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Theory of nonlinear whispering-gallery-mode dynamics in surface nanoscale
axial photonics microresonators
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We present a comprehensive model describing the Kerr nonlinear dynamics of an electric field in a cylindrical
microresonator with a small effective radius variation, known as a surface nanoscale axial photonics (SNAP)
device. The proposed system of equations for coupled azimuthal modes takes into account full azimuthal
dispersion as well as the impact of the radiation source on the microresonator parameters. The model comprises
coupling coefficients determined experimentally and appears to be a powerful tool for studying nonlinear effects,
including the generation of axial-azimuthal modes and optical frequency comb generation in SNAP devices. We
highlight the features of nonlinear dynamics that are specific to the SNAP platform and illustrate the power of
the proposed model with optimization of the coupling point of the light source, getting two-orders-of-magnitude
improvement for the nonlinear threshold.
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I. INTRODUCTION

Optical microresonators are currently pushing forward re-
search in photonics in many directions. Due to their small
mode volume and high quality factors, microresonators are
an excellent test bed for probing nonlinear and quantum op-
tics problems [1]. For instance, the optical frequency combs
(OFCs) generated in microcavities unlock spectroscopic de-
vices of exceptional precision [2]. Depending on the free
spectral range of the comb, different applications are pre-
ferred: While high-repetition-rate OFCs are appreciated in
optical communications and subterahertz generation, spec-
troscopy applications such as dual-comb spectroscopy may
benefit from lower-repetition-rate OFCs [3].

There is a microresonator platform possibly facilitating
low-repetition-rate comb generation that is called surface
nanoscale axial photonics (SNAP) [4]. The platform exploits
a cylindrical microresonator, frequently made of standard
optical fiber with removed plastic cladding, with introduced
small-scale radius variations (see Fig. 1). The variation of the
effective radius (the product of the cladding radius r and its
refractive index n) plays the role of an optical potential that
constrains whispering gallery modes (WGMs), splitting each
azimuthal mode with a certain number of azimuthal maxima
into a series of axial modes (with different numbers of ax-
ial nodes). The precise design of tiny variations reduces the
spectral distance between adjacent axial resonances down to
hundreds of megahertz [5], paving the way to a low-repetition
frequency comb, while the high accuracy of the modifications
may help in controlling the dispersion for efficient generation
of the OFCs [6]. Moreover, if the radius variation is large
enough, different series of axial modes overlap making an
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ultrawide low-repetition-rate OFC with hundreds of lines fea-
sible [7].

However, no nonlinear process has yet been observed in
such microresonators, as most experimental attempts have
concentrated on bottlelike resonators [8–10]. Those are sim-
ilar to SNAP cavities but have considerably larger radius
variations and thus lower mode volumes as well as a much
larger free spectral range for axial modes, and so they are not
suitable for low-repetition-rate OFCs. Thus special attention
should be paid to modeling nonlinear properties in SNAP
cavities to reveal the possible obstacles that may prevent the
observation of nonlinear processes.

At first glance, the solution is the well-established
paradigm of the generalized Lugiato-Lefever (LL) equa-
tion [11], which was successfully implemented for bottlelike
resonators [8,12,13]. Though the SNAP cavities imply small
radius variations such that a coupling element, launching light
into the cavity, may noticeably disturb the optical potential
[14], the LL-based models presented earlier are not applica-
ble.

Indeed, in most realized SNAP cavities, the tapered optical
fiber is used as a coupling element, and it is put in direct
physical contact with the microresonator. As a result, two no-
ticeable effects arise [15]. The first is that the taper introduces
a considerable variation in the effective radius that leads to a
shift of the resonant frequencies of the axial modes. In this
case, the shift depends on the position of the taper z0 along
the microresonator axis z; so each axial mode experiences
different detuning because of the taper. This brings additional
dispersion having an impact on the nonlinear dynamics.

The second experimentally observed effect brought by
the taper is the introduction of additional scattering losses
that are not related to the escape of radiation into the taper
[15,16]. The different axial modes experience different addi-
tional losses because of the taper and thus must have different
decay times, which also complicates the nonlinear dynamics.
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Since the taper has a strong influence on the nonlinear
mode generation, it is extremely important to include these
effects in the model.

The impact of the taper has been accounted for in the model
based on the stationary Schrödinger equation describing axial
mode distribution [14]. The model is useful for designing
the necessary effective radius variations. In Refs. [6,17] this
model was dynamically extended to describe the evolution
of a single azimuthal mode, as well as for two azimuthal
modes [18]. However, this extension does not account for an
arbitrary number of azimuthal modes. Moreover, uncertainty
in the normalization of the wave functions of axial modes in
Ref. [14] does not allow one to find the exact relationship be-
tween the coupling parameters and experimentally measured
values in the dynamical model. Therefore this model is hardly
applicable to determine the real threshold values of the power
of nonlinear generation.

In our recent work [19] we presented a mathematical model
of nonlinear dynamics of axial-azimuthal modes in a mi-
croresonator coupled to a source. However, this model does
not comprise the real experimental parameters either, thus not
allowing us to judge the feasibility of the optical frequency
comb in the experiment. Thus none of the existing models
makes it possible to describe the nonlinear interaction of axial-
azimuthal modes in SNAP at a quantitative level.

