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Time-localized dark modes generated by zero-wave-number-gain modulational instability

Lei Liu ,1 Wen-Rong Sun,2,* Boris A. Malomed ,3,4 and P. G. Kevrekidis5

1College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China
2School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China

3Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, and Center for Light-Matter Interaction,
Tel Aviv University, P.O. Box 39040, Ramat Aviv, Tel Aviv, Israel

4Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica, Chile
5Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003, USA

(Received 21 June 2023; accepted 22 August 2023; published 7 September 2023)

We report the emergence of a previously unexplored species of solitary waves, viz., time-localized dark modes
in integrable and nonintegrable variants of the massive Thirring model and in the three-wave resonant-interaction
system, which are models broadly used in plasma physics, nonlinear optics, and hydrodynamics. They are also
interesting as basic models for the propagation of nonlinear waves in media without intrinsic dispersion. An
essential finding is that the condition for the existence of time-localized dark modes in these systems, which
develop density dips in the course of their evolution, coincides with the condition for the occurrence of the
zero-wave-number-gain (ZWG) modulational instability (MI). Systematic simulations reveal that, whenever the
ZWG MI is present, such dark modes are generically excited from a chaotic background as patches embedded
in complex patterns.
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I. INTRODUCTION

The modulational instability (MI) of a constant-amplitude
continuous-wave (cw) background against long-wavelength
perturbations is a fundamental phenomenon in nonlinear
physics [1–4]. It triggers complex dynamics in water waves
[1,2], plasmas [5–7], electric transmission lines [8,9], nonlin-
ear optics [10–20], matter waves [21–34], and other physical
media [35,36]. In particular, MI initiates the spontaneous
production of self-sustained states, such as soliton trains,
breathers, and rogue waves (RWs) [27,37–50].

Similar to MI, solitons are formed as a result of the inter-
play between dispersive and nonlinear effects [51]. Universal
integrable models, such as the Korteweg–de Vries and non-
linear Schrödinger (NLS) equations and the Manakov system,
give rise to the commonly known exact solutions for solitons
[52,53]. Solutions for traveling solitons can often be generated
by the application of a suitable (Galilean or Lorentz) boost
to quiescent ones. However, conservation laws (in particular,
the conservation of the total norm) suggest that the NLS or
similar integrable equations do not admit the existence of
time-localized (pulsed) states [46,47]. It may seem that the
existence of RWs contradicts this statement, as apparent local-
ization in time t is their basic feature [54,55]. However, unlike
bright solitons, RWs exist on top of a cw background, and at
fixed t , RW solutions feature local intensity values below and
above the cw level in a mutually compensating way, which
makes them compatible with the underlying model conserva-
tion laws.

*Corresponding author: sunwenrong@ustb.edu.cn

In this work, we use two basic integrable systems, viz.,
the massive Thirring model (MTM) and three-wave resonant-
interaction (3WRI) system, to produce wave forms in the form
of dark time-localized modes, which, similar to the spatial
structure of dark solitons, feature a time-localized dip in the
course of their evolution. An important observation is that
the existence condition for such temporarily dark solutions in
these systems coincides with the condition of the presence of
the zero-wave-number-gain (ZWG) MI, i.e., MI with nonzero
gain at the zero wave number of modulational perturbations,
defined as in Ref. [56]. Moreover, the same systems admit
configurations built as multiple sets of such modes, in com-
pliance with the conservation loss. The present work shows
the existence and origin of time-localized dark and antidark
modes (the latter meaning states with a temporarily localized
bulge on top of the cw background).

The rest of this paper is organized as follows. Exact time-
localized solutions of the integrable MTM are produced in
Sec. II. An analytical investigation of the MI of the flat cw
states, with emphasis on the case of the ZWG MI, is presented
in Sec. III. Numerical results, which display the generation of
complex patterns that include local patches of time-localized
modes by random perturbations initially added to the cw
background, are summarized in Sec. IV. The other integrable
model, whose exact solutions also demonstrate time-localized
modes, viz., the three-wave resonant-interaction system, is
briefly considered in Sec. V. The paper is concluded by
Sec. VI.

