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Moving along an exceptional surface towards a higher-order exceptional point
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Open systems with non-Hermitian degeneracies called exceptional points show a significantly enhanced
response to perturbations in terms of large energy splittings induced by a small perturbation. This reaction
can be quantified by the spectral response strength of the exceptional point. We extend the underlying theory
to the general case where the dimension of the Hilbert space is larger than the order of the exceptional point.
This generalization allows us to demonstrate an intriguing phenomenon: The spectral response strength of an
exceptional point increases considerably and may even diverge to infinity under a parameter variation that
eventually increases the order of the exceptional point. This dramatic behavior is in general not accompanied
by a divergence of the energy eigenvalues and is shown to be related to the well-known divergence of Petermann
factors near exceptional points. Finally, an accurate and robust numerical scheme for the computation of the
spectral response strength based on the general theory and residue calculus is presented.
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I. INTRODUCTION

Exceptional points (EPs) are important and still not fully
exploited non-Hermitian degeneracies in open quantum and
wave systems. At an EP of order n (EPn) exactly n eigenener-
gies and the corresponding energy eigenstates coalesce [1–5].
This is in contrast to a conventional degeneracy where only
eigenenergies coalesce while the eigenstates can be chosen
to be orthogonal. The existence of an EP requires not only
the non-Hermiticity of the Hamiltonian, Ĥ �= Ĥ† but also
non-normality, i.e., [Ĥ , Ĥ†] �= 0. EPs have been observed ex-
perimentally in diverse physical systems [6–17]. Moreover,
EPs have potential applications, in particular in optics and
photonics [5], such as loss-induced suppression of lasing [18],
mode discrimination in multimode lasing [19], orbital angu-
lar momentum microlasers [20], unidirectional lasing [11],
mode conversion [21,22], circularly polarized light sources
[23], chiral perfect absorption [24], optical amplifiers with
improved gain-bandwidth product [25], subwavelength con-
trol of light transport [26], and as a resource for hardware
encryption [27].

One particular relevant application is that of EP-based
sensors [28–37]. These potentially ultrasensitive devices take
advantage of the significant spectral response to generic per-
turbations: A system with an EPn experiences an energy
splitting proportional to the nth root of the perturbation
strength ε [1]. For sufficiently small ε this is larger than the
linear scaling near a conventional degeneracy. The strength of
the response to small perturbations can be characterized by
a single quantity, the spectral response strength ξ [38–40]. A
large ξ signals a significant spectral response to generic per-
turbations. The theory in Ref. [38] is restricted to the special
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case where the order of the EP, n, equals the dimension of the
considered Hilbert space, m.

There are special, nongeneric perturbations that leave the
given system on an EPn. In parameter space these pertur-
bations generate a, possibly higher-dimensional, manifold,
the so-called exceptional surface [41,42]. Such surfaces may
remove the harmful consequences of fabrication intolerances
and have been investigated for optical amplifiers [25], sensing
[43], control of spontaneous emission [44], and chiral perfect
absorbers [45].

The spectral response of an isolated eigenvalue (not part
of an EP) can be quantified by the Petermann factor K
[46]. It was originally introduced to measure the linewidth
broadening resulting from quantum excess noise in lasers
[47–53]. The Petermann factors near an EP are determined
by its spectral response strength ξ and the energy splitting
[54,55].

The aim of this paper is twofold. First, we extend the theory
of spectral response strength ξ to the general case m � n.
Second, we use this generalized theory to demonstrate that
ξ may diverge to infinity when the system is moving along
an exceptional surface towards an EP of higher order. We
show that this is not only reminiscent to the behavior of the
Petermann factor K when approaching an EP [56] but that it is
the same behavior originating from the fact that

√
K itself can

be seen as a spectral response strength of isolated eigenvalues.
Figure 1 illustrates these findings.

