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Experimental tweaking of symmetry breaking in recurrent nonlinear modulational instability
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We show that the nonlinear stage of the universal phenomenon of modulational instability, and in particular
its recurrent behavior, is deeply affected by arbitrarily weak losses. Indeed linear damping leads to spontaneous
breaking of the recurrence symmetry through separatrix crossing occurring at multiple critical values of the
attenuation, across which the dynamics switches between two types of recurrence exhibiting dramatic slowing
down. We provide experimental evidence for this phenomenon in a fiber optics experiment designed in such a
way that the effective losses can be carefully tailored by techniques based on Raman amplification.
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I. INTRODUCTION

Modulational instability (MI), the exponential growth of
slow periodic perturbations on top of a background wave
is one of the most ubiquitous nonlinear wave phenomenon,
occurring, e.g., in water waves [1,2], optics [3,4], plasmas
[5], cold atom condensates [6], or topological insulators [7].
Boosted by the idea that MI can be the main triggering mech-
anism of forming rogue waves [8,9], a great deal of attention
was devoted in the last decade to understanding the fully
nonlinear stage of MI past the initial growth of the pertur-
bation. Theoretical results obtained in the framework of the
nonlinear Schrödinger equation (NLSE) [10–20] in conjunc-
tion with experiments mainly in the area of nonlinear optics
[21–33] and hydrodynamics [23,32,34–37], have revealed an
incredibly rich scenario. Different dynamical evolutions can
emerge which range from the spontaneous appearance of
coherent structures [24,27] to the controlled emergence of
breathers [10,23,33,34,38], eventually competing [18] with
the onset of universal automodulated structures [11,17,28].
The control of strictly periodic perturbations has also al-
lowed us to demonstrate, besides novel regimes such as the
higher-order [21] or extraordinary [32] MI, that the MI seeded
by a single pair of unstable sidebands follows a fully re-
versible behavior featuring recurrences to the initial condition
which are characteristic of a broken symmetry and its related
phase-space structure ruled by the NLSE [25,26,30]. Since
the return to a nearly-single-mode initial condition occurs
after substantial coupling to several other modes (a comb of
sideband pairs), such a regime was considered to be evocative
of the Fermi-Pasta-Ulam-Tsingou (FPUT) phenomenon [39],
discovered for conservative chains of nonlinear oscillators
[40]. In analogy to the FPUT case [41,42], MI also exhibits
a breakdown of the recurrent regime, and the transition to
a thermalized state, when random amplification of fluctua-
tions in the continuum of unstable modes become dominant
[27,43]. The aim of this paper is to show experimentally that
the ideal dynamics of the MI recurrent regime is qualitatively
altered by the most common and usually unavoidable of the

perturbations, namely, linear damping. We show that arbitrar-
ily weak losses cause the recurrence to undergo a dynamical
change from one type to the other, through a phenomenon
of loss-induced separatrix crossing. Remarkably, we find by
perturbative arguments (based either on Fourier mode trun-
cations or finite-gap theory [44,45]) that this crossing occurs
around multiple critical values of the linear damping coeffi-
cient (the weaker the loss, the denser the critical attenuations).
We demonstrate this by reporting evidence for the first two
critical loss values in a fiber optics experiment, where we
reconstruct via nondestructive measurements the nonlinear
evolution of MI in power and phase. The observation of
separatrix crossing is extremely challenging even for sim-
ple one-dimensional (1D) oscillators, due to the difficulty
of controlling the damping. We overcome this problem by
careful tailoring the effective losses via Raman amplification
techniques [46–48], thus allowing for a reproducible labora-
tory observation of damping-induced separatrix crossing in
an infinite-dimensional system. Our results give evidence that
weak losses qualitatively alter the recurrent scenario without
suppressing the MI [49] and establish a framework to under-
stand the impact of damping on MI experiments in other areas
(see, e.g., Ref. [35]), or different models [50–52].

The paper is organized as follows: in Sec. II we briefly
outline the theory of the phenomenon, referring the inter-
ested reader to Appendix A for details of the calculations.
Section III reports the results of the experiments. The results
are summarized in Sec. IV, and in Appendix B we make a
comparison with a one-dimensional oscillator.

II. THEORY OF SEPARATRIX CROSSING

We start from the NLSE with damping written in dimen-
sionless form,

i
∂ψ

∂z
+ 1

2

∂2ψ

∂t2
+ |ψ |2ψ = −i

α

2
ψ, (1)

where ψ = E/
√

P0, z = Z/Znl , t = (T − Z/Vg)/T0 are the
normalized field, distance, and retarded time (capital letters
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FIG. 1. (a) NLSE unperturbed (α = 0) evolutions of unshifted
(blue) and shifted (red) FPUT type, projected over the phase-plane
(η cos(�φ), η sin(�φ)) (dots are initial conditions). False color plot
of sideband power fraction η in the plane (α, z) for initial values
on (b) the shifted or (d) unshifted orbit. The arrows in (d) indicate
critical losses αcn around which separatrix crossing occurs; vertical
dashed lines are estimates of αc1,c2 from Eq. (A15). (c) Typical
separatrix crossing in 3D space (η cos(�φ), η sin(�φ), z) at αc4, cf.
case (e). (e)–(g) Evolution of |ψ (z, t )| at sampled values αc1, αc2,
and αc4. In all plots ω0 = √

2 (peak gain), and the injected sideband
power fraction is 5% (η0 = 0.05).

stand for real-world quantities), in units of total input power
P0 and the associated nonlinear length Znl = 1/(γ P0) and
time T0 = √|β2|Znl , respectively. Here γ is the fiber nonlinear
coefficient, β2 is the dispersion, and Vg the group-velocity.
The key parameter is the normalized attenuation coefficient
α = αPZnl (km)/4.34 where αP (dB/km) is the physical
attenuation.