II. TIME-LOCALIZED DARK MODES PRODUCED
BY THE MTM

The MTM system, written in laboratory coordinates, ap-
plies to the evolution of a self-interacting spinor field in the

2469-9926/2023/108(3)/033504(8) 033504-1 ©2023 American Physical Society

https://orcid.org/0000-0003-0427-2057
https://orcid.org/0000-0001-5323-1847
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.108.033504&domain=pdf&date_stamp=2023-09-07
https://doi.org/10.1103/PhysRevA.108.033504


LIU, SUN, MALOMED, AND KEVREKIDIS PHYSICAL REVIEW A 108, 033504 (2023)

one-dimensional field theory [57,58] and constitutes the inte-
grable model which is most proximal to, but different from,
the system governing the propagation of light in fiber Bragg
gratings [58–62]. The scaled form of the MTM is

i∂t u1 + i∂xu1 + u2 + |u2|2u1 = 0, (1a)

i∂t u2 − i∂xu2 + u1 + |u1|2u2 = 0. (1b)

Here u1 and u2 are slowly varying complex envelopes of coun-
terpropagating electromagnetic waves (in terms of optics), and
t and x are the normalized time and spatial coordinate, with
the group velocities and nonlinearity coefficient scaled to be,
respectively, ±1 and 1. Note that Eqs. (1) can be written in an-
other well-known form in terms of the light-cone coordinates,
(x ± t )/

√
2 [62–64], and can be transformed into the single

sine-Gordon equation, which is integrable too [65].
General N-bright and N-dark soliton solutions of the MTM

in the light-cone coordinates can be produced by the Hirota
bilinear method [64]. We find that, different from conventional
solitons, dark and antidark soliton solutions of Eqs. (1) in
laboratory coordinates admit a time-localized shape. Note that
the MTM does not admit time-localized bright and dark soli-
tons in light-cone coordinates, and bright solitons of Eqs. (1)
cannot be time localized either [64].

Fundamental dark- or antidark-mode solutions of Eqs. (1)
are written as [64]

u1 = a1eiθ (x,t ) 1 + eξ1+ξ∗
1 +iφ1+κ1

1 + eξ1+ξ∗
1 +κ1

= a1eiθ (x,t )
[
1 + eiφ1 + (eiφ1 − 1)tanh

(
ξ1 + ξ ∗

1 + κ1

2

)]
,

(2a)

u2 = a2eiθ (x,t ) 1 + eξ1+ξ∗
1 +iφ2+κ1

1 + eξ1+ξ∗
1 +κ∗

1

= a2eiθ (x,t )

[
1 + eiφ2 + (eiφ2 − 1)tanh

(
ξ1 + ξ ∗

1 + κ∗
1

2

)]
,

(2b)

where

θ (x, t ) = 1

2
(1 + a1a2)

[(
a2

a1
− a1

a2

)
x +

(
a2

a1
+ a1

a2

)
t

]
, (3)

eκ1 = − ip∗
1

p1 + p∗
1

,

eiφ1 = − p1 − iβ

p∗
1 + iβ

,

eiφ2 = − p1 − iβ(1 + a1a2)

p∗
1 + iβ(1 + a1a2)

,

ξ1 = χ1

2
x + χ2

2
t + ξ (0),

χ j = a2

βa1
p1 − (−1) j βa1

a2
(1 + a1a2)p−1

1 , j = 1, 2. (4)

Here ∗ stands for the complex conjugate, while p1 and ξ (0)

and a1, a2, and β are complex and real constants, respectively,

which must satisfy the following constraint:

|p1 − iβ(1 + a1a2)|2 = β2a1a2(1 + a1a2). (5)

If we separate the real and imaginary parts of the complex
parameter, p1 ≡ p1R + ip1I , the component u1(x, t ) of the
solution exhibits a temporary dark-mode shape for βp1R < 0
and an antidark one in the opposite case, while u2 represents
a dark-mode shape at β(1 + a1a2)p1R < 0 and an antidark-
mode one in the opposite case.

Expression (4) for the fully time-localized dark or antidark
solution is

χ1 + χ∗
1 = p1 + p∗

1

β|p1|2a1a2

[
β2a2

1(1 + a1a2) + a2
2|p1|2

] = 0. (6)

This condition implies the spatial independence of the modu-
lus of the solutions in Eqs. (2a)–(2b). Combining Eqs. (5) and
(6), we then obtain

β(1 + a1a2)
[
2p1I a

2
2 + β

(
a2

1 − a2
2

)] = 0. (7)

From Eq. (5), we get β(1 + a1a2) �= 0; hence, Eq. (7) yields
2p1I a2

2 + β(a2
1 − a2

2) = 0, which further results in

p1I = −β
(
a2

1 − a2
2

)
2a2

1

, (8a)

p1R = ±|βa1a2|
2a2

2

√
−

(
2 + a2

1

a2
2

+ a2
2

a2
1

+ 4a1a2

)
. (8b)