The paper is structured as follows. Section II reviews
the spectral response strength as introduced in Ref. [38].
Section III generalize this definition to higher-dimensional
Hilbert spaces and Sec. IV reveals the divergence of the spec-
tral response strength of EPs that approach an EP of higher
order. An instructive toy model is provided in Sec. V and a
realistic photonic example in Sec. VI. In Sec. VII the relation
to the divergence of the Petermann factor is discussed. Based
on the general theory and residue calculus a numerical scheme
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FIG. 1. Illustration of the divergence of the spectral response
strength of an isolated eigenvalue (Petermann factor K) and excep-
tional points of order n (EPn with spectral response strength ξn) when
approaching a higher-order EP. The dots mark a transition from an
isolated eigenvalue to an EP2 and from an EPn to an EPn+1

for the spectral response strength is developed in Sec. VIII. A
conclusion is given in Sec. IX.

II. SPECTRAL RESPONSE STRENGTH

Before turning to the general case, we briefly review the
derivation of the spectral response strength associated to an
n × n Hamiltonian at an EPn [38]. Central are two matrix
norms; see, e.g., Ref. [57]. The first is the Frobenius norm,

‖Â‖F :=
√

Tr(Â†Â) =
√∑

i j

|Ai j |2, (1)

where Tr is the trace and Ai j are the matrix elements of the
linear operator Â in any orthonormal basis. The second matrix
norm is the spectral norm,

‖Â‖2 := max
‖ψ‖2=1

‖Âψ‖2. (2)

We use the notation ‖·‖2 both for the spectral norm of a matrix
and the 2-norm ‖ψ‖2 = √〈ψ |ψ〉 of a vector |ψ〉 based on
the conventional inner product in complex vector space. Both
matrix norms are compatible with the vector 2-norm, i.e.,

‖Âψ‖2 � ‖Â‖ ‖ψ‖2 (3)

and both share the property of unitary invariance, i.e.,

‖Û ÂV̂ ‖ = ‖Â‖, (4)

for all matrices Â and all unitary matrices Û and V̂ .
Now consider the perturbed Hamiltonian

Ĥ = Ĥ0 + εĤ1 (5)

with unperturbed Hamiltonian Ĥ0, perturbation Ĥ1, and per-
turbation strength ε � 0. The eigenvalue equation of the
perturbed Hamiltonian is

(Ĥ0 + εĤ1)|Rl〉 = El |Rl〉 (6)

with complex eigenvalues El and right eigenstates |Rl〉
normalized to unity: ‖Rl‖2 = 1. Equation (6) can be
written as

|Rl〉 = εĜ(El )Ĥ1|Rl〉 (7)

with the Green’s function of the unperturbed Hamiltonian

Ĝ(E ) := (E1 − Ĥ0)−1, (8)

where 1 is the identity. Taking the vector norm on both sides
of Eq. (7) and using the normalization of the eigenstate gives

1 = ε‖Ĝ(El )Ĥ1Rl‖2. (9)

Exploiting the compatibility (3) twice in Eq. (9) yields

1 � ε‖Ĝ(El )‖ ‖Ĥ1‖. (10)

This inequality is valid both for the Frobenius and the spectral
norms. However, the spectral norm is preferred as it gives the
smallest bounds because of the general relation ‖Â‖2 � ‖Â‖F .

The derivation in Ref. [38] is restricted to the case of an n ×
n Hamiltonian Ĥ0 to be at an EP of order n with eigenvalue
EEP. In this generalized eigenspace the matrix

N̂ := Ĥ0 − EEP1 (11)

is nilpotent of index n; hence, N̂n = 0 but N̂n−1 �= 0. This
property implies the expansion [38]

Ĝ(E ) = 1

E − EEP
+

n∑
k=2

N̂k−1

(E − EEP)k
. (12)

For E ≈ EEP the contribution of the Green’s function with k =
n is the dominant one. For generic perturbations with

N̂n−1Ĥ1|Rl〉 �= 0 (13)

we use only this dominant contribution in inequality (10),
yielding

|El − EEP|n � ε‖Ĥ1‖2 ‖N̂n−1‖2. (14)

This gives reason to define the spectral response strength
associated to the EP,

ξ := ‖N̂n−1‖2. (15)

Sometimes it is necessary to distinguish EPs of different or-
der n. Then we write ξn instead of ξ . With the definition in
Eq. (15) one finally gets

|El − EEP|n � ε‖Ĥ1‖2 ξ . (16)

This inequality is the central result of Ref. [38]. It gives an
upper bound for the energy eigenvalue change, or loosely
speaking the energy splitting, |El − EEP|, near an EP of order
n. Importantly, the spectral response strength ξ is only a func-
tion of the unperturbed Hamiltonian Ĥ0. It is independent of
the chosen orthonormal basis because the unitary invariance
(4) ensures the invariance under a unitary transformation of
Ĥ0. However, a similarity transformation of Ĥ0 in general does
change ξ .