We consider FPUT arising from induced MI which is ruled
by Eq. (1) subject to the initial condition

ψ0 = √
p

[
1 + a√

2
e−iφ0 (eiω0t + e−iω0t )

]
, (2)

where, without loss of generality, we take a
√

p amplitude
pump modulated by symmetric sidebands with normal-
ized input pulsation ω0 = 2π fmod

√|β2|/(γ P0) (in the range
1 < ω0 < 2

√
p to have only one unstable pair [21]), rela-

tive power a2 � 1, and phase φ0, with p ≡ (1 + a2)−1 to
have

∫ |ψ0|2dt = 1. In the unperturbed case (α = 0), two
different FPUT types of recurrence coexist, as conveniently
illustrated in Fig. 1(a) by their projections on the phase-plane
(η cos �φ, η sin �φ), where η(z) is the first-order sideband
power fraction and �φ(z) = φP − φS is the relative phase
between the pump and the sidebands [25]. We refer to the
two types of FPUT orbits as unshifted (single loop, blue
curve) or shifted (double loop, red curve) recurrence, since
in the latter case, owing to the free running phase, two

consecutive recurrences exhibit a shift of π (half period in
time) [25].

In the unperturbed case the two orbits never cross each
other in phase plane and are separated by a time-periodic so-
lution which asymptotically tends to the pump or background
at z = ±∞, and is known as Akhmediev breather [53,54] (see
also pioneering work on the breathers with finite background
of the NLSE in Ref. [55]). They are typically generated
by inputs corresponding to the dots in Fig. 1(a) represent-
ing weak modulations of the pump (i.e., the saddle point in
the origin) with constant sideband fraction η(z = 0) = η0 =
a2/(1 + a2), but different phase, �φ0 = 0 (amplitude modu-
lation) or �φ0 = ±π/2 (frequency modulation), respectively.
A convenient way to assess the impact of the losses is to
portray, as shown in Figs. 1(b) and 1(d), the evolution of the
sideband fraction η(z), as obtained from numerical integration
of the damped NLSE, as a function of the attenuation α. The
periodicity in the vertical z direction accounts for the FPUT
recurrence. When the shifted orbit is excited, the net effect
of damping is smooth, inducing only a slight reduction of the
FPUT period, as evident from Fig. 1(b). Conversely, an ini-
tially unshifted orbit results in the complex scenario displayed
in Fig. 1(d). It is characterized by a succession of critical atten-
uation values αcn, n = 1, 2, 3, . . . (with αc1 > αc2 > αc3 · · · ),
around which the FPUT recurrence slow down dramatically
giving rise to extremely large (but still finite) recurrence
distances. The underlying mechanism is the dynamical sep-
aratrix crossing from unshifted to shifted orbits which takes
place, for any loss coefficient αcn � α < αc(n−1), at the closest
passage to the initial condition after n unshifted recurrences
are completed. Conversely, for αc(n+1) � α < αcn also the
(n + 1)st recurrence will be still unshifted and crossing occurs
at the (n + 2)nd recurrence. This is conveniently illustrated,
for α = αc4, by the phase-space projection in Fig. 1(c), where
four unshifted revolutions are clearly visible along with the
slowing down in the fourth passage close to the origin which
precedes the crossing. For better clarity, Figs. 1(e)–1(g) fur-
ther show examples of spatiotemporal evolutions obtained at
the critical values αc4 [same as in Fig. 1(c)] and αc2 and αc1,
showing indeed the appearance of the phase shift after n = 4
or n = 2, 1 recurrences, respectively. It must be noticed also
that the growth and decay cycles do not proceed at constant
rate but slow down considerably when approaching the saddle
point (i.e., at the return to the initial condition). This effect
is strongly enhanced at the critical values αcn, which is such
that the evolution becomes locally iso-energetic (i.e., same
local Hamiltonian) to the saddle in its closest passage after n
unshifted orbits. This argument allows us to give, in the frame-
work of a generalized three-mode approximation [25,56,57],
the critical values αcn as the implicit solutions of the following
integral equation:

H0 = αcnω
2
0

2

∫ nzper

0
eαcnz η(z)dz, (3)

where H0 = η0(1 − η0) cos 2�φ0 + (1 − ω2
0/2)η0 − 3

4η2
0 is

the input three-wave Hamiltonian [25], and zper is the pe-
riod of the unperturbed unshifted orbit. Equation (3) gives a
quantitatively accurate estimate of the critical losses in the
context of the three-wave approach. This thus validates the
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FIG. 2. Simplified sketch of the experimental setup. f1 is the fre-
quency of the main laser and f2 of the phase-locked local oscillator,
detuned by f2 − f1 = 800 MHz. fm is the modulation frequency, set
here at 38.2 GHz. The 1450 nm Raman pump is injected through the
fiber end, and counterpropagates with respect to the main signal.

physical picture discussed above but shows discrepancy with
the values obtained from the NLSE. This is due to the fact
it underestimates the evolution period zper, which is a critical
parameter (see Appendix A).