Because p1R is a nonzero real constant, parameters a1 and a2

need to satisfy the constraint

2 + a2
1

a2
2

+ a2
2

a2
1

+ 4a1a2 < 0. (9)

In other words, inequality (9) is the existence condition for
the time-localized dark modes, where a1 and a2 represent the
background amplitudes of the dark-mode components u1 and
u2, respectively. On the other hand, the stationary dark-mode
solution can be obtained by setting χ2 to be purely imaginary.
Figures 1(a)–1(d) display examples of stationary states which
feature the spatially localized antidark shape in both com-
ponents (i.e., it is a two-component spatial antidark soliton)
and the antidark temporarily localized shape in component
u1 and the temporal dark shape in u2. The former solution is
displayed for the sake of the comparison of the spatial solitons
with the time-localized modes.

III. THE LINEAR-STABILITY ANALYSIS OF cw
SOLUTIONS AND THE ZWG MI CONDITION

Equations (1) admit the following cw solutions:

ul = ale
i[θ (x,t )+θ0], l = 1, 2, (10)

where θ (x, t ) is defined as per Eq. (3) and θ0 is a real phase
shift. To study the linear stability of the cw, we add small
complex perturbations pl (x, t ) to it, setting

ũp
l = [al + pl (x, t )]ei[θ (x,t )+θ0], l = 1, 2. (11)
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FIG. 1. Solutions produced by Eqs. (1) with parameters β =
1 and ξ (0) = 0. (a) and (b) a stationary two-component spatial
antidark soliton with a1 = a2 = 1 and p1 = 1 + i. (c) and (d) A time-
localized half-antidark, half-dark solution with a1 = −a2 = √

2 and
p1 = 1

Substituting expressions (11) in Eqs. (1), we derive linearized
equations for pl (x, t ),

ia1∂t p1 + ia1∂x p1 − a2 p1 + a1(1 + a1a2)p2 + a2
1a2 p∗

2 = 0,

(12a)

ia2∂t p2 − ia2∂x p2 − a1 p2 + a2(1 + a1a2)p1 + a1a2
2 p∗

1 = 0.

(12b)

Assuming, as is customary, pl = ηl,1(t )eiQx + ηl,2(t )e−iQx,
where Q is a real perturbation wave number and ηl,1(t ) and
ηl,2(t ) are complex amplitudes, Eqs. (12) lead to a 4 × 4
homogeneous linear differential equation in matrix form for
η = (η1,1, η

∗
1,2, η2,1, η

∗
2,2)T :

∂tη = iMη, (13)

where the matrix elements of M are M11 = −Q − a2/a1,
M22 = −Q + a2/a1, M33 = Q − a1/a2, M44 = Q + a1/a2,
M41 = M32 = −M23 = −M14 = a1a2, M13 = M31 =
−M24 = −M42 = 1 + a1a2, and M12 = M21 = M34 = M43 =
0.

The stability of solution (11) is then determined by
eigenvalues of matrix M, which are roots of the following
characteristic polynomial:


4 + λ2

2 + λ1
 + λ0 = 0, (14)

where we define

λ0 = Q2

(
−a2

1

a2
2

− a2
2

a2
1

+ 4a1a2 + Q2 + 2

)
,

λ1 = 2Q

(
a2

2

a2
1

− a2
1

a2
2

)
,

λ2 = −2(1 + Q2) − 4a1a2 − a2
1

a2
2

− a2
2

a2
1

.

FIG. 2. The color map of the MI gain |Im(
)| in parameter plane
(Q, a2) of cw solutions (2), as produced by Eqs. (1), with fixed a1 =
2. (b) Zoom of the red box in (a).

Roots of Eq. (14) (
 j, j = 1, 2, 3, 4) either are real ones or
form complex-conjugate pairs. If all the roots are real, there is
no MI. If frequencies 
 j include complex-conjugate pairs, MI
is represented by Im(
) < 0. Similar to the setting considered
in Ref. [56], MI may be one of three different types:

(i) Baseband MI has Im(
) < 0 at |Q| > 0 and Im(
) = 0
at Q = 0; that is, the MI band includes arbitrarily small wave
numbers Q but not Q = 0.