The calculation of the spectral response strength in Eq. (15)
is simple, in particular since the matrix N̂n−1 has rank 1
which follows from the nilpotency of N̂ of index n. For rank-1
matrices the spectral norm (2) and Frobenius norm (1) give the
same numerical values. Hence, the spectral response strength
can be calculated more easily by

ξ = ‖N̂n−1‖F . (17)

The spectral response strength ξ not only provides an upper
bound for the energy eigenvalue change on perturbation, it
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also gives upper bounds for the intensity response to excitation
and the dynamic response to initial deviations from the EP
eigenstate [38]. Moreover, there is a relationship between ξ

and the Petermann factors of isolated eigenvalues resulting
from a small generic perturbation of an EPn [54],

√
Kl = ξ

n|El − EEP|n−1
, (18)

where the Petermann factors are defined by

Kl := 〈Rl |Rl〉〈Ll |Ll〉
|〈Ll |Rl〉|2 , (19)

with right eigenstates |Rl〉 and the corresponding left eigen-
states |Ll〉 of the Hamiltonian Ĥ . Note that the Petermann
factors of the involved eigenstates do not depend on the quan-
tum number l in this regime of small generic perturbations.
From Eq. (18) it follows that the Petermann factor diverges
when approaching the EP consistent with Ref. [56].

III. GENERALIZATION TO HIGHER-DIMENSIONAL
HILBERT SPACES

In this section we generalize the spectral response strength
ξ to the case of an m × m Hamiltonian exhibiting an EP of
order n � m. Such a scenario appears, for instance, in the
context of EPs in lattice systems [58,59]. The generic scenario
has been numerically treated in Ref. [54] based on the natural
assumption that the relation between ξ and the Petermann
factors near the EP in Eq. (18) is valid also in the general case.
The validity of this assumption has been proven very recently
in Ref. [55]. A general theory can be found, in principle, in
the mathematical literature under the name Hölder condition
number [60,61]. However, the mathematical approach is diffi-
cult to access for physicists and not easy to apply to practical
problems. Our approach is more elementary and presented
in the physically relevant Green’s function. We start with
the general expansion of the m × m Green’s function of the
unperturbed Hamiltonian Ĥ0 [1],

Ĝ(E ) =
∑

l

[
P̂l

E − E (0)
l

+
nl∑

k=2

N̂k−1
l(

E − E (0)
l

)k

]
. (20)

The sum over l covers the relevant part of the point spectrum
including isolated energy eigenvalues and EPs. The sum over
the integer k gives additional terms for EPs (order nl � 2)
only. The operators P̂l are projectors onto the generalized
eigenspaces of the corresponding eigenvalues E (0)

l with

P̂j P̂l = δ jl P̂l . (21)

In general, the P̂l are not orthogonal projectors, i.e., P̂l �= P̂†
l ,

reflecting the non-normality of Ĥ0. The operators N̂l for a
given EP of order nl are nilpotent operators of index nl and
defined by

N̂l := [
Ĥ0 − E (0)

l 1
]
P̂l . (22)

It holds P̂l N̂l = N̂l P̂l = N̂l .
Equation (20) is general in contrast to the expansion in

Eq. (12). An alternative approach based on left and right
Jordan vectors [62,63] is not suitable for our purpose as it,
in general, requires a similarity transformation of Ĥ0. Such a

similarity transformation would be harmful as it may modify
the spectral response strength that we want to calculate.

