
ζ ′

l (ρ21) ε1
ε2

η′
l (ρ21) 0

− k2
k1

ηl (ρ11) ζl (ρ21) ηl (ρ21) 0
0 ε3

ε2
ζ ′

l (ρ22) ε3
ε2

η′
l (ρ22) −ξ ′

l (ρ32)
0 ζl (ρ22) ηl (ρ22) − k2

k3
ξl (ρ32)

∣∣∣∣∣∣∣∣∣
= 0.

(B6)
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This equation can be simplified as

∣∣∣∣∣
ε3
ε2

ζ ′
l (ρ22) ξ ′

l (ρ32)
ζl (ρ22) k2

k3
ξl (ρ32)

∣∣∣∣∣∣∣∣∣∣
ε3
ε2

η′
l (ρ22) ξ ′

l (ρ32)
ηl (ρ22) k2

k3
ξl (ρ32)

∣∣∣∣∣
=

∣∣∣∣∣
ε1
ε2

ζ ′
l (ρ21) η′

l (ρ11)
ζl (ρ21) k2

k1
ηl (ρ11)

∣∣∣∣∣∣∣∣∣∣
ε1
ε2

η′
l (ρ21) η′

l (ρ11)
ηl (ρ21) k2

k1
ηl (ρ11)

∣∣∣∣∣
. (B7)

For the 2l -TE modes, based on the boundary conditions,
we can get a set of linear equations:

B2ζ
′
l (ρ21) + C2η

′
l (ρ21) = μ2

μ1
[ζ ′

l (ρ11) + A2η
′
l (ρ11)]

B2ζl (ρ21) + C2ηl (ρ21) = k2

k1
[ζl (ρ11) + A2ηl (ρ11)]

B2ζ
′
l (ρ22) + C2η

′
l (ρ22) = μ2

μ3
[D2ξ

′
l (ρ32)]

B2ζl (ρ22) + C2ηl (ρ22) = k2

k3
[D2ξl (ρ32)]. (B8)

The resonance occurs when the determinant of the coeffi-
cient matrix is zero, which requires the following:∣∣∣∣∣∣∣∣∣

−η′
l (ρ11) μ1

μ2
ζ ′

l (ρ21) μ1

μ2
η′

l (ρ21) 0
− k2

k1
ηl (ρ11) ζl (ρ21) ηl (ρ21) 0
0 μ3

μ2
ζ ′

l (ρ22) μ3

μ2
η′

l (ρ22) −ξ ′
l (ρ32)

0 ζl (ρ22) ηl (ρ22) − k2
k3

ξl (ρ32)

∣∣∣∣∣∣∣∣∣
= 0.

(B9)
This equation can be simplified as follows:∣∣∣∣∣

μ3

μ2
ζ ′

l (ρ22) ξ ′
l (ρ32)

ζl (ρ22) k2
k3

ξl (ρ32)

∣∣∣∣∣∣∣∣∣∣
μ3

μ2
η′

l (ρ22) ξ ′
l (ρ32)

ηl (ρ22) k2
k3

ξl (ρ32)

∣∣∣∣∣
=

∣∣∣∣∣
μ1

μ2
ζ ′

l (ρ21) η′
l (ρ11)

ζl (ρ21) k2
k1

ηl (ρ11)

∣∣∣∣∣∣∣∣∣∣
μ1

μ2
η′

l (ρ21) η′
l (ρ11)

ηl (ρ21) k2
k1

ηl (ρ11)

∣∣∣∣∣
,

(B10)

which is the general solution when resonances occur for the
TE modes.

APPENDIX C: PHASE DISTRIBUTION
OF ELECTROMAGNETIC FIELDS IN THE ZIM

Take TMelm mode as an example; the electromagnetic
fields outside the cavities are

Hilm
TM = D1M(3)

ilm = D1

[
− sin(mφ)

m

sin θ
Plm(cos θ )

ξl (k3r)

k3r
êθ − cos(mφ)

∂Plm(cos θ )

∂θ

ξl (k3r)

k3r
êφ

]
,

Eilm
TM = − k3

iε3ε0ω
D1N(3)

ilm = − k3

iε3ε0ω
D1

[
ξl (k3r)

(k3r)2 l (l + 1) cos(mφ)Plm(cos θ )êr

+ 1

kr
ξ ′

l (k3r) cos(mφ)
∂Plm(cos θ )