An alternative, more accurate, estimate of the values αcn

can be obtained by exploiting the perturbation theory based on
the finite gap formulation of the inverse scattering transform
for the NLSE [44], which yields a particularly simple formula
(details in Appendix A),

αcn = p2e+e−
g

a2

n
, n = 1, 2, 3, . . . , (4)

where e+ (e−) are the growing (decaying) eigenvector
of MI [15,19], associated with the MI gain g = g(ω0) =
ω0(4p − ω2

0 )1/2. Equation (A15) turns out to be extremely
accurate in the limit of small sidebands [i.e., a = O(ε), ε � 1,
which gives α = O(ε2), see Appendix A] but gives a reason-
able approximation also for relatively large sidebands (5%).
This is depicted in Fig. 1(d) by the vertical dashed lines
corresponding to αc1 and αc2.

III. EXPERIMENT

A. Experimental setup

To demonstrate the existence of critical values of damping
around which FPUT recurrence is qualitatively affected by the
separatrix crossing phenomenon, we exploit a full fiber-optics
setup, similar to the one in Refs. [25,32,48,58,59]. This is
based on a nondestructive method based on heterodyne optical
time domain reflectometer (HOTDR) to resolve multiple re-
currences in both power and phase along the fiber [25,48], on
top of which we introduce an accurate control of the effective
damping.

A simplified sketch of the setup is presented in Fig. 2. A
continuous-wave laser emitting at λ = 1550 nm (cw laser 1)

is intensity modulated to generate a 50 ns square pulses
train (repetition rate of 4.9 kHz), which is short enough to
avoid stimulated Brillouin scattering and implement OTDR,
although long enough to contain a few thousand modulation
periods. The phase modulator then shapes the signal into a
triangular frequency comb whose laser line frequency spacing
is fm. Then, a Waveshaper, a programmable optical filter,
truncates this comb to three waves only, which are tuned in
amplitude and phase. Finally, an erbium doped fiber amplifier
increases the total power to 528 mW, to achieve the desired
nonlinear regime [pump power PP(z = 0) = 480 mW and
signal power PS (z = 0) = 24 mW per sideband]. These light
pulses then propagate into a 20.15-km-long SMF-28 optical
fiber with nonlinear coefficient γ = 1.3 W−1 km−1 and group
velocity dispersion β2 = −19 ps2 km−1. The pump to signal
frequency shift fm is set to 38.2 GHz, close to the perfect
phase matching frequency located at 41 GHz [46].

HOTDR is performed by exploiting a local oscillator (cw
laser 2), phase-locked with cw laser 1, and modulated to get
a frequency comb with the same line-to-line spacing fm but
detuned by 800 MHz. The power and phase distributions are
obtained by heterodyning between the Rayleigh backscattered
waves and the multitone local oscillator (see Refs. [25,48] for
details). In particular, each backscattered frequency compo-
nent beats with its own nearest local oscillator spectral line.
Two detection channels allow for the simultaneous recording
of power and relative phase evolutions of two waves (pump
and signal).

A key feature of the setup is the tailoring of the
effective loss. To this end, we implemented a counterprop-
agating Raman pump to actively control the damping by
tuning the Raman pump power. In Refs. [25,32,48,58,59],
we adjusted the Raman pump power to get an almost
fully transparent optical fiber. By neglecting the Raman
pump dissipation effect, a simplistic description of the loss
compensation process allows us to assume that the Raman
amplification term gRPopt

R is equal to the fiber loss α [46].
Hence, the optical signal experiences a vanishing effective
loss αeff � 0 dB/km during its propagation through the fiber.
The compensation is almost perfect because the Raman am-
plifier always operates in a linear regime because signals to
amplify are very short [60]. By varying the Raman pump
power from 0 mW to Popt

R , we have been able to tune the
effective loss αeff in a regime of extremely weak damping
ranging from the intrinsic fiber loss value (0.2 dB/km) to 0
dB/km, as illustrated in Fig. 3. For each value of Raman
pump, we determine the effective damping as follows. Weak
square pulses of 48 mW peak power are launched along the
fiber. The nonlinear length Znl being around 16 km, we can
assume that nonlinear effects are negligible. The HOTDR
system allows us to monitor their power evolution along the
fiber length. As the pulses are mainly affected by dissipa-
tion, they experience an exponential decay, as illustrated in
Fig. 3(a) with the Raman pump switched off. Note that, in
Fig. 3(a), the data cover twice the fiber length since we de-
tect the backscattered signal (the generic distance is traveled
forward and then backward before being detected). By fitting
the data with an exponential curve [dotted line in Fig. 3(a)],
we extrapolate an intrinsic damping coefficient αP � 0.2084
dB/km, in excellent agreement with the data-sheet value of
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FIG. 3. Power evolution of the backscattered signal, when the
Raman pump is (a) switched off, (b) optimized to get a nearly
perfect loss compensation. (c) Effective loss αeff versus Raman pump
power PR.