In this paper, we present a system of equations derived
from first principles that is a complete, generalized model for
describing the SNAP system. The dynamical model includes
the nonlinear interaction of azimuthal modes, the total disper-
sion of axial-azimuthal modes (including material dispersion),
and the influence of the radiation source on the propagation
of modes in the microcavity. Using the proposed model, we
expose the importance of the impact of the coupling element
on the nonlinear threshold and demonstrate that large axial
extension of SNAP modes allows optimization of a coupling
point, reducing the threshold from a hundred watts to ex-
perimentally achievable values of the order of hundreds of
milliwatts.

II. MATHEMATICAL MODEL

A. System of nonlinear equations for the dynamics
of azimuthal modes

To derive the model, we start with Maxwell’s equations and
obtain the wave equation under the condition of propagation
of radiation in homogeneous isotropic dielectric matter. We
neglect ( �∇ �E ) due to the smallness of the nonlinearity and con-
sider only a linear polarization [either a transverse magnetic
(TM) or a transverse electric (TE) mode]:

�E (�r, ω) + n(ω)2 ω2

c2
E (�r, ω)

= −μ0ω
2(PNL(�r, ω) + Pp(�r, ω)). (1)

For SNAP cavities, small effective radius variations �reff

are supposed; so �reff � r0eff , where r0eff is the undisturbed
effective radius of the cylinder. In this approximation, the
electric field either in the time or frequency domain is rep-
resented as an expansion into the series of azimuthal modes

of an infinite cylindrical resonator:

E (�r, t ) =
∑

m

Am(z, t ) exp (iωmt )em(r, ϕ) + c.c.,

E (�r, ω) =
∑

m

Am(z,�ωm)em(r, ϕ) + c.c. (2)

Here, Am(z, t ) is the slowly varying amplitude of the az-
imuthal mode containing information about the dynamic of
axial modes along the z axis, �ωm = ω − ωm, and ωm is
the resonance frequency of the azimuthal mode. em(r, ϕ) is
the spatial transverse field distribution of an azimuthal mode
with azimuthal number m with max |em(r, ϕ)| = 1. A detailed
description of the modes of an infinite cylindrical microres-
onator is given in Appendix A.

Starting with Eq. (1), we sequentially derive a linear
stationary equation for WGMs, then take into account the
radiation source, and then take into account Kerr nonlinear
terms. The detailed derivation of the dynamic model can be
found in Appendix B. As a result, we have obtained a system
of nonlinear dynamic equations of azimuthal modes coupled
through the Kerr nonlinearity:

i
∂Am

∂t
− ωm

2k2
mKm

∂2Am

∂z2
− ωm

Km

�reff (z)

r0eff

Am + i�Am

− 3ωmχ (3)

Km2n2
mSm

Fm( �A) + Dm fp(z)Am

=
√

Pin

ε0n2
mSm

Cm fp(z)ei(ωp−ωm )t , (3)

where the nonlinear term Fm( �A) is determined by Eq. (C4).
Here, km = ωmn(ωm )

c , Km = 1 + ωm
nm

∂n
∂ω

(ωm) is the coefficient
of material dispersion, nm = n(ωm) is the refractive index,
Sm = ∫ |em(r, ϕ)|2d2r is the effective mode cross section, χ (3)

is the nonlinear susceptibility, � is the internal losses of the
microresonator, Pin is the pump power, and ωp is the pump
frequency.

Here, fp(z) is the normalized spatial distribution of the
source radiation [

∫
fp(z)dz = 1], which for the case of the

thin taper with a waist of a few micrometers can be considered
as delta shaped: δ(z − z0), where z0 is an axial coordinate of
the contact between the taper and the cavity.

Coupling parameters Cm and Dm are defined as

Cm = χω2
p

Km2ωmnm

√
ε0

PinSm

∫
Ep(r, ϕ)e∗

md2r,

Dm = − ωm

Kmr0eff

∫
�rt (r, ϕ)e∗

md2r (4)

determined by the overlap integral of the guided mode of a ta-
per and transverse distribution of the whispering gallery mode
at the cross section of the cylinder. Cm contains information
about the pump power and coupling strength. The real part of
Dm leads to an additional effective radius variation, and the
imaginary part contributes to the losses experienced by the
mode owing to the taper. Importantly, the parameters Cm and
Dm are not dependent on the position of the coupling element
z0. Note that coefficients Cm and Dm have different dimensions
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compared with those introduced in the earlier version of the
stationary model based on the Schrödinger equation [14,15].

The system of equations (3) is a complete model that
describes the dynamics of interacting modes in a cylindri-
cal microcavity coupled to an exciting element. To use the
model, coupling parameters Dm and Cm should be specified.
Calculating the integrals in Eqs. (4) in the general case might
be meaningless, as the mode distribution within a coupling
element usually is not controlled precisely. Therefore it is
necessary to relate Dm and Cm with quantities determined in
the experiment, which will be done in the next section.