∂θ
êθ + 1

kr
ξ ′

l (k3r)(− sin mφ)
m

sin θ
Plm(cos θ )êφ

]
. (C1)

According to Eq. (3), substituting the expressions of ξl (k3r) and ξ ′
l (k3r) into Eq. (C1), we can get

Eθ = − k3

iε3ε0ω
D1

1

kr
ξ ′

l (k3r) cos(mφ)
∂Plm(cos θ )

∂θ
= D1l

∂Plm(cos θ )

∂θ
cos(mφ)

k3

ε3ε0ω
a0(k3r)−l−2,

Hφ = −D1 cos(mφ)
∂Plm(cos θ )

∂θ

ξl (k3r)

k3r
= −D1 cos(mφ)

∂Plm(cos θ )

∂θ
ia0(k3r)−l−1. (C2)

Here, we only show the θ component of the electric field
and the φ component of the magnetic field. Interestingly, their
phase will not change with r. In addition,

N(3)
l θ

M(3)
l φ

= l

k3r
,

Eθ

Hφ

= i
l

ε3ε0ωr
, (C3)

which means that the phase of the θ component of the electric
field always lags behind the φ component of the magnetic field
by π/2.

This peculiar property of phase leads to the ideal reso-
nance of the cavity within the ZIM. The resonance condition
of the bilayer cavities within an arbitrary medium can be

rewritten as∣∣∣∣∣
ε3
ε2

ζ ′
l (ρ22) ξ ′

l (ρ32 )
ξl (ρ32 )

ζl (ρ22) k2
k3

∣∣∣∣∣∣∣∣∣∣
ε3
ε2

η′
l (ρ22) ξ ′

l (ρ32 )
ξl (ρ32 )

ηl (ρ22) k2
k3

∣∣∣∣∣
=

∣∣∣∣∣
ε1
ε2

ζ ′
l (ρ21) η′

l (ρ11)

ζl (ρ21) k2
k1

ηl (ρ11)

∣∣∣∣∣∣∣∣∣∣
ε1
ε2

η′
l (ρ21) η′

l (ρ11)

ηl (ρ21) k2
k1

ηl (ρ11)

∣∣∣∣∣
. (C4)

According to Eq. (C4), this general case includes a
term ξ ′

l (ρ32)/ξl (ρ32), which has imaginary components, so
the frequency exactly satisfies that this equation is com-
plex. However, based on Eq. (3), this term satisfies that
k3ξ

′
l (ρ32)/ξl (ρ32) = −l/R2 when the background is the ZIM.

Therefore, the terms ξl (ρ32) and ξ ′
l (ρ32) in the ZIM are in

opposite phases so that the resonance condition does not have
any imaginary component.
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FIG. 7. The resonance conditions of the (a) 2-TM, (b) 2-TE, (c)
4-TM, and (d) 4-TE modes for the ENZ case. The curves have many
branches, representing the multiplicity of solutions of the resonance
condition, that is, resonance nesting. Here, λ = 630 nm, ε1 = 2.25,
μ1 = 1, ε2 = 1, μ2 = 1, ε3 = 0, μ3 = 1.

APPENDIX D: RESONANCE NESTING
OF THE 2-TM, 2-TE, 4-TM, AND 4-TE MODES

1. For the ENZ background

According to Eqs. (5) and (7), the curves satisfying reso-
nance conditions of the 2-TM, 2-TE, 4-TM, and 4-TE modes,
respectively, can be obtained as shown in Fig. 7.

Figure 8 shows the electric field (modulus) distributions
and normalized radiation power spectra at the nested points
with R1 = 200 nm. Based on these data and the analysis in the

FIG. 8. Resonance nesting of the (a) 2-TM, (b) 2-TE, (c) 4-TM,
and (d) 4-TE modes of a bilayer spherical cavity within an ENZ
material. The insets are corresponding electric fields in cavities with
different outer radius R2.

FIG. 9. The resonance conditions of the (a) 2-TM, (b) 2-TE, (c)
4-TM, and (d) 4-TE modes for the MNZ case. The curves have many
branches, representing the multiplicity of solutions of the resonance
condition, that is, resonance nesting. Here, ε3 = 1, μ3 = 0, other
parameters are the same as in Fig. 7.

main text, it is found that the resonance nesting effect widely
exists in bilayer cavities within ENZ materials.