It is possible to explicitly determine for a given Hamil-
tonian Ĥ0 the expansion of its Green’s function in Eq. (20)
including all the operators P̂l and N̂l by using partial fraction
decomposition. However, this is in general time-consuming
and in fact not necessary. For our purpose it is sufficient to
know the operator

Ŵ := N̂nl −1
l (23)

for the EP of interest. There is no need to know N̂l itself nor
the projector P̂l . Our strategy is the following: We start with
calculating analytically the Green’s function of the unper-
turbed Hamiltonian in Eq. (8) by direct matrix inversion (for
the cases where this is not possible we refer to the numerical
scheme in Sec. VIII). From the resulting Green’s function
we take, for an energy level E (0)

l = EEP, the leading-order
contribution

Ĝ(E ) = Ŵ

(E − EEP)nl
, (24)

where for the energy E the following condition is assumed:

|E − EEP| � ∣∣E − E (0)
j

∣∣ for j �= l, (25)

i.e., the EP is isolated. It this case we can safely replace
E − E (0)

j for j �= l by E (0)
l − E (0)

j which is then incorporated

into Ŵ . It is emphasized that the leading-order contribution
within the more laborious partial fraction decomposition of
the Green’s function leads to the same result as in Eq. (24).
This can be seen easily for the example

1(
E − E (0)

l

)(
E − E (0)

j

) = 1(
E (0)

l − E (0)
j

)(
E − E (0)

l

)
+ 1(

E (0)
j − E (0)

l

)(
E − E (0)

j

) . (26)

Comparing Eq. (24) with expansion (12) uncovers that the
operator Ŵ plays the role of the operator N̂n−1. All arguments
leading to Eqs. (15) and (16) carry over. Assuming again a
generic perturbation [Eq. (13)] results in

ξ := ‖Ŵ ‖2. (27)

Again, since N̂l is nilpotent of index nl , the operator Ŵ is of
rank 1. Hence, the spectral response strength can be calculated
more conveniently by the Frobenius norm,

ξ = ‖Ŵ ‖F . (28)

When considered superficially, the final formulas for the
generalized theory, Eqs. (24), (27), and (28), appear to be
straightforward generalizations of the formulas of the special
theory, Eqs. (15) and (17) in the previous section. However,
the way the calculation is performed is entirely different. In
the special theory, first the nilpotent operator N̂ is computed
via Eq. (11). Then N̂n−1 is calculated by matrix powers and
plugged into Eqs. (15) or (17) to obtain the spectral response
strength. In the general theory presented here, the full Green’s
function in Eq. (8) is first determined by matrix inversion.
Then the leading-order contribution of the Green’s function
for the EP of interest is identified as in Eq. (24). From this
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contribution, the operator Ŵ is extracted and inserted into
Eqs. (27) or (28) to obtain the spectral response strength.

IV. DIVERGENCE NEAR HIGHER-ORDER EPS

What happens if we push our theory to a regime where the
assumptions (25) fail? Consider the interesting case where one
EP of order n moves under variation of parameters along an
exceptional surface approaching an EP of higher-order n + k
with integer k � 1. We denote the corresponding operators by
Ŵn and Ŵn+k and the eigenvalues by EEP,n and EEP,n+k . The
replacement E − E (0)

j for j �= l by E (0)
l − E (0)

j discussed in
the context of Eq. (24) leads to the proportionality

Ŵn ∝ Ŵn+k

(EEP,n − EEP,n+k )k
. (29)

From this equation and Eq. (27) it follows

ξn|EEP,n − EEP,n+k|k ∝ ξn+k . (30)

From this relation we learn that the spectral response strength
of the lower-order EP diverges to infinity as a higher-order
EP with nonzero spectral response strength is approached.
Clearly, this can only happen if m > n, i.e., if the Hilbert space
dimension exceeds the order of the lower-order EP. For fixed
perturbation strength ε > 0 the divergence is artificial as it is
caused by the invalidity of the assumptions (25) for too small
detuning |EEP,n − EEP,n+k|. In such an extreme situation with
several competing poles in the expansion in Eq. (20) it is not
possible to describe the spectral response of the system by a
single quantity.