B. Determining the coupling parameters Cm and Dm

To link Cm and Dm with observables, one may deduce
the transmission spectrum T (λ) of the microresonator-taper
system, which is an experimentally measurable function, from
the system (3). For this, one can reduce the model (3) to the
simple equation for coupling between the guided mode of the
taper and a particular whispering gallery mode [20,21]. Note
that the taper is assumed to be a single mode. Within this
coupled-mode theory, the transmission spectrum T (λ, δ0, δc)
is defined, giving a way to gather the coupling strength co-
efficient δc and the losses δ0 experienced by the whispering
gallery mode in an experiment (see Appendix D).

Since measurements of the transmission spectrum are per-
formed at low powers, shrinking (3) to the form of Eq. (D1)
may be done for the linear case. If a single azimuthal-axial
mode with the azimuthal number m and axial number q is
excited, the amplitude is represented in the form Am(z, t ) =
am(t )ei(ωp−ωm )t Zq(z) with normalization max Zq(z) = 1, and
the dynamical equation is reduced to

i
∂am

∂t
Zq − (ωp − ωm)amZq − ωm

2k2
mKm

∂2Zq

∂z2
am

− ωm

Km

�reff (z)

r0eff

amZq + i�Zqam + Dm fp(z)Zqam

=
√

Pin

ε0n2
mSm

Cm fp(z). (5)

Multiplying Eq. (5) by Zq(z) and integrating over z, one
gets

i
∂am

∂t
Lq − (ωp − ωm)Lqam + DmZ2

q (z0)am

−
∫ (

Zq
ωm

2k2
mKm

∂2Zq

∂z2
+ Zq

ωm

Km

�reff (z)

r0eff

Zq

)
dzam

+ i�Lqam =
√

Pin

ε0n2
mSm

CmZq(z0). (6)

Here, Lq = ∫
Z2

q (z)dz is the effective mode length.
The term with the integral can be represented as 〈q|Ĥ |q〉,

where Ĥ = ωm
2k2

mKm
( ∂2

∂z2 + 2k2
m

�reff (z)
r0eff

). According to the station-

ary Schrödinger equation (B6), this matrix element expresses
the energy of the mode with the number q:

〈q|Ĥ |q〉 = EqLq = (ωm − ωm,q )Lq. (7)

As the source detuning �ωm,q = ωp − ωm,q − � [� =
Re(Dm)Z2

q (z0)/Lq], we get

i
∂am

∂t
− �ωm,qam + i�am + i Im(Dm)Z2

q (z0)/Lqam

=
√

Pin

ε0n2
mSm

CmZq(z0)/Lq. (8)

Equaling each term in Eqs. (D1) and (8), we get the rela-
tionship between Cm and Dm and experimentally observable
δ0, δc, and �, which is the resonance frequency shift owing to
additional effective radius variations introduced by the taper:

Re(Dm) = �
Lq

Z2
q (z0)

,

Im(Dm) = (δ0 + δc − �)
Lq

Z2
q (z0)

, (9)

Cm = −i

(
δc

Lq

Z2
q (z0)

) 1
2

.

C. Measurement of coupling parameters: An example

As per Eqs. (9), to find Cm and Dm within the proposed
model, one should not only define δc and δ0 from a trans-
mission spectrum of a cavity-taper system, but also know the
mode intensity at the coupling point Z2

q (z0) and the effective
length Lq for the azimuthal-axial cavity mode under test. For-
tunately, it can be derived from measurements of δc and δ0 for
different excitation points z0. Indeed, from Eqs. (9) it follows
that

�(z0) = Re(Dm)
Z2

q (z0)

Lq
,

δc(z0) = |Cm|2 Z2
q (z0)

Lq
, (10)

δ0(z0) = ( Im(Dm) − |Cm|2)
Z2

q (z0)

Lq
+ �.

Interestingly, δ0 and δc depend on z0 and are proportional to
the axial mode spatial distribution Z2

q (z). Firstly, this relation
was revealed in Ref. [14] with the emphasis on transmission
spectrum properties. The experimental dependencies δc(z0)
and δ0(z0) for a mode q, derived from the transmission spec-
trum T (z0, λ) at different positions of the taper along the z
axis (see Appendix D) thus can be fitted to get Cm, Dm, and �.

We demonstrate the feasibility of the method, carrying out
measurements of coupling parameters for a 1-µm taper that
is in physical contact with a SNAP cavity based on a piece
of standard optical fiber (SMF-28) with r0 = 62.5 µm. To
localize modes along the z axis, we introduced a bell-shaped
effective radius variation �reff with local heating by a CO2

laser [4].
The measured spectrogram T (z0, λ) represents spatial dis-

tribution of the axial modes with numbers q = 0 · · · 3 (see
Fig. 2). The spectral resolution was not worse than 5 MHz.
The first consequence of Eqs. (10) is that the linewidth of
the resonance δ0 + δc is maximal at the mode antinodes. The
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FIG. 1. SNAP platform: a cylindrical microresonator with an
effective radius variation based on standard optical fiber coupled to
an input-output taper.

second is that the typical resonance width for a mode with a
lower number q is larger, as the effective mode length Lq is
smaller.