0.2 dB/km. The opposite limit that yields nearly perfect loss
compensation for PR = Popt

R = 270 mW is shown in Fig. 3(b),
which shows a quasiflat power profile. We repeat these mea-
surements for Raman pump powers in the range 0–300 mW,
with the upper value of 300 mW yielding slight overcompen-
sation (weak gain). The results are summarized in Fig. 3(c),
from which we conclude that a nearly linear control of the

loss coefficient can be achieved by tuning the Raman pump
power. We make use of the linear fit in Fig. 3(c) to calibrate
the effective damping in the successive experiments described
below.

B. Experimental results

We have designed the experimental setup in such a way
that several recurrences can be observed along the fiber length
in order to highlight the impact of weak effective fiber loss
on the FPUT process. We have measured the evolution along
the fiber of the signal (sideband) power and relative phase for
different values of effective loss, keeping the initial pump-
signal relative phase to ��(0) = 0 (unshifted orbits in the
lossless case). The results showing the signal power evolution
are summarized in Fig. 4(a). Around optimal compensation
(αeff = 0 achieved at PR � 270 mW), four nearly complete
recurrence cycles are observed (slightly less than achieved by
means of ultralow-loss fibers and stronger input sidebands in
Ref. [58]), each featuring a peak conversion followed by the
return to the initial condition. The corresponding phase evolu-
tion is depicted in Fig. 4(b) and shows nonlinear oscillations
around the vanishing (input) phase, which remain bounded in
the interval ±π/2. This is further clear from the projection of
the measured evolution in the phase-plane shown in Fig. 4(c)
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FIG. 4. Left-column panels: Experimental data showing false color plots of (a) signal power and (b) relative phase �φ = φP − φS in the
plane (αeff , Z ) of effective loss and fiber distance; (c)–(e) projections of the measured evolutions in the phase plane (μ cos(�φ), μ sin(�φ))
for values αeff (dB/km) = 0.007(c), 0.09(d ), 0.2(e) sampled in regions (1,2,3), respectively. μ stands for the signal power, normalized to
the maximum value. Right-column panels (f)–(j) report the numerical counterpart of results in panels (a)–(e), obtained from integration of
the damped NLSE [Eq. (1) with α = αeff ]; white dotted lines in (f) stand for estimates of αc1 and αc2 predicted by finite-gap perturbation
theory [44].
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for the sample value αeff = 7 × 10−3 dB/km. As shown the
trajectory remains bounded in the right semiplane entailing
repeated recurrences of the unshifted type.

As the damping increases, a primary observation from
Fig. 4(a) is that the first peak conversion (or maximum com-
pression in time) remains basically unchanged at 2.4 km in
the whole range of attenuations. This is in excellent agree-
ment with the numerical simulations performed by integrating
Eq. (1) and shown in Fig. 4(f), and also fully supported by
both perturbation approaches [dotted lines from Eq. (A15),
see details in Appendix A]. Indeed, the dissipation has no
significant effect on the FPUT process in the first kilome-
ters of the fiber. Conversely, an increasing attenuation has a
strong and nontrivial impact on successive (second, third, and
fourth) conversion peaks. Initially, at low enough αeff , all such
distances for peak conversion get longer when damping in-
creases. Clearly, higher-order recurrences experience a larger
rate of growth due to the accumulation of damping over longer
distances. Remarkably, however, looking in particular at the
third conversion peak, its characteristic distance grows only
up to a maximum, where it reaches nearly the fiber end. This
condition is reached at the critical value of effective damping
αeff,c2 = 0.063 dB/km corresponding to PR = 205 mW. In the
whole range αeff ∈ [0, 0.063] dB/km, denoted as region 3 in
Fig. 4(a), the first three recurrences are of the unshifted type
[i.e., similar to the case in Fig. 4(c)]. However, if we keep
on increasing αeff beyond αeff,c2 = 0.063 dB/km, we notice
an inverted trend where the distance of the third peak moder-
ately decreases with increasing losses, as shown in Fig. 4(a)
for the experiment and in Fig. 4(f) for the corresponding
numerics. Even more importantly, Fig. 4(b) shows that, for
αeff > αeff,c2, the third peak conversion is characterized by a
π shift of the relative phase. This indicates that, after two
complete unshifted recurrences, the third one becomes of
the shifted type. This is also consistently displayed by the
phase-plane projection of the experimental data reported in
Fig. 4(d) [see also Fig. 4(i) for the numerics], obtained for
αeff = 0.09 dB/km. In this case, after the second return close
to the origin which occurs around Z = 15 km, the dynamics
follows the double loop (shifted) trajectory, having crossed the
separatrix. Importantly, this type of evolution characterizes
the whole region 2 corresponding to αeff,c2 < αeff < αeff,c1.
Here, αeff,c1 = 0.176 dB/km (obtained at PR = 55 mW), is the
characteristic damping where also the second conversion peak
undergoes a symmetry breaking. Indeed, the second conver-
sion peak is not critically affected by the previous transition
occurring at αeff,c2, since its characteristic distance continues
to increase smoothly for growing αeff . However, across the
damping αeff = αeff,c1, this trend is clearly inverted (the dis-
tance starts to decrease for higher αeff above threshold αeff,c1),
while a characteristic shift of π appears in Figs. 4(b) and
4(g) above threshold. In this case, such transition is associated
with the fact that, for αeff > αeff,c1, the dynamics follows the
shifted (double-loop) orbits with broken symmetry, right after
the first return close to the origin (i.e., the first recurrence).
This is shown in Fig. 4(e) [numerics in Fig. 4(j)] for αeff = 0.2
dB/km. The net effect is that, in region 1 (αeff > αeff,c1) only
shifted recurrences can be followed, while repeated unshifted
recurrences become inaccessible.