Nevertheless, a continuously increasing spectral response
strength ξ is not artificial but natural and even essential for
describing the physics near a higher-order EP correctly. To
see this, imagine ξn+k �= 0, a perturbation strength ε and a de-
tuning such that the assumptions (25) are not valid. According
to Eq. (30) the spectral response strength ξn is large. Now, for
fixed detuning let us reduce ε. When ε is sufficiently small the
assumptions (25) are valid again as the perturbed eigenvalues
El stay close enough to EEP. As the spectral response strength
is independent of ε, a previous large value is needed to de-
scribe the enhanced spectral response near the higher-order
EP.

Assuming that the matrix elements of Ĥ0 stay finite, we
can see from the definition of Ŵ in Eqs. (22) and (23) that the
origin of the divergence of ξ is a diverging projector P̂l . This
is the essential difference to Ref. [38] where the projector is
just the identity 1.

For systems without gain, i.e., passive systems, Ref. [39]
has derived for the special case m = n an upper bound for the
spectral response strength

ξ � (
√

2n|Im EEP|)n−1. (31)

This is a considerable limitation for sensor applications as a
small linewidth γ = 2|Im EEP| implies a small splitting for a
given perturbation. Obviously, inequality (31) cannot be true
for m > n with a diverging ξ . Going through the derivation
in Ref. [39] reveals that the origin of the failure of inequality
(31) is the projector P̂l �= 1.

Finally, it is mentioned that another kind of transition
between EPs of different order is possible. Instead of the coa-
lescence of eigenenergies discussed above it can also happen
that the leading-order contribution corresponding to, let us
say, an EP of order n + k vanishes, Ŵn+k = 0, under a param-
eter variation. Then the leading-order contribution of another
EP, let us say of order n, takes over. If this happens without
any change of eigenenergies, then Eq. (30) still applies since
ξn+k = 0.

V. A TOY MODEL

For illustration purposes, we introduce a minimal model,
simple enough to get analytical results even by hand but
showing the relevant effects clearly. We consider the 3 × 3
Hamiltonian

Ĥ0 =
⎛
⎝Eb B 0

0 Ea A
0 0 Ea

⎞
⎠, (32)

with complex parameters Ea, Eb, A �= 0, and B �= 0. The
eigenvalues of Ĥ0 are Ea (with algebraic multiplicity of two)
and Eb.

With the definition in Eq. (8) the Green’s function is com-
puted by matrix inversion

Ĝ(E ) =

⎡
⎢⎢⎣

1
E−Eb

B
(E−Eb)(E−Ea )

AB
(E−Eb)(E−Ea )2

0 1
E−Ea

A
(E−Ea )2

0 0 1
E−Ea

⎤
⎥⎥⎦. (33)

The reader may crosscheck that this Green’s function is of the
form of the expansion in Eq. (20) by exploiting partial fraction
decomposition. However, this is, as stressed in the previous
section, not a precondition for the computation of the spectral
response strength.

Let us first focus on the generic case Eb �= Ea. Here the
leading-order contribution at E = Ea according to Eq. (24) is
of order n = 2 and with the replacement of E − Eb by Ea −
Eb,

Ŵ =
⎛
⎝0 0 AB

Ea−Eb

0 0 A
0 0 0

⎞
⎠. (34)

Note that the same result is obtained by partial fraction de-
composition of the Green’s function in Eq. (33). With Eq. (28)
the spectral response strength of this second-order EP with
eigenvalue EEP,2 = Ea �= Eb is

ξ2 = |A|
√

1 + |B|2
|Eb − Ea|2 . (35)

In the special case Eb = Ea the leading-order contribution in
Eq. (33) is, according to Eq. (24), of order n = 3 and

Ŵ =
⎛
⎝0 0 AB

0 0 0
0 0 0

⎞
⎠. (36)

With Eq. (28) the spectral response strength of this third-order
EP with eigenvalue EEP,3 = Eb is

ξ3 = |A‖B|. (37)
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FIG. 2. Energy splitting and corresponding bounds (both dimen-
sionless) for the Hamiltonian in Eq. (32) and perturbation in Eq. (38)
vs detuning |Eb − Ea| in a semilogarithmic scale. The thin vertical
line marks the detuning 2 × 10−3 focused on in Fig. 3. The solid
curve is the change of the eigenvalue nearest to Ea computed numer-
ically from the eigenvalue equation. The dashed curve is the upper
bound in Eq. (16) with the spectral response strength in Eq. (35) for
the second-order EP. The star marks the upper bound in Eq. (16)
with the spectral response strength in Eq. (37) for the third-order EP
at zero detuning (horizontally shifted to the smallest finite detuning
visible in the figure). The parameters are ε = 10−8, A = −1 = B, and
Im Ea = Im Eb = 0.