We chose the first axial mode with q = 0 [see Fig. 3(a)]
to determine the coupling parameters δc(z0) and δ0(z0). For
this mode, one can suppose a Gaussian function for the
axial distribution Z2

0 (z) and so decrements δc(z) = |Cm|2/
L0e−(z−a)2/w2

and δ0(z) = ( Im(Dm) − |Cm|2)/L0e−(z−a)2/w2 +
� [see Fig. 3(b)]. By fitting the two lines δc(z0) and δ0(z0)
jointly with Gaussian shapes, we determined coupling param-
eters Im(Dm) = (7.6 × 104) ± (1.7 × 103) m/s and |Cm|2 =
(2.1 × 104) ± (5.3 × 102) m/s. The upper bound for internal
losses is determined as � < 30 µs−1, defined by the resolution
of the optical spectral analyzer.

Defining Re(Dm) by fitting equations jointly (10) is
problematic because of the low absolute resolution of the
optical spectrum analyzer used. Nevertheless, one can esti-
mate the shift of the resonant frequency � = −�ωm/λm =
Re(Dm)Z2

0 (z0 = 0)/L0 [see Fig. 3(b)], finding Re(Dm) =
−9.7 × 104 m/s.

It should be noted that the dependence of the width and
shift of axial resonances and their connection with the cou-
pling parameters has already been studied in Ref. [14]. In
this paper, the coefficients D and |C|2 are presented, which,
in essence, are also coupling parameters determined by the

FIG. 2. The measured spectrogram T (z0, λ) of the SNAP cavity
with a bell-shaped effective radius variation.

FIG. 3. (a) The spectrogram of the SNAP system: the axial mode
with q = 0. (b) The approximation of the experimental decrements
δc and δ0.

overlap integral of the taper and resonator modes and thus
proportional to the parameters Dm and Cm defined in the
current model. However, the uncertainty in the normalization
of the wave functions of axial modes in Ref. [14] does not
allow using parameters D and |C|2 in the dynamical model or
determining the nonlinear thresholds.

The dependence of the linewidth δ = δc + δ0 and reso-
nance shift � on the taper position may drastically affect
the nonlinear mode dynamics. Indeed, in accordance with
Eqs. (10), for the given coupling point z0, different axial
modes experience different linewidth broadening and res-
onance shifts since the mode amplitudes differ [Zq1 (z0) �=
Zq2 (z0)], as do the effective lengths (Lq1 �= Lq2 ). Thus modes
with smaller effective lengths are highly disturbed, with the
resonance width being orders of magnitude larger than the
resonance width of well-extended modes. The uneven shift
of the resonant frequencies leads to additional axial mode
dispersion with alternating sign. Given the experimental ex-
ample under consideration with Re(Dm) = −9.7 × 104 m/s,
such an alternating dispersion may be of the order of dozens of
megahertz. Both these effects should significantly change the
nonlinear dynamics of axial modes compared with the results
presented in Ref. [13]. A detailed study of these dynamics will
be published elsewhere.

III. OPTIMIZING THE NONLINEAR THRESHOLD

Dependence of the decrements δ0 and δc on the contact
point z0 along the axis of the cylinder is a fundamental fea-
ture of SNAP microresonators that grants control over both
intrinsic and loaded quality factors (Q factors). In contrast,
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FIG. 4. Nonlinear threshold Pth
in approximated for different cou-

pling points z0 for different axial modes of the SNAP cavity under
study. The taper waist is assumed to be 2 µm.

ideal spherical microresonators have a symmetry that imposes
identical decrements for any contact point.

The control over quality factors, in turn, helps in achiev-
ing nonlinear generation. From a simple coupling model, the
power threshold for observing nonlinear effects may be de-
rived using the coupling decrements [22]:

Pth
in = 4ε0Kmn4

mV 2
m,q

3ωmχ (3)Vmm,qq

δ3

δc
. (11)

Here, Vmm,qq = Smmmm
∫

Z4
q (z)dz.

Thus, in SNAP microresonators, the nonlinear threshold
also depends on the coupling point z0 and might be optimized.
Taking into account the dependencies Pth

in ∼ (δ0(z0 )+δc (z0 ))3

δc (z0 ) and
Eqs. (10), we have found that the minimum threshold is
reached when coupling occurs at the point z0 defined by
Z2

q (z0) = �Lq

2 Im(Dm ) .
The optimized power threshold is then equal to

P(min)
in = 9ε0Kmn4

mV 2
m,q

ωmχ (3)Vmm,qq

�2 Im(Dm)

|Cm|2 . (12)

To illustrate the capabilities of the coupling optimization,
we determine the minimum power threshold for the axial
mode with q = 0 within the experimentally studied SNAP
cavity [see Fig. 3(a)]. While coupling at the maximum of
the mode distribution would require Pin = 61 W to obtain
the nonlinear threshold, the optimized coupling point yields
threshold power as low as P(min)

in = 396 mW. Nevertheless,
constraints may make it difficult to take advantage of such
a threshold. Indeed, the point z0 corresponding to the minimal
power P(min)

in is three mode widths away from the center of the
mode (see Fig. 4), thus yielding tiny, but still not equal, cou-
pling parameters δc and δ0. Thus the corresponding resonance
in the transmission spectrum might be hardly detectable with
a moderate-resolution spectrometer [according to (D2)]. With
this, the strong dependence of the threshold on z0 demands
sufficient accuracy of the z0 setting.