Moreover, the electric field distribution of the 2l -TM mode
is discontinuous at the interfaces due to the discontinuity
of its radical component, which changes with the dielectric
constant. Especially on the interface between cavity and ENZ,
the electric field is drastically enhanced due to the ultrahigh
contrast ratio of ε2 and ε3, but for the 2l -TE mode, the electric
field is always continuous due to the boundary condition.

2. For the MNZ background

Then, the resonance nesting effect also appears in the
monolayer cavities embedded in the MNZ background [32].
We expect that, given the same background, this effect should
also be present in the bilayer cavities. According to Eqs. (4)
and (8), the curves satisfying the resonance conditions of the
2-TM, 2-TE, 4-TM, and 4-TE modes, respectively, for the
case where λ = 630 nm, ε1 = 2.25, μ1 = 1, ε2 = 1, μ2 = 1,
ε3 = 1, and μ3 = 0 can be obtained, as shown in Fig. 9. Tak-
ing the 2-TM mode as an example, the resonance curves have
many branches, showing the existence of resonance nesting.
The peaks of the radiation power spectra taken at nested points
A2, B2, and C2 with R1 = 200 nm are nearly at 630 nm, as
shown in Fig. 10(a). The insets of Fig. 10(a) show that the
electric field distributions inside three cavities are perfectly
consistent while just the number of wave nodes increases
with R2. These provide further proof of resonance nesting’s
presence. Moreover, there are slight blueshifts of resonant
wavelength in the radiation power spectra in Fig. 10(a) due to
the imaginary part of μ3 = 0.01i. The results of the (b) 2-TE
mode, (c) 4-TM mode, and (d) 4-TE mode are also shown in
Figs. 9 and 10, which proves that the resonance nesting effect
widely exists in bilayer cavity within MNZ materials.
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FIG. 10. The normalized power spectra and electric fields (mod-
ulus) of the (a) 2-TM, (b) 2-TE, (c) 4-TM, and (d) 4-TE modes at
the nested points with R1 = 200 nm. The peaks of resonance and the
consistency of the electric field evidence the existence of resonance
nesting.

Because the parameter is set as ε1 = 2.25, ε2 = 1, ε3 = 1,
the electric field discontinuity only happens at the interface
between regions I and II for the TM modes. Especially, for the
TE mode, the electric field outside the cavity is zero due to the
extreme parameters of the MNZ material and the boundary
condition at the interface between region II and the MNZ
background.

3. For the EMNZ background

Next, inside the EMNZ background, monolayer cavities
exhibit the resonance nesting effect too [32]. Considering the
same background, we forecast that the same effect should
exist in the bilayer cavities. According to Eqs. (5) and (8), the
curves satisfying the resonance conditions of the 2-TM, 2-TE,
4-TM, and 4-TE modes, respectively, for the situation where
λ = 630 nm, ε1 = 2.25, μ1 = 1, ε2 = 1, μ2 = 1, ε3 = 0, and
μ3 = 0 can be obtained, as shown in Fig. 11. Also, taking the
2-TM mode as an example, the resonance curves have many
branches, showing the existence of resonance nesting. The
peaks of the radiation power spectra taken at nested points A2,
B2, and C2 with R1 = 200 nm are approximately at 630 nm,
as shown in Fig. 12(a). The insets of Fig. 12(a) show that only
the number of wave nodes increases with R2, with no further
changes in the electric field distributions inside three cavities.
These provide proof that resonance nesting occurs. Moreover,
different from the ENZ case, the resonant wavelength shifts
from 630 nm are very small because the ε3 = 0.01i, μ3 =
0.01i, and n3 = √

ε3μ3 are all near zero.
The results of the (b) 2-TE mode, (c) 4-TM mode, and (d)

4-TE mode are also shown in Figs. 11 and 12, which prove
that the resonance nesting effect widely exists in a bilayer
cavity within EMNZ materials. Moreover, as already inferred
by Eqs. (5) and (8), the curves of the 2l -TM modes for the
EMNZ case are the same as those for the ENZ case, and the
curves of the 2l -TE modes for the EMNZ case are the same

FIG. 11. The resonance conditions of the (a) 2-TM, (b) 2-TE,
(c) 4-TM, and (d) 4-TE modes for the EMNZ case. The curves
have many branches, representing the multiplicity of solutions of
the resonance condition, that is, resonance nesting. Here, ε3 = 0,
μ3 = 0; other parameters are the same as in Fig. 7.

as those for the MNZ case. By comparing the electric field
distributions for the EMNZ, ENZ, and MNZ cases, we can
find that the electric field of the TM mode for the EMNZ case
is the same as that for the ENZ case, and the electric field of
the TE mode for the EMNZ case is the same as that for the
MNZ case.