FIG. 5. Evolution, along the fiber length of (a) the pump (blue
lines) and the signal (red lines) powers, (b) the relative phase.
(c) Phase-plane representation. (d) Numerical spatiotemporal evo-
lution of the power. Solid lines correspond to experimental data,
obtained with PR = 280 mW, while dashed lines correspond to nu-
merical simulations, with αeff = 0.007 dB/km (region 3).

Importantly, a good overall agreement is found between the
experiment and the numerics in Fig. 4, including the values of
the critical losses where αeff,c2 = 0.063 dB/km and αeff,c1 =
0.176 dB/km which compares with the numerical values
αc2 = 0.071 dB/km and αc1 = 0.142 dB/km. We point out
that the observation of critical transitions occurring at smaller
values of damping and increasing number of recurrences as
predicted from theory are prevented by the finite length of the
fiber. In turn, operating with longer fiber and fine tuning of
much smaller effective losses requires to improve the Raman
amplification scheme, which will be addressed in the future.

Further details of the evolutions in the three regimes illus-
trated in Fig. 4, are illustrated in Figs. 5–7, which explicitly
report power and phase evolutions (both measured in the
experiment and numerically simulated from the NLSE). In
particular, the results presented in Fig. 5 are performed with
a quasiperfect compensation of the losses, with αeff = 0.007
dB/km (region 3). The pump and signal power evolutions
(blue and red solid lines, respectively) exhibit four sideband
peak appearance (slightly less than four recurrences). Impor-
tantly, in all the FPUT periods, the experimental relative phase
remains bounded (solid green line) in the range [−π

2 ; π
2 ] thus

FIG. 6. Same as in Fig. 5. Experimental data are obtained
with PR = 170 mW, numerical simulations with αeff = 0.09 dB/km
(region 2).
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FIG. 7. Same as in Fig. 5. Experimental data are obtained
with PR = 20 mW, numerical simulations with αeff = 0.2 dB/km
(region 1).

yielding a phase-plane trajectory confined in the right semi-
plane. This means that all the recurrences are in phase (the
high power pulses appears each time at the same location), as
also illustrated by the numerical spatiotemporal evolution of
the power in Fig. 5(d).

The results presented in Fig. 6 are relative to αeff = 0.09
dB/km in region 2, obtained with PR = 170 mW. In this
case after two peak appearances for which the phase shows
bounded oscillations, the third peak appearance is character-
ized by a phase that increases beyond π/2, reaches π , and
continues to increase monotonically. This denotes that the
separatrix has been crossed leading to a shifted orbit (when
the phase is π ), as also seen from the third high power pulses
train π shift in the spatiotemporal evolution of the power.

Finally, the results presented in Fig. 7 show the case of a
relatively high effective losses, namely αeff = 0.2 dB/km in
region 1. In this case, separatrix crossing occurs right after the
first FPUT cycle, since the second peak appearance is already
phase shifted.

IV. CONCLUSIONS

In summary, the accurate control of the effective fiber
losses performed through Raman amplification techniques has
allowed us to demonstrate that the FPUT recurrence due to
MI is strongly affected by damping. The main signature is the
strong sensitivity of the recurrence periods around critical loss
values where separatrix crossing is found to take place. On
one hand, this requires to investigate how this phenomenon
affects the transition to the thermalized state where FPUT
recurrences break down. On the other hand, our findings can
be extended to other models, either integrable [51,61,62] or
strongly nonintegrable [50,52,63], which present separatrices
and an underlying geometric structure of nonlinear MI. Fi-
nally, we also point out that similar phenomena of separatrix
crossing (though, with inverted role of shifted-unshifted or-
bits) are envisaged when gain replaces losses [44], which will
be addressed in future experiments.
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APPENDIX A: PREDICTION OF THE CRITICAL
DAMPING COEFFICIENTS

The aim of this section is to show the details of the deriva-
tion of the values of the critical damping following either a
reduced three-wave mixing (3WM) approach or the finite-gap
perturbation theory.