Generally, for each axial mode with an axial number q
there are 2(q + 1) points along z in which the threshold power
Pth

in (z0) achieves the local minimum. In the approximation∫
Z2

q (z) fp(z)dz = Z2
q (z0) all minima are equal and are defined

by Eq. (12). In a real system, the taper has a finite size, and

the threshold value (12) must be derived more accurately,
giving minima at the points where the axial mode distribution
function changes slowly. In other words, the minimum will
be reached at the edges of the mode distributions (see Fig. 4).
At other local minimum points, the threshold is higher since
the mode distribution function changes faster, and the overlap
integral with the source of the finite size is larger.

This is an unexpected result. As the taper introduces sig-
nificant additional losses, the undercoupling regime usually is
realized [15]. Therefore one can intuitively assume that the
minimum threshold will be reached at the maximum of the
mode distribution. However, accounting for the dependence
of the losses on the taper position z0 shows the assumption to
be wrong: The lowest nonlinear threshold is reached just in
the opposite situation, when the taper is put in contact with
the cavity at the very edge of the mode.

IV. CONCLUSION

We present a complete, generalized model describing light
evolution in Kerr nonlinear cylindrical microresonators with
slight radius variations disturbed by a coupling element.
The model comprises nonlinear Kerr interactions between
axial-azimuthal modes and takes into account disturbances
introduced by the coupling element, which may drastically
change the light dynamics. We also propose a method to
experimentally determine the coupling parameters. It is shown
that the coupling element may introduce determinant losses
to a mode, as well as additional alternating axial dispersion,
and thus must be taken into account while analyzing nonlin-
ear threshold and dynamics in SNAP resonators. Within the
proposed model, we reveal possibilities for minimization of
the nonlinear Kerr threshold by choosing the proper position
of a thin taper exciting a mode. For a particular SNAP cavity
made of SMF-28 fiber with a mode length of 80 µm, optimiza-
tion decreases the threshold from 61 W down to 0.4 W. The
model may become a powerful tool for studying the nonlinear
interactions of azimuthal-axial modes in disturbed cylinders.
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APPENDIX A: MODES OF THE INFINITE CYLINDER

It is known that modes of an infinite cylinder with no radius
variations �r = 0 may have two different polarizations [24],
TE and TM. In the case of the TM mode, the electric field
vector has only one component, Ez. For the TE mode, we
neglect the component of the electric field Eϕ in the case of
m 
 1, since it is much smaller than component Er . Thus we
can assume that TE and TM modes have linear polarization
and (1) has the same form for the TE and TM modes. The
electric field can then be represented as

E (�r, ω) = R(
√

k2 − β2r)eimϕeiβz, (A1)

where k = ωn/c.
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We solve the following equation:

(�T + (k2 − β2))R(
√

k2 − β2r)eimϕ = 0. (A2)

In the case of β = 0, the solution of (A2) corresponds
to a distribution of the azimuthal-radial mode at the infinite
cylinder em,p(r, ϕ) ≡ R(km,pr)eimϕ , where R(km,pr) = Ai( −
(2/m)1/3(Tm,pr/ã − m)), Ai(x) is the Airy function, Tm,p is
the pth zero of the mth Bessel function, ã = r0 + P/γ , γ =√

n2 − 1ωm,p/c, P = 1 for TE modes, and P = 1/n2 for TM
modes [24].

Here, km,p = ωm,pn(ωm,p)/c, ωm,p is the frequency of the
azimuthal-radial mode of an ideal cylindrical microresonator
with no radius variations, and m and p are the azimuthal
and radial quantum numbers, respectively. ωm,p is determined
from the characteristic equation (A3) in Ref. [24]. It is note-
worthy that the expression for resonant frequencies ωm,p may
not only take into account the geometric mode dispersion as
in Ref. [24], but also comprise the material dispersion, if we
assume n ≡ n(ωm,p) and solve the implicit equation (A3).

In this paper, we analyze only one radial mode and omit
the index p for simplicity. Generally, the proposed model can
be easily extended to take into account other radial modes.

APPENDIX B: DERIVATION OF A SYSTEM OF
NONLINEAR EQUATIONS FOR THE DYNAMICS

OF AZIMUTHAL MODES

1. Stationary model for a single azimuthal mode

At the first stage, we take into account a radius variation
and find the stationary equation for a single azimuthal-radial
mode represented in the following form:

E (�r) = Am(z, ω)R(
√

k2 − β2r)eimϕ. (B1)

The expansion (B1) is valid for small radius variations
�r(z): �r(z) � r0, where r0 is an undisturbed radius of the
cylinder. We substituted the expression for the field into (1)
in the linear regime and divided the equation into axial and
transverse parts:

(�T + (k2 − β2))R(
√

k2 − β2r)eimϕAm(z, ω)

+
(

∂2

∂z2
+ β2

)
Am(z, ω)R(

√
k2 − β2r)eimϕ = 0. (B2)

In the first-order approximation for the amplitude Am(z),
in the presence of an effective radius variation for m 
 1
the wave vector has a small component β directed along
the axis z, such that β � km. In this case, we can assume
that the characteristic equation for frequencies changed up to
replacement

√
k2 − β2 → km and β can be found from the

following expression [4]:

ωmn(ωm)r0

c
= (r0 + �r(z))

√
ω2n(ω)2

c2
− β2. (B3)

We expand ω2n2(ω) near ωm and r0 to the first order, taking
into account the dependence of the refractive index n(ω) ≡
n(ω, r(z)) on the coordinate resulting from the introduction

of a radius variation:

β2 = 2k2
m

(
�r(z)

r0
+ �n(z)

nm
+ Km

�ωm

ωm

)
. (B4)

Here, �r(z) and �n(z) determine the effective radius varia-
tion.