APPENDIX E: MODE DEGENERACY

1. Mode degeneracy at nested points for the ENZ background

For the ENZ background, the degeneracy between the 2-
TM and 4-TE modes exists at the nested points, such as A4,

FIG. 12. The normalized power spectra and electric fields (mod-
ulus) of the (a) 2-TM, (b) 2-TE, (c) 4-TM, and (d) 4-TE modes at
the nested points with R1 = 200 nm. The peaks of resonance and the
consistency of the electric field evidence the existence of resonance
nesting.
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FIG. 13. The normalized radiation power spectra of the 2-TM
and 4-TE modes at points A4 and C4. The insets are corresponding
electric field distributions (modulus).

B4, and C4 in Fig. 4(a). Figure 13 shows the electric field
distributions and normalized radiation power spectra at the
nested degenerate points A4 and C4. These results demonstrate
the nested nature of degenerate points.

2. Mode degeneracy effect of a bilayer spherical cavity
within the MNZ background

The mode degeneracy between the 2l+1-TM and 2l -TE
modes exists in monolayer spherical cavities within the MNZ
background [32]. With the same background, it seems that
the bilayer cavities should also exhibit such effect, but from
the following analysis, we found that the situation is very dif-
ferent; i.e., the 2l+1-TM and 2l -TE modes of bilayer cavities
within the MNZ material are degenerated only at some special
nested points. In what follows, we first analytically prove this
based on the resonance conditions. According to Eqs. (4) and
(12), the 2l+1-TM modes satisfy the following:

ζl (ρ22)

ηl (ρ22)
=

∣∣∣∣∣
ε1
ε2

ζ ′
l+1(ρ21) η′

l+1(ρ11)
ζl+1(ρ21) k2

k1
ηl+1(ρ11)

∣∣∣∣∣∣∣∣∣∣
ε1
ε2

η′
l+1(ρ21) η′

l+1(ρ11)
ηl+1(ρ21) k2

k1
ηl+1(ρ11)

∣∣∣∣∣
. (E1)

By comparing Eq. (E1) with Eq. (8), it is found that the
left-hand sides (LHSs) of the resonance conditions of the
2l+1-TM and 2l -TE modes are the same but the right-hand
sides (RHSs) are often unequal. For some unique R1, they
can be the same, allowing these two modes to be degenerate.
Similar to the ENZ situation, if a resonant cavity satisfies the
degeneracy criterion, all of the resonant cavities nested with it
do as well.

Next, take the 4-TM and 2-TE modes as an example. As
shown by the resonance condition curves in Fig. 14(a), the de-
generacy exists in bilayer cavities at some nested degenerate
points such as A5 and B5 with R1 = 385.3 nm. A difference
between the MNZ and ENZ cases is that the 4-TM and 2-TE
modes are not degenerated in those cavities with R1 = R2 �=
0, because ε3 �= ε1. The normalized radiation power spectra
at the degenerate point A5 are shown in Fig. 14(b). The peaks
of the power spectra are almost at 630 nm, representing the
establishment of mode degeneracy. Additionally, the 4-TM
mode’s linewidth and slight blueshift from the ideal resonant
wavelength (630 nm) are smaller than the counterpart of the
2-TE mode because the higher-order mode suffers from less
radiation loss. Moreover, as Fig. 15 shows, the cavities at the

FIG. 14. The degeneracy between the 4-TM and 2-TE modes
of bilayer spherical cavities for the MNZ case. (a) The resonance
conditions of the 4-TM and 2-TE modes. The nested points where the
red curves intersect with the blue curves represent the degeneracy. (b)
The normalized radiation power spectra of the 4-TM and 2-TE modes
at point A5. The insets are corresponding electric field distributions
(modulus).

nested point B5 also exhibit the same results, demonstrating
the nesting nature of degenerate points. Therefore, for the
MNZ case, the 2l+1-TM and 2l -TE modes of bilayer cavities
at some special nested points will be degenerated.