1. The reduced three-wave mixing dynamics

Despite the dissipative nature of the problem, the 3WM
approach can lead to a Hamiltonian formulation, although—
importantly—of the nonautonomous type. To this end, we find
convenient to start from the NLSE in dimensional units

i
∂U

∂Z
− β2

2

∂2U

∂T 2
+ γ |U |2U = −i

αP

2
U . (A1)

We consider for the field U = U (Z, T ) the following three-
wave ansatz (for sake of simplicity, with symmetric side-
bands):

U = √
P0

[
a0(Z ) + a1(Z )√

2
(ei�T + e−i�T )

]
e− αP

2 Z , (A2)

where P0 is the input power, a0(Z ) and a1(Z ) are the complex
amplitudes of the pump and sidebands, respectively. Since
the last real exponential accounts explicitly for the damping,
a0,1(Z ) are undamped variables, which satisfy power con-
servation |a0|2 + |a1|2 = 1 at any distance Z . By inserting
Eq. (A2) into Eq. (A1), we find, neglecting generation of
higher-order sideband pairs at ±m�, m � 2, the following
coupled equations:

−i
∂a0

∂Z
= γ̂

[
(|a0|2 + 2|a1|2)a0 + a2

1a∗
0

]
, (A3)

−i
∂a1

∂Z
= dka1 + γ̂

[(
3

2
|a1|2 + 2|a0|2

)
a1 + a2

0a∗
1

]
, (A4)

where dk = β2
�2

2 is the dispersive mismatch, γ̂ ≡ γ̂ (Z ) =
γ P0 exp(−αPZ ) = Z−1

nl exp(−αPZ ) is an effective damped (z
dependent) nonlinear coefficient, and Znl = (γ P0)−1 stands
for the characteristic nonlinear length associated with input
power P0.

By transforming from variables a0,1(z), to the pair
of Hamiltonian conjugated variables η(z̄) = |a1(z̄)|2 = 1 −
|a0(z̄)|2 and �φ(z̄) = Arg[a1(z̄)] − Arg[a0(z̄)], and introduc-
ing the normalized effective distance z̄ = [1 − exp(−αz)]/α,
where z ≡ Z/Znl and α ≡ αPZnl , we cast Eqs. (A3) and (A4)
in the following Hamiltonian form:

dη

dz̄
= ∂H

∂�φ
,

d�φ

dz̄
= −∂H

∂η
, (A5)

H = η(1 − η) cos 2φ +
[

1 − ω2(z̄)

2

]
η − 3

4
η2. (A6)

Equations are of the same form of the unperturbed (α = 0)
3WM system [25,56,64], with the fundamental difference that
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the system becomes nonautonomous, due to the fact that now
the Hamiltonian (energy) H = H (η, φ, z̄) turns out to depend
on the distance through the single dimensionless parameter
ω2(z̄) = ω2

0/(1 − αz̄). Here the input parameter ω(z̄ = 0) =
ω0 = �

√|β2|Znl is nothing but the normalized modulation
frequency which fully characterizes the unperturbed (un-
damped) evolutions along with the initial condition in terms
of sidebands fraction and overall phase [25]. Importantly,
in the presence of damping, the frequency parameter ω(z̄)
increases exponentially upon propagation because the total
power (at denominator) is exponentially damped. Further-
more, by taking the total derivative of Eq. (A6) and exploiting
the Hamiltonian constraint ∂H

∂η

dη

dz̄ + ∂H
∂�φ

d�φ

dz̄ = 0, we obtain
the equation that rules the variation of the Hamiltonian along
the motion in the form

dH

dz̄
= ∂H

∂ z̄
= −α

2

ω2
0

(1 − αz̄)2 η(z̄). (A7)

Equation (A7) can be more conveniently rewritten by return-
ing to the evolution variable z = α−1 ln(1 − αz̄)−1, obtaining

dH

dz
= −α

2
ω2(z) η(z), ω2(z) ≡ ω2

0eαz. (A8)

The integration of Eq. (A8) between z = 0 and z = nzper (n pe-
riods) of the unshifted orbit, with corresponding values of the
Hamiltonian H0 ≡ H (η0, φ0 = 0, z = 0) and Hn ≡ H (nzper),
respectively, yields

Hn − H0 = −αω2
0

2

∫ nzper

0
eαz η(z)dz, (A9)

where the right-hand side (RHS) gives the variation of the

Hamiltonian �H (α) ≡ −αω2
0

2

∫ nzper

0 eαz η(z)dz, which can be
considered a function of α for fixed initial condition and
choice of ω0. The nth critical value of the attenuation α can
be estimated by assuming that the evolution is such that,
after n complete unshifted orbits, the point arrives, in the
phase plane (η cos φ, η sin φ), to its closest approach to the
saddle point (i.e., the origin, which represents the MI-unstable
pump) with the same energy pertaining to the saddle, i.e.,
Hn = Hsaddle ≡ H (η = 0) = 0. Using Eq. (A9) with Hn = 0,
the critical attenuations satisfy Eq. (3) of the paper, which we
repeat here in implicit form

−H0 = �H (αcn). (A10)