In this case, the transverse part in Eq. (B2) is equal to the
zero, according to Eq. (A2), and we receive the equation for a
slowly varying amplitude of the azimuthal mode:

∂2Am(z, ω)

∂z2
+ β2Am(z, ω) = 0. (B5)

Then, we substitute β in Eq. (B5) with (B4) and obtain the
Schrödinger equation describing the stationary distribution of
the axial-azimuthal modes and their resonance frequencies.

∂2Am(z, ω)

∂z2
+ Vm(z)Am(z, ω) = EmAm(z, ω). (B6)

Here, the potential is determined by the effective radius
variation Vm(z) = 2k2

m
�reff (z)

r0eff
, where �reff (z)

r0eff
= �r(z)

r0
+ �n(z)

nm
.

The resonant frequencies correspond to the energy levels in
the potential and are related as follows: Em = −2k2

m
�ωm
ωm

Km.
Equation (B6) is virtually the same as the equation ob-

tained in Ref. [4]. The difference in the current version of the
equation is that it takes into account the material dispersion
of azimuthal modes through the coefficient Km. Despite the
smallness of the correction Km − 1 � 1, it might be crucial
for considering the interactions between different azimuthal
modes, as it imposes additional azimuthal dispersion as well
as dissimilar axial free spectral ranges for different azimuthal
modes for the same �reff (z).

In order to take into account the internal losses in the mi-
croresonator medium, one can modify the energy definition as
follows: Em = −2k2

m
�ωm
ωm

Km + i� [14]. Here, losses � may in
principle depend on azimuthal or radial quantum numbers and
are defined by the intrinsic losses within the cylinder media as
well as by the surface quality.

2. Dynamical model with a source and nonlinearity

To generalize the approach presented in the previous sec-
tion to the case of an arbitrary number of azimuthal modes,
the field should be represented as (2). Substituting the field in
the form of (2) into Eq. (1), and taking into account Eqs. (A2)
and (B4), one obtains

∑
m

(
∂2

∂z2
+ 2k2

m

(
�reff (z) + �rt (�r)

r0eff

+ Km
�ωm

ωm

)
− i�

)

× Am(z, ω)em(r, ϕ)

= −χ (3)ω2

c2
E3(�r, ω) − χω2

c2
Ep(�r, ω). (B7)

We consider the Kerr nonlinearity PNL = ε0χ
(3)E3, as the

SNAP cavities are usually assumed to be on silica. The pump
field Ep(�r, t ) = Ep(�r)eiωpt , where ωp is the pump frequency.

Importantly, we here introduce an additional term �rt (�r)
to emphasize the additional effective radius variation that may
appear in the presence of a coupling element, for instance, a
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taper being in contact with the cavity [14,15]. Complex ef-
fective radius variation �rt (�r) = �r′

t (�r) − i�r′′
t (�r) accounts

both for the change in the structure of the microcavity eigen-
modes and for additional losses.

To proceed to the dynamic equation, we take the inverse
Fourier transform of (B7) and take out of the brackets the
coefficient 2k2

mKm/ωm.

∑
m

2ωmKmn2
m

(
i
∂

∂t
− ωm

2k2
mKm

∂2

∂z2
− ωm

Km

�reff (z)

r0eff

− ωm

Km

�rt (�r)

r0eff

+ i�

)
Am(z, t )em

= −e−iωmtχ (3) ∂
2E3

∂t2
+ ei(ωp−ωm )tχω2

pEp(�r). (B8)

Multiplying Eq. (B8) by e∗
m and integrating over the cross

section of the cylinder, implying that modes with different
azimuthal numbers are orthogonal, we obtain

i
∂Am

∂t
− ωm

2k2
mKm

∂2Am

∂z2
− ωm

Km

�reff (z)

r0eff

Am + i�Am

+ e−iωmt
χ (3)

∫
e∗

m

∂2E3

∂t2
d2r

Km2ωmn2
mSm

+ Dm fp(z)Am

=
√

Pin

ε0n2
mSm

Cm fp(z)ei(ωp−ωm )t . (B9)

Cm and Dm are the coupling parameters and are expressed as
(4).

Finally, with the simplification of the nonlinear term de-
scribed in Appendix C, Eq. (B8) is rewritten in the form (3).