3. Mode degeneracy effect of a bilayer spherical cavity
within the EMNZ background

In the monolayer spherical cavities within EMNZ back-
ground, there is mode degeneracy between the 2l -TM and
2l -TE modes [32]. This effect would seem to be expected in a
bilayer cavity given the same background. The following re-
sults reveal that the situation is different; that is, the 2l -TM and
2l -TE modes of bilayer cavities within the EMNZ material are
only degenerated at some nested points. In what follows, we
first analytically prove this conclusion based on the resonance
conditions. By comparing Eq. (5) with Eq. (8), it is found that
the left-hand sides (LHSs) of the resonance conditions of the
2l -TM and 2l -TE modes are the same but the right-hand sides
(RHSs) are usually not equal. For some special R1, they can be
the same, allowing these two modes to be degenerate. Similar
to the ENZ and MNZ cases, if a resonant cavity satisfies the
degeneracy criterion, so do all of the nested resonant cavities.
Then, take the 2-TM and 2-TE modes as an example. The

FIG. 15. The normalized radiation power spectra at point B5. The
insets are corresponding electric field distributions (modulus).
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FIG. 16. The degeneracy between the 2-TM and 2-TE modes
of bilayer spherical cavities for the EMNZ case. (a) The resonance
conditions of the 2-TM and 2-TE modes. The nested points where the
red curves intersect with the blue curves represent the degeneracy. (b)
The normalized radiation power spectra of the 2-TM and 2-TE modes
at point B6. The insets are corresponding electric field distributions
(modulus).

resonance condition curves are plotted in Fig. 16(a). It is
found that the degeneracy exists in bilayer spherical cavities
at some nested degenerate points such as A6, B6, and C6 with
R1 = 183.4 nm. The normalized radiation power spectra at
point B6 are shown in Fig. 16(b). The peaks of the power
spectra are almost at 630 nm, representing the establishment
of mode degeneracy. Additionally, the resonant wavelength
is very close to the ideal wavelength (630 nm) because the
imaginary parts of ε3 and μ3 are both very small. Moreover,
as Fig. 17 shows, the cavities at the nested points A6 and C6

also exhibit the same results, demonstrating the nesting nature
of degenerate points. So, for the EMNZ case, the 2l -TM and
2l -TE modes of bilayer cavities at some special nested points
will be degenerated.

APPENDIX F: ELECTRIC FIELD DISTRIBUTION
ON RESONANCE OF TE MODES

For TE modes, the new expression of the electromagnetic
field is

Eilm
TE =

⎧⎪⎪⎨
⎪⎪⎩

M(1)
ilm, r < R1

b2M(2)
ilm + c2M(1)

ilm, R1 < r < R2

d2M(3)
ilm, r > R2

,

Hilm
TE =

⎧⎪⎪⎨
⎪⎪⎩

k1
iμ1ε0ω

N(1)
ilm, r < R1

k2
iμ2ε0ω

(
b2N(2)

ilm + c2N(1)
ilm

)
, R1 < r < R2

k3
iμ3ε0ω

d2N(3)
ilm, r > R2

,

(F1)

FIG. 17. The normalized radiation power spectra at points A6

and C6. The insets are corresponding electric field distributions
(modulus).

FIG. 18. The superposition coefficients of the field in region II
for the 2-TE mode. The variation of superposition coefficients results
in the modulation of the electric field distribution. The insets are
corresponding electric fields at different R1.

where b2, c2 are the new coefficients. By substituting the
resonance conditions into it, we can get

b2 =

∣∣∣∣∣ η′
l (ρ11) μ1

μ2
η′

l (ρ21)
k2
k1

ηl (ρ11) ηl (ρ21)

∣∣∣∣∣∣∣∣∣μ1

μ2
ζ ′

l (ρ21) μ1

μ2
η′

l (ρ21)
ζl (ρ21) ηl (ρ21)

∣∣∣∣
;

c2 =

∣∣∣∣∣ η′
l (ρ11) μ1

μ2
ζ ′

l (ρ21)
k2
k1

ηl (ρ11) ζl (ρ21)

∣∣∣∣∣∣∣∣∣−μ1

μ2
ζ ′

l (ρ21) −μ1

μ2
η′

l (ρ21)
ζl (ρ21) ηl (ρ21)

∣∣∣∣
. (F2)

The relationship between coefficients and R1 and the cor-
responding electric field distributions for the 2-TE mode are
shown in Fig. 18.