To verify our results numerically we consider the Hamilto-
nian in Eq. (5) with a perturbation

Ĥ1 =
⎛
⎝ 0 0 0

0 0 0
1/

√
2 1/

√
2 0

⎞
⎠. (38)

This Hamiltonian represents a generic perturbation that leads
to nth root energy splitting. It is normalized to unity, ‖Ĥ1‖2 =
1, and, hence, the strength of the perturbation is here fully
determined by ε. Note that any randomly chosen perturbation
Ĥ1 would be equally good for our purpose as long as it is
generic, see Eq. (13). A variation of the detuning |Eb − Ea|
can be regarded as a nongeneric perturbation that leaves the
system on an EP of the same order. It therefore shifts the
system on a curve in an exceptional surface.

Figure 2 shows the energy splitting and the upper bounds
in Eq. (16) when the system is moving along this exceptional
surface. The upper bound with the spectral response strength
in Eq. (35) appears to be a tight one for detunings above
2 × 10−3, i.e., for 99.98% of the considered part of the excep-
tional surface. Only for detunings below 2 × 10−3 the bound
does not seem to be tight. In this regime the energy splitting
is of similar size as the detuning or even larger, and hence the
assumptions (25) are no longer justified. Approaching zero
detuning the spectral response strength in Eq. (35) diverges.
Note that the upper bound in Eq. (16) is still fulfilled. The
divergence of the upper bound is, at first glance, reminiscent
to the behavior of energy eigenvalues near so-called divergent
EPs [27,64]. However, the eigenvalue changes here remain
finite. This must be the case because for zero detuning the
upper bound in Eq. (16) has to hold for n = 3 with the spectral
response strength in Eq. (37). The spectral response strength

FIG. 3. Energy splitting and corresponding bounds (both dimen-
sionless) for the Hamiltonian in Eq. (32) and perturbation in Eq. (38)
vs perturbation strength in a double logarithmic scale. The thin
vertical line marks the perturbation strength ε = 10−8 used in Fig. 2.
The solid curve is the change of the eigenvalue nearest to Ea com-
puted numerically from the eigenvalue equation. The dashed curve
is the upper bound in Eq. (16) with the spectral response strength
in Eq. (35) for the second-order EP. The dash-dotted curve marks
the upper bound in Eq. (16) with the spectral response strength in
Eq. (37) for the third-order EP at zero detuning. The parameters are
A = −1 = B, Eb − Ea = 2 × 10−3, and Im Ea = Im Eb = 0.

of the second-order EP in Eq. (35) scales close to the third-
order EP (Eb ≈ Ea) as

ξ2 ≈ |A‖B|
|Eb − Ea| = ξ3

|EEP,2 − EEP,3| , (39)

where the spectral response strength in Eq. (37) has been used.
This is in full agreement with the prediction in Eq. (30) for
n = 2 and k = 1.

From Fig. 2 we have learned that the spectral response
strength does not give a tight bound for detunings below
2 × 10−3. Clearly, this statement depends on the given pa-
rameters, in particular on the perturbation strength ε. Figure 3
shows the splitting and the bounds for a detuning of 2 × 10−3

as function of ε. Obviously, the bounds in Eq. (16) appear
here as straight lines with slopes 1/2 and 1/3, respectively.
The spectral response strengths themselves are independent
of ε. For ε above 10−8 the spectral response strength of the
second-order EP seems not to lead to a tight bound. It is larger
than that of the spectral response strength of the third-order EP
nearby (such a “wrong” scaling has been observed previously
in a photonic waveguide-microring system [65]). However,
for smaller perturbation strength it is the other way round. It
is clear from inequality (16) that a large ξ is needed to get
an accurate bound for these small values of ε. It is important
to mention that in Fig. 3 both spectral response strengths
together offer a comprehensive picture of the splitting. To
conclude, the divergence of the spectral response strength
for zero detuning does not hinder the proper description of
the energy splitting even for small detuning as long as the
perturbation strength is sufficiently small.