(ii) Passband MI has Im(
) < 0 at |Q| > Qmin > 0 with
a nonzero boundary Qmin of the MI band, which separates it
from Q = 0.

(iii) ZWG MI has Im(
) < 0 at |Q| < Qmax with Qmax >

0; that is, the MI band includes the zero wave number, Q = 0.
When the MI exists, the boundaries of the ZWG MI region

are defined by setting Q = 0 in Eqs. (14). Then, two possible

nonzero roots of Eqs. (14) are ±
√


2
0, with


2
0 = 2 + a2

1

a2
2

+ a2
2

a2
1

+ 4a1a2. (15)

The ZWG MI takes place at 
2
0 < 0; otherwise, only base-

band or passband MI regions may exist. We stress that this
condition coincides with the existence condition for the time-
localized dark mode, which is given by Eq. (9). This fact
strongly indicates that the emergence of time-localized modes
is intimately connected to the growth of the modulational
perturbation with wave number Q = 0.

Figure 2 shows different MI types produced by Eqs. (1)
with fixed a1 = 2. In particular, the modulational stability,
baseband MI, passband MI, and ZWG MI take place at a2 >

0, −0.5 � a2 < 0, −0.897 < a2 < −0.5, and −31.7 < a2 <

−0.897, respectively (at a2 < −31.7, the passband MI occurs,
which is not shown in Fig. 2). On the other hand, at a1 = 2
Eq. (2) produces the time-localized dark modes solely in the
last interval, −31.7 < a2 < −0.897.

IV. NUMERICAL SIMULATIONS: EXCITATION OF
TIME-LOCALIZED MODES IN THE INTEGRABLE AND

NONINTEGRABLE MTM BY CHAOTIC PERTURBATIONS
ADDED TO THE BACKGROUND FIELD

The MI evolution is a natural source of solitary waves
[10,51,53]. In particular, the MI evolution initiated by random
perturbations has drawn interest in optics and hydrodynamics,
chiefly in connection to the generation of RWs and breathers
[54,66]. To verify the relation between the existence of the
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FIG. 3. The numerically simulated excitation of a pattern
composed of time-localized dark modes produced by chaotic per-
turbations with a 5% relative strength initially added to the cw
background, where the color map indicates the intensity of |ul/al |.
The parameters are a1 = −a2 = 0.8 in (a) and (b), and a1 = −a2 =
2.4 in (c) and (d). A particular fragment in the form of a dark-antidark
localized mode is highlighted by the black box. (e) and (f) display the
three-dimensional zoom of this pattern.

time-localized dark and antidark modes and ZWG MI, we
consider the possibility to excite such modes from a chaotic
background field in the presence of the ZWG MI. For this
purpose, we simulate the evolution of the cw states taken as
the initial condition, perturbed by a random Gaussian noise
with a relative strength of 5%.

As demonstrated in Fig. 3, the noisy background fea-
tures apparent MI-driven chaotic dynamics. For parameters
a1 = −a2 = 0.8 in Figs. 3(a) and 3(b), which satisfy the RW
existence condition [56,62,63] but do not satisfy condition
(9) for the occurrence of the ZWG MI, isolated peaks with
amplitudes ∼3 times the background level emerge at random
positions. Indeed, these structures in Figs. 3(a) and 3(b) rep-
resent RWs.

On the other hand, for parameters a1 = −a2 = 2.4, which
satisfy condition (9), the evolution initiated by the chaotic
perturbation produces localized solitonlike structures in
Figs. 3(c) and 3(d), while the peak amplitudes are less than
2 times the background level. In particular, a structure which
is recognized as a (portion of a) time-localized mode with
dark and antidark components, similar to that displayed in
Figs. 1(c) and 1(d), is highlighted by a black box in Figs. 3(c)
and 3(d). Further, Figs. 3(e) and 3(f) show enlarged three-
dimensional plots of this wave pattern.
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FIG. 4. The simulated evolution of a time-localized mode given
by solution (2) with initially added random-noise perturbations at the
2% level, where the color map indicates the intensity of |ul/al |. The
input is the cw background perturbed by a random noise with 5%
strength. The parameters are β = 1, ξ (0) = 0, a1 = −a2 = 2.4, and
p1 = √

119/3. The numerical simulation is initiated at t = −1.5. A
particular fragment of a dark mode is highlighted by a black box.
(c) and (d) display the three-dimensional zoom of this pattern.