APPENDIX G: VERIFICATION OF ANALYTICAL
RESULTS BY NUMERICAL SIMULATIONS

To validate the aforementioned analytic results, we do a
three-dimensional finite element simulation using commercial
COMSOL MULTIPHYSICS software. We construct the system’s
geometrical structure first, as seen in Fig. 19. For the purpose
of reducing the scattering field and simulating endless space,

FIG. 19. The sketch map of the simulation module by COMSOL.
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FIG. 20. The normalized radiation power spectra and electric
field distributions obtained using the analytical method and numeri-
cal method, respectively, for the ENZ case. Here, ε3 = 0.01i, μ3 = 1.

the infinite ZIM is configured as a sphere with R = 2λ and is
encircled by a perfect match layer (PML) with a thickness of
0.5λ. Here, λ is 630 nm which is set as the ZIM wavelength.
The combination of the light green part and the white part
in Fig. 19 is a bilayer spherical dielectric cavity. Region I
is a sphere with the radius R1, dielectric constant ε1, and
permeability μ1, and region II is a spherical shell with the
thickness R2 − R1, dielectric constant ε2, and permeability
μ2. Then, an electric dipole with z polarization is put in the
cavity to excite the eigenmode. In this module, the dipole is
modeling as a point with a specific dipole moment. For all
finite element methods, the structure needs to be divided into
meshes. Here, region II of the bilayer spherical cavity and
the ZIM background are separated into some free tetrahedra
with maximum sizes of λ/6 and minimum sizes of 0.4 nm,
whereas region I is divided in accordance with the particular
inner radius. In order to simply compute the radiation power,
a tiny sphere (the radius is 5 nm) is placed outside the dipole.
We have confirmed that this module is accurate, as done in
our previous work [32]. In what follows, we will compare the
power spectra and electric field distributions obtained using
the analytical method with those obtained using the simulation
method in order to validate the analytical results. The electro-
magnetic parameters of regions I and II are ε1 = 2.25, μ1 = 1,
and ε2 = 1, μ2 = 1, respectively.

1. Simulation verification for the ENZ background

We verify the results at a degenerate point of the 2-TM and
4-TE modes for the ENZ case. The configuration of a selected
degenerate point is R1 = 300.4 nm, R2 = 631.8 nm by ignor-
ing the loss of the ENZ background. The normalized radiation
power spectra and electric field distributions obtained using
the analytical method and numerical method are shown in
Fig. 20.

The parameters of the ENZ background are ε3 = 0.01i,
μ3 = 1 here. The resonant wavelength of the radiation power
spectrum drawn using the ideal radius configuration (R1 =
300.4 nm, R2 = 631.8 nm) will deviate slightly from the ideal
resonant wavelength (630 nm). Therefore, in order to make
the comparison more intuitive, the analysis result adopted the
configuration which is slightly different from the ideal value.
Altogether, the simulation results are in very good agreement
with the analytical results.

FIG. 21. The normalized radiation power spectra and electric
field distributions obtained using the analytical method and nu-
merical method, respectively, for the MNZ case. Here, μ3 = 0.01i,
ε3 = 1.

2. Simulation verification for the MNZ background

We verify the results at a specific resonance configuration
with R1 = 300.4 nm, R2 = 490.1 nm for the 2-TM mode and
at a configuration with R1 = 300.4 nm, R2 = 765.8 nm for the
4-TE mode when ignoring the loss of the MNZ background.
The normalized radiation power spectra and electric field dis-
tributions obtained using the analytical method and numerical
method are shown in Fig. 21. Altogether, the simulation re-
sults are in very good agreement with the analytical results.

3. Simulation verification for the EMNZ background

We verify the results at a specific resonance configuration
with R1 = 250 nm, R2 = 351 nm for the 2-TM mode when
ignoring the loss of the EMNZ background. The normalized
radiation power spectra and electric field distributions ob-
tained using the analytical method and numerical method are
shown in Fig. 22. Altogether, the simulation results are in very
good agreement with the analytical results.

In a word, regardless of the background, the analysis results
are well matched with the simulation results, which greatly
improves the reliability of the analysis results.

FIG. 22. The normalized radiation power spectra and electric
field distributions obtained using the analytical method and numer-
ical method, respectively, for the EMNZ case. Here, μ3 = 0.01i,
ε3 = 0.01i.
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