APPENDIX C: NONLINEAR TERM Fm(�A)

To obtain a system of nonlinear equations from (B9), the
nonlinear integral

∫
e∗

m
∂2E3

∂t2 d2r should be rewritten.
For this, the term E3 may be expanded:

E3 =
∑
i, j,k

(ÃiÃ j Ãk + 3Ã∗
i Ã j Ãk + 3Ã∗

i Ã∗
j Ãk + Ã∗

i Ã∗
j Ã

∗
k ). (C1)

Here, Ãi = Aieiωit ei(r, ϕ).
Only a part of the terms constituting the sum will give a

nonzero contribution to the integral
∫

e∗
m

∂2E3

∂t2 d2r because of
oscillations in eimϕ :∫

em(r)ei(r)e j (r)ek (r)eiϕ(±i± j±k−m)d2r = 2πSmi jk, (C2)

where Smi jk = ∫
em(r)ei(r)e j (r)ek (r)rdr. The expression

(C2) is valid for the case ±i ± j ± k − m = 0.
It can be assumed that only terms with one conjugate

amplitude will remain from the entire sum, provided that the
number of azimuthal modes satisfies the condition m 
 1 and
also provided that the azimuthal modes have the same order
(in order to define the condition ±i ± j ± k − m = 0, only
one index can have a negative sign, in other words, i + j −
k − m = 0): E3 = 3

∑
i, j,k ÃiÃ j Ã∗

k . We select from this sum
all terms with Ãm, which corresponds to two cases:

FIG. 5. An example of a measured transmission spectrum with
the Fano profile approximation.

(1) For i = m, j = m, and k = m, we have 3|Ãm|2Ãm.
(2) For i = m and j �= m, we have 3

∑
j=k
j �=m

(ÃmÃ j Ã∗
k +

ÃmÃ∗
j Ãk )) = 6

∑
j �=m(|Ã j |2Ãm).

Thus we can rewrite the electric field in the form E3 =
3|Ãm|2Ãm + 6

∑
j �=m |Ã j |2Ãm + 3

∑
j �=m
k �=m

l

Ã j ÃkÃl . Substituting

the decomposition of E3 into the nonlinear integral in
Eq. (B9), we obtain∫

e∗
m

∂2E3

∂t2
d2r = −3ω2

mFm( �A), (C3)

where

Fi( �A) =
⎛
⎝Siiii|Ai|2 + 2

∑
j �=i

S j jii|Aj |2
⎞
⎠Ai

+ (ωi + �ωi jkl )2

ω2
i

∑
j �=i
k �=i

l

Si jkl A jAkA∗
l ei(�ωi jkl )t , (C4)

where �ωi jkl = −ωi + ω j + ωk − ωl and l = j + k − i.
We have neglected the first and second derivatives of the

amplitude Ai(z, t ), due to the smallness of χ (3).

APPENDIX D: SIMPLE COUPLED-MODE EQUATION

Within the simple coupling model [20,21], the equation for
a slowly varying mode amplitude in a linear regime with a
spatial distribution e(�r) in a microcavity, where the field is de-
fined as E = (a(t )e(�r)eiωpt + c.c.)/2, m is the mode number,
and ωp is the pump frequency [20], is as follows:

i
∂a(t )

∂t
− �ωa(t ) + (δ0 + δc)a(t ) = iF. (D1)

Here, F = √
4Pinδc/(ε0εVeff ), where Pin is the pump

power, Veff = ∫ |e(�r)|2d3r is the effective mode volume,
max em(�r) = 1, δc is the coupling strength coefficient, δ0 is
the losses experienced by the whispering gallery modes, and
�ω = ωp − ωres is the pump frequency detuning. The station-
ary solution of Eq. (D1) leads to the transmission spectrum
T of the microresonator-taper system, which is an experi-
mentally determined quantity, allowing us to determine the
parameters δc and δ0. Thus, in the case of a single-mode
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coupling element, the transmission spectrum is described by
the Fano resonance profile [14,25,26]:

|T |2 = |S0|2
∣∣∣∣∣eiϕ0 − 2δc

i�ω + (δ0 + δc)

∣∣∣∣∣
2

. (D2)

Here, S0 = |S0|eiϕ0 is the nonresonant transmission coeffi-
cient.

Figure 5 shows an example of such a transmission spec-
trum, measured for a particular axial-azimuthal mode in a
SNAP microresonator with approximation with (D2). Ap-
proximation of the transmission spectrum makes it possible
to determine the coupling parameters δ0 and δc, which contain
information about the overlap integrals of the radiation source
field with the resonator mode and can be expressed in terms
of the required parameters Dm and Cm.

[1] A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen,
M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P.
Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, Micro-
combs: A novel generation of optical sources, Phys. Rep. 729, 1
(2018).

[2] R. Niu, M. Li, S. Wan, Y. R. Sun, S.-m. Hu, C.-l. Zou, G.-c.
Guo, and C.-h. Dong, kHz-precision wavemeter based on re-
configurable microsoliton, Nat. Commun. 14, 169 (2023).

[3] Y. Sugiyama, T. Kashimura, K. Kashimoto, D. Akamatsu,
and F.-L. Hong, Precision dual-comb spectroscopy using
wavelength-converted frequency combs with low repetition
rates, Sci. Rep. 13, 2549 (2023).

[4] M. Sumetsky and J. M. Fini, Surface nanoscale axial photonics,
Opt. Express 19, 26470 (2011).

[5] D. Bochek, N. Toropov, I. Vatnik, D. Churkin, and M.
Sumetsky, SNAP microresonators introduced by strong bend-
ing of optical fibers, Opt. Lett. 44, 3218 (2019).

[6] S. V. Suchkov, M. Sumetsky, and A. A. Sukhorukov, Frequency
comb generation in SNAP bottle resonators, Opt. Lett. 42, 2149
(2017).

[7] V. Dvoyrin and M. Sumetsky, Bottle microresonator broadband
and low-repetition-rate frequency comb generator, Opt. Lett.
41, 5547 (2016).