To verify Eq. (A10), we have reported in Fig. 8(a) the vari-
ation of the Hamiltonian �H (α) [RHS in Eq. (A9)] vs α for
n = 1, 2, 3, 4, 5. The integral is calculated by using the unper-
turbed values (α = 0) of zper and η(z), due to smallness of α.
The crossing values with the constant −H0, gives the critical
values α = αcn, marked by vertical dashed lines in Fig. 8(a).
They turn out to be in very good agreement with the values
obtained from numerical integration of the damped three-
wave equations [Eqs. (A3) and (A4)], reported in Fig. 8(b).
Therefore, this simple approach gives a clear insight on the
physical mechanism of FPUT separatrix crossing which is
behind the existence of the multiple critical losses. From the
quantitative point of view, however, the critical values αcn

from Eq. (A10) are found to overestimate those arising from
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FIG. 8. (a) Variation of the Hamiltonian �H (α) vs attenuation α,
for n = 1, 2, 3, 4, 5 passages in the unshifted orbit. Vertical dashed
lines mark the critical damping values α = αcn, given by crossing of
�H (α) with −H0 (red horizontal line). (b) False color plot of side-
bands power fraction η(z) vs α obtained from numerical integration
of Eqs. (A3) and (A4). Here ω = √

2 and η0 = 0.05, as in Fig. 1 of
the paper.

the NLSE, due to the fact that the three-wave approximation
overestimates the period zper of the recurrence.

2. Perturbative finite-gap approach

Based on a different approach, the impact of losses can
be assessed by means of a perturbation theory, developed by
Coppini et al. in Ref. [44], based on the inverse scattering
method for the NLSE with periodic boundary conditions, gen-
erally known as finite-gap theory of the NLSE. A convenient
form of the initial condition is, in this case,

ψ0 = √
p{1 + ε[c1 exp (iωt ) + c−1 exp (−iωt )]}, (A11)

where the perturbation theory requires small sidebands, i.e.,
ε � 1 (|c±| = O(1) accounts for details of the input pertur-
bation, i.e., sideband relative phase and possible imbalance),
as well as weak attenuation α � 1. Without loss of gener-
ality, Eq. (A11) becomes identical to the initial condition
used in the paper [Eq. (2)] by posing ε ≡ a and c1 = c−1 =
exp(−iφ0)/

√
2.

Under the hypothesis of sufficiently small sidebands and
losses, one can derive, despite the complexity of the problem,
the following remarkably simple leading-order expression for
the distance zm, m = 1, 2, 3, . . ., at which the mth peak ampli-
fication occurs in the recurrent pattern [44]

zm = z0 +
m−1∑
n>0

2

g
ln

(
g4

4p4ε2| fn(α)|
)

, (A12)

z0 = 2

g
ln

(
g2

2p2ε|e+|
)

, (A13)

fn(α) = e+e− − n
α

ε2 p2
g, (A14)
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where g = g(ω0) = ω0(4p − ω2
0 )1/2 is the MI gain, and e± =

exp(∓iφω )c∗
±1 − exp(±iφω )c∓1 stand for the growing and de-

caying eigenvectors of the linearized stage of MI [15,19],
and φω = cos−1(ω/2

√
p). In Eqs. (A12)–(A14), z0 stands for

the distance of the first peak amplification (i.e., with m = 1,
z1 ≡ z0), which coincides with the unperturbed expression
obtained with α = 0 [15,19], due to the assumption of small
attenuation (in other words, for small α, damping has negligi-
ble effect over the short distance z0). Conversely, in Eq. (A12),
the nth term of the sum represents the distance �zn between
the (n + 1)st and the nth peak amplifications that emerge upon
evolution. In the unperturbed limit α → 0, �zn is constant
between successive peaks and represents the period of the
FPUT recurrence and depends logarithmically on the side-
bands through the term ε2| fn| = ε2|e+e−|, consistently with
Refs. [15,19,26,65]. Conversely, when α �= 0, due to the addi-
tional loss-dependent term on the RHS of Eq. (A14), �zn is no
longer constant but rather becomes a nonmonotone function
of α. As a result, the distances for peak amplification after
the first, zm (m = 2, 3, 4, . . .), as obtained from Eqs. (A12)–
(A14), show a marked dependence on the damping coefficient,
in qualitative agreement with Fig. 8.

In the framework of this approach, the critical values of
attenuation α = αcn are given by the zeros of fn(α) and hence
read explicitly as

αcn = p2e+e−
g

a2

n
, n = 1, 2, 3, . . . . (A15)

Clearly, for α = αcn, �zn → ∞ instead of becoming very
large (compared with the unperturbed value) but finite as
shown in Fig. 1 of the paper. Yet, Eq. (A15) constitutes a
remarkably accurate estimate of the critical losses αcn for
sufficiently weak sidebands, as shown in Fig. 9(a), where we
compare, for η0 = 10−3, the results obtained from numerical
integration of the NLSE with the estimate from Eq. (A15)
reported as vertical dashed lines. However, as the sideband
amplitude grows larger, the losses in Eq. (A15) are found to
overestimate the actual critical losses, as shown in Fig. 9(b)
for η0 = 0.1, where the relative error turns to be around
≈15%–19%.