Similar to RWs, the time-localized dark modes are
sensitive to the presence of perturbations because their back-
ground is subject to MI. Figure 4 exhibits the evolution
of the time-localized mode with initially added 2% random
Gaussian-noise perturbations. It is observed that, although the
quasisoliton pattern is affected by the background instability,
fragments of the time-localized dark state, which are also
localized in the x direction, persist as robust elements of
the emerging complex pattern, as shown in Figs. 4(c) and
4(d) by the three-dimensional zoom of the fragment high-
lighted by the black boxes in Figs. 4(a) and 4(b). Note that
Figs. 3(e) and 3(f) and 4(c) and 4(d) exhibit similar coupled
dark-antidark structures, implying that, in Figs. 3(c) and 3(d),
the ZWG MI indeed produces complex patterns incorporating
time-localized modes.

It is quite interesting to find time-localized dark (and anti-
dark) modes as solutions of the coupled-mode equations (the
nonintegrable version of the MTM) which furnish, as men-
tioned above, a model for light propagation in periodic or
Bragg nonlinear optical media. The respective nonintegrable
extensions of Eqs. (1) are

i∂t u1 + i∂xu1 + u2 + (|u2|2 + γ |u1|2)u1 = 0, (16a)

i∂t u2 − i∂xu2 + u1 + (|u1|2 + γ |u2|2)u2 = 0. (16b)

They differ from the integrable MTM by the presence of
the self-phase modulation (SPM) with relative strength γ . A
straightforward extension of the above analysis produces the
following existence condition for the ZWG MI in the present
case:

2 + a2
1

a2
2

+ a2
2

a2
1

+ 4(1 − γ )a1a2 < 0 (17)
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FIG. 5. The excitation of a pattern composed of time-localized
dark modes, as produced by simulations of Eq. (16) with γ = 0.5,
where the color map indicates the intensity of |ul/al |. The input is
the cw background perturbed by a random noise with 5% strength.
The parameters are a1 = −a2 = 0.8 (corresponding to the baseband
MI) in (a) and (b) and a1 = −a2 = 2.4 (the ZWG MI) in (c) and (d).
A particular time-localized dark mode is highlighted by the black
box. (e) and (f) display the three-dimensional zoom of this state.

[see Eq. (9)]. For example, for the physically relevant case
of γ = 0.5, Fig. 5 displays patterns which are quite similar
to those in Fig. 3. This result confirms that the ZWG MI
mechanism of the creation of the time-localized modes nat-
urally extends to the physically relevant nonintegrable system
and produces an experimentally available setting where such
states may be created. It is also relevant to mention bright
time-localized modes, which were very recently predicted as
solutions of Eqs. (16) [67]. Unlike the present considerations,
those bright temporal waves are not related to the cw back-
ground and MI conditions.

V. THE THREE-WAVE RESONANT-INTERACTION
SYSTEM

To demonstrate that the mechanism elaborated above can
be readily implemented in other systems, we consider the
system for complex amplitudes En = En(x, t ) (n = 1, 2, 3) of
three waves coupled by the quadratic interactions

∂t E1 + V1∂xE1 = σ1E∗
2 E∗

3 , (18a)

∂t E2 + V2∂xE2 = σ2E∗
1 E∗

3 , (18b)

∂t E3 + V3∂xE3 = σ3E∗
1 E∗

2 . (18c)

Here Vn are group velocities of the components, and σn =
±1 are signs of the interactions, which correspond to

the stimulated-backscattering regime (σ1 = σ2 = −σ3 = 1 or
σ1 = −σ2 = −σ3 = 1), explosive regime (σ1 = σ2 = σ3 =
1), or soliton-exchange regime (σ1 = −σ2 = σ3 = 1). As a
fundamental model, system (18) describes diverse physical
contexts in hydrodynamics, optics, and plasmas [68–70].
Without loss of generality, we set V1 > V2 > V3 ≡ 0 in the
reference frame comoving with wave E3.

It is well known that system (18) is completely integrable
[68,71,72]. The bilinear form [73] of system (18) (the Hirota
method) produces the fundamental three-component dark-
mode solutions admitted by the integrable system:

E1 = ρ1eiφ1
1 − 1

p1+p∗
1

p1−i
p∗

1+i e
η1+η∗

1

1 + 1
p1+p∗

1
eη1+η∗

1
, (19a)

E2 = ρ2eiφ2
1 − 1

p1+p∗
1

p∗
1

p1
eη1+η∗

1

1 + 1
p1+p∗

1
eη1+η∗

1
, (19b)

E3 = iρ3e−i(φ1+φ2 )
1 + 1

p1+p∗
1

p∗
1+i

p1−i
p1

p∗
1
eη1+η∗

1

1 + 1
p1+p∗

1
eη1+η∗

1
, (19c)

where

φl = clx + dlt, (l = 1, 2), d1 = d2 = γ3

2
,

c1,2 = −2γ1,2 + γ3

2V1,2
, η1 = 1

p1
r + 1

p1 − i
s + η

(0)
1 ,

r = γ1

V1 − V2
(x − V2t ), s = γ2

V2 − V1
(x − V1t ).