The dominant contribution to the Green’s function in
Eq. (33) for E close to but different from Ea and Eb is its top
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right matrix element which can be written as

AB

(E − Eb)(E − Ea)2
= AB

(Ea − Eb)(E − Ea)2

− AB

(Ea − Eb)(E − Eb)(E − Ea)
.

(40)

The first term on the right-hand side is the one that enters the
calculation of the spectral response strength of the second-
order EP for Ea �= Eb. This term diverges to infinity for Eb →
Ea. However, the spectral response to perturbations (in terms
of energy eigenvalue changes) remains finite as the second
term on the right-hand side of Eq. (40), which has a pole at
the energy of the isolated eigenvalue, cancels the divergence.
This is analog to the cancellation of divergences in the case
of two isolated eigenvalues coalescing at a second-order EP
[66].

It is also illuminating to interpret the results in Fig. 3
in terms of pseudospectra. These generalized spectra are an
alternative way to study the sensitivity of non-normal ma-
trices subjected to perturbations [67]. Applications in optics
and photonics can be found in Refs. [58,59,68–70]. Given
a positive number ε, the ε-pseudospectrum of a non-normal
matrix Ĥ0 can be defined as the subset of the complex plane

�ε := {E ∈ C : ‖Ĝ(E )‖ > 1/ε} (41)

with Green’s function (8) and arbitrary matrix norm ‖·‖,
which we fix here to be the spectral norm. The pseudospec-
trum of Ĥ0 includes not only the spectrum of Ĥ0 as poles
of Ĝ(E ) but also the eigenvalues resulting from a normalized
perturbation, ‖Ĥ1‖2 = 1, with perturbation strength ε; as can
be understood from inequality (10). The spectral response
strength ξ determines the radius n

√
εξ of the pseudospectrum

disk (the ε-pseudospectral radius [67]) close to the EPn for
sufficiently small ε [38].

Figure 4 shows the pseudospectrum of the toy model with
the same parameters as before. The pole related to the EP2

with eigenvalue Ea is located in the center, and the pole
related to the isolated eigenvalue Eb is to the right of it. For
small ε the isolines of the Green’s function are small circles
around the respective pole. Hence, the response of the EP2

and the isolated eigenvalue to perturbations can be regarded
as being independent. For the same ε, the circle is larger
for the EP2 signaling a larger response if compared to the
individual eigenvalue. This situation corresponds to the low-ε
regime in Fig. 3. At the critical ε = 10c with c = −8.9262 the
isolines related to the EP2 and the isolated eigenvalue touch
each other forming a separatrix-like curve. This transition fits
into the transition region in Fig. 3. For a larger ε a single
closed isoline prevails which becomes more and more circular
shaped as ε is increased further. The joint response of the EP2

and the isolated eigenvalue become indiscernible from that of
a single EP3. In Fig. 3 this corresponds to the regime of large
perturbations where the energy splitting is well described by
the spectral response strength of the EP3. To conclude, the
pseudospectrum in Fig. 4 gives an intuitive understanding of
why the energy splitting as function of perturbation strength
in Fig. 3 shows a transition from an EP2 to an EP3.

FIG. 4. Contour plot of the pseudospectrum [Eq. (41)] of the
Hamiltonian in Eq. (32) in the complex energy plane (dimensionless)
with parameters as in Fig. 3. The dashed curves are the isolines of the
spectral norm of the Green’s function for ε = 10c+0.3, 10c+0.6, and so
on, with c = −8.9262. The solid curves are the isolines for ε = 10c,
10c−0.3, 10c−0.6, and so on.

Finally, let us have a brief look onto the special case Eb =
Ea with variable parameter B. For B �= 0, even if B is very
small, the Hamiltonian in Eq. (32) is at an EP3 with spectral
response strength ξ3 = |A‖B|. Hence, varying the parameter
B