APPENDIX B: COMPARISON
WITH A DAMPED PENDULUM

The aim of this Appendix is to show that, in spite of
the infinite-dimensional nature of the problem, nonlinear MI
behaves essentially like the most common of the nonlinear
oscillators, namely, the simple pendulum, although with op-
posite reaction to the effect of damping. To show this, let
us start from the motion of a standard rigid pendulum in
the presence of damping, which is ruled by the following
Newtonian equation for the angle θ = θ (t ) (with respect to
the stable equilibrium position) [66]

θ̈ + α

2
θ̇ + ω2

0 sin θ = 0, (B1)

where ω0 = √
mgh/J is the frequency of the undamped small

oscillations, J is the moment of inertia (J = mh2 for a sim-
ple pendulum of mass m held at distance h from center
of rotation), and α is the normalized energy damping rate

FIG. 9. False color plot of sideband power fraction η(z) vs α aris-
ing from numerical integration of the NLSE. The critical values of
attenuation αcn, which correspond to the maximal distances between
successive peaks of η(z) are compared with the predictions from
Eq. (A15), reported as vertical dashed white lines. Here ω = √

2
and the initial sideband power fraction is (a) η0 = 10−3 (top), (b)
η0 = 0.1 (bottom).

due to friction. When α = 0, Eq. (B1) gives a Hamiltonian
system for conjugated variables θ (t ) and angular veloc-
ity p(t ) ≡ θ̇ (t ), with Hamiltonian (conserved energy) Hp =
p2/2 − ω2

0 cos θ . The level curves of Hp in the plane (θ, p), re-
ported in Fig. 10(b), give the classical phase-plane portrait of
the pendulum. We compare such portrait with the phase-plane
picture of nonlinear MI shown in Fig. 10(a), which follows
from the truncated Hamiltonian H in Eq. (A6) with α = 0
(i.e., constant ω = ω0). To make the comparison easier, we
report the latter in the plane (φ, η), where the saddle points
in the origin in Fig. 1(a) maps into the saddles �φ = ±π/4,
which represent the stable and unstable manifolds of the pump
eigenmode ηs = 0 (at peak gain frequency ω0 = √

2).
The comparison of Fig. 10(a) with Fig. 10(b) clearly show

that, in both cases, inner domains (with respect to the separa-
trices, solid black lines) exist, which describe bounded motion
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FIG. 10. Comparison between the damped 3WM [left panels
(a), (c), (e)] and a damped pendulum [right panels (b), (d), (f)].
Unperturbed phase-plane pictures with black solid line standing for
the separatrix [(a) ω0 = √

2, (b) ω0 = 1]. (c), (d) Projection of the
perturbed (by small damping) trajectories (black solid lines) on the
relative phase-plane (level curves are unperturbed). Corresponding
separatrix-crossing evolutions in terms of variables (e) η(z), φ(z) for
MI, and (f) θ , θ̇ for the pendulum. Plot of MI trajectories in panels
(c) and (e) are obtained with ω0 = √

2, α = 4 × 10−3, and initially
bounded or unshifted orbit (initial condition η0 = 0.01, �φ0 = 0),
while for the pendulum α = 6.2 × 10−4, ω0 = 1 and the orbit is
initially unbounded (rotating pendulum, θ0 = −π , p0 = θ̇0 = 0.1).

(in angle θ for the pendulum, or phase �φ for MI). They
are separated from outer domains where θ or �φ are instead

unbounded or free-running. The inner orbits correspond to
unshifted evolution of MI and librations of the pendulum,
whereas the outer orbits give shifted evolution of MI and
pendulum rotations. Notwithstanding the similarity between
librations and unshifted orbits on one hand, and rotations
and shifted orbits on the other hand, we emphasize, how-
ever, that the energetic behavior is opposite for MI and the
pendulum. Indeed, as the color bars in Figs. 10(a) and 10(b)
indicate, rotations are more energetic (or more nonlinear, so
to say) than librations, whereas unshifted orbits are more
energetic (nonlinear) than the shifted ones. In turn, this also
determines an opposite reaction to the damping. Indeed the
losses always induce the energy (Hamiltonian) to decrease.
As a consequence, in the pendulum, damping can only in-
duce initial rotations to crossover into librations, but not vice
versa. An example where the pendulum switches to librations
after two complete rotations is shown in Figs. 10(d) and
10(f). In particular, Fig. 10(d) displays the phase-plane pro-
jection of the motion, whereas Fig. 10(f) shows the temporal
evolutions of angle and velocity. Conversely, nonlinear MI un-
dergoes damping-induced separatrix-crossing from bounded
(unshifted) phase evolutions to unbounded (shifted) ones [see
example in Figs. 10(c) and 10(e)]. In particular, the evolution
of �φ(z) in Figs. 10(c) and 10(e) clearly marks the transition
from bounded to unbounded motion, in contrast with the evo-
lution of θ (t ) in Fig. 10(f) that exhibits the opposite transition.
Therefore, we conclude that FPUT in nonlinear MI in the
presence of damping exhibits a reversed behavior compared
with a damped pendulum.

Finally, we remark that, even for a simple pendulum, the
fine tuning of the damping is challenging, and we are not
aware of experimental results that demonstrate a controlled
separatrix crossing for such system.
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