[8] X. Jin, X. Xu, H. Gao, K. Wang, H. Xia, and L. Yu, Control-
lable two-dimensional Kerr and Raman-Kerr frequency combs
in microbottle resonators with selectable dispersion, Photonics
Res. 9, 171 (2021).

[9] M. Pöllinger and A. Rauschenbeutel, All-optical signal process-
ing at ultra-low powers in bottle microresonators using the Kerr
effect, Opt. Express 18, 17764 (2010).

[10] S. Zhu, B. Xiao, B. Jiang, L. Shi, and X. Zhang, Tunable
Brillouin and Raman microlasers using hybrid microbottle res-
onators, Nanophotonics 8, 931 (2019).

[11] L. Lugiato, F. Prati, M. Gorodetsky, and T. Kippenberg, From
the Lugiato–Lefever equation to microresonator-based soliton
Kerr frequency combs, Philos. Trans. R. Soc. A 376, 20180113
(2018).

[12] Y. V. Kartashov, M. L. Gorodetsky, A. Kudlinski, and
D. V. Skryabin, Two-dimensional nonlinear modes and fre-
quency combs in bottle microresonators, Opt. Lett. 43, 2680
(2018).

[13] I. Oreshnikov and D. V. Skryabin, Multiple nonlinear reso-
nances and frequency combs in bottle microresonators, Opt.
Express 25, 10306 (2017).

[14] M. Sumetsky, Theory of SNAP devices: basic equations and
comparison with the experiment, Opt. Express 20, 22537
(2012).

[15] D. L. P. Vitullo, S. Zaki, D. E. Jones, M. Sumetsky, and M.
Brodsky, Coupling between waveguides and microresonators:
the local approach, Opt. Express 28, 25908 (2020).

[16] X. Jin, Y. Dong, and K. Wang, Selective excitation of axial
modes in a high-Q microcylindrical resonator for controlled and
robust coupling, Appl. Opt. 54, 8100 (2015).

[17] M. Crespo-Ballesteros, A. B. Matsko, and M. Sumetsky, Op-
timized frequency comb spectrum of parametrically modulated
bottle microresonators, Commun. Phys. 6, 52 (2023).

[18] M. Crespo-Ballesteros and M. Sumetsky, Controlled Trans-
portation of Light by Light at the Microscale, Phys. Rev. Lett.
126, 153901 (2021).

[19] A. Y. Kolesnikova, S. V. Suchkov, and I. D. Vatnik, Frequency
comb generation in SNAP fiber resonator based on axial-
azimuthal mode interactions, Opt. Express 30, 10588 (2022).

[20] M. L. Gorodetsky and V. S. Ilchenko, Optical microsphere res-
onators: optimal coupling to high-Q whispering-gallery modes,
J. Opt. Soc. Am. B 16, 147 (1999).

[21] A. Yariv, Universal relations for coupling of optical power
between microresonators and dielectric waveguides, Electron.
Lett. 36, 321 (2000).

[22] T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang,
E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J.
Kippenberg, Universal dynamics of Kerr-frequency comb for-
mation in microresonators, Nat. Photonics 6, 480 (2012).

[23] https://rscf.ru/project/22-12-20015/.
[24] Y. A. Demchenko and M. L. Gorodetsky, Analytical estimates

of eigenfrequencies, dispersion, and field distribution in whis-
pering gallery resonators, J. Opt. Soc. Am. B 30, 3056 (2013).

[25] M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S.
Kivshar, Fano resonances in photonics, Nat. Photonics 11, 543
(2017).

[26] Y. Lu, X. Zhu, J. Li, Y. Nie, M. Li, and Y. Song, Tunable
oscillating Fano spectra in a fiber taper coupled conical mi-
croresonator, IEEE Photonics J. 11, 2200807 (2019).

033506-8

https://doi.org/10.1016/j.physrep.2017.08.004
https://doi.org/10.1038/s41467-022-35728-x
https://doi.org/10.1038/s41598-023-29734-2
https://doi.org/10.1364/OE.19.026470
https://doi.org/10.1364/OL.44.003218
https://doi.org/10.1364/OL.42.002149
https://doi.org/10.1364/OL.41.005547
https://doi.org/10.1364/PRJ.408492
https://doi.org/10.1364/OE.18.017764
https://doi.org/10.1515/nanoph-2019-0070
https://doi.org/10.1098/rsta.2018.0113
https://doi.org/10.1364/OL.43.002680
https://doi.org/10.1364/OE.25.010306
https://doi.org/10.1364/OE.20.022537
https://doi.org/10.1364/OE.399978
https://doi.org/10.1364/AO.54.008100
https://doi.org/10.1038/s42005-023-01168-2
https://doi.org/10.1103/PhysRevLett.126.153901
https://doi.org/10.1364/OE.450298
https://doi.org/10.1364/JOSAB.16.000147
https://doi.org/10.1049/el:20000340
https://doi.org/10.1038/nphoton.2012.127
https://rscf.ru/project/22-12-20015/
https://doi.org/10.1364/JOSAB.30.003056
https://doi.org/10.1038/nphoton.2017.142
https://doi.org/10.1109/JPHOT.2019.2924257