Here ρn are nonzero real constants representing the back-
ground amplitudes of the dark-soliton components En; p1 and
η

(0)
1 are complex constants,

γ1 = σ1
ρ2ρ3

ρ1
, γ2 = σ2

ρ1ρ3

ρ2
, γ3 = σ3

ρ1ρ2

ρ3
, (20)

and these parameters satisfy the following constraint:

γ1V2

|p1|2γ3(V2 − V1)
− γ2V1

|p1 − i|2γ3(V2 − V1)
= 1. (21)

To cast the exact solution of system (18) in the form of a
time-localized mode, we set

Re

{
1

p1

γ1

V1 − V2
+ 1

p1 − i

γ2

V2 − V1

}
= 0, (22)

which yields

|p1 − i|2γ1 − |p1|2γ2 = 0. (23)

Once again this condition ensures the spatial independence
of the solution modulus on the spatial variable x. Combining
Eqs. (21) and (23) and setting p1 = p1R + ip1I , we obtain

p1R = ±
√

4γ1γ2 − (γ1 + γ2 − γ3)2

2γ3
, p1I = γ1 − γ2 + γ3

2γ3
.

(24)

As p1R takes nonzero real values, parameters γ1, γ2, and γ3

need to satisfy the constraint

(γ1 + γ2 − γ3)2 − 4γ1γ2 < 0. (25)
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FIG. 6. An example of a time-localized dark mode produced by system (18) with parameters σ1 = σ2 = σ3 = 1, V1 = 2, V2 = 1, a1 =
a2 = a3 = 1, η

(0)
1 = 0, and p1 = 1

2 (
√

3 + i).

Thus, Eq. (25) is the existence condition for the time-localized
dark modes as solutions of system (18).

Following Ref. [56], the condition of the ZWG MI for sys-
tem (18) is found as (γ1 + γ2 − γ3)2 − 4γ1γ2 < 0. Therefore,
we conclude that the condition of the occurrence of the ZWG
MI is, once again, tantamount to the existence condition for
the time-localized dark mode. This solution is shown in Fig. 6.

VI. CONCLUSION

The present work revealed the existence and origin of a
species of dark and antidark quasisoliton states in the form
of time-localized modes. Exact solutions of this type were
produced in two distinct integrable systems, viz., the MTM
and 3WRI system. They provide fundamental models for the
propagation of nonlinear waves in media without intrinsic dis-
persion, which have straightforward realizations in plasmas,
nonlinear optics, and hydrodynamics. In the MTM, the time-
localized modes feature a dark structure in one component and
an antidark one in the other, a feature that is explained on the
basis of the associated norm-conservation law. An important
conclusion of the analysis is that the existence condition for
the time-localized modes in both models is tantamount to the
condition providing the occurrence of the ZWG MI. This is
a natural conclusion, as it is the MI gain at the zero modula-
tion wave number, Q = 0, that generates, respectively, the dip
and spike in the dark and antidark components of the mode.
Our simulations demonstrated that random perturbations,
added to the cw background, give rise to complex patterns

composed of robust fragments in the form of the time-
localized modes. Furthermore, we demonstrated that the
ZWG-MI-based mechanism creates the similar time-localized
patterns (or fractions thereof) in the nonintegrable generaliza-
tion of the MTM, which includes the SPM terms, governing
light propagation in Bragg gratings. Hence, it should be
possible to create the predicted time-localized modes exper-
imentally in nonlinear optics. To illustrate the generality of
the predictions, an additional system featuring such time-
localized modes was also presented in the form of the
three-wave resonant-interaction system.

As a development of the present analysis, it will be relevant
to study in detail multisoliton complexes of the time-localized
type, as well as their interactions with the usual spatial soli-
tons or rogue waves. The present study also suggests that
the search for time-localized modes in other ZWG-bearing
systems is a promising direction for future work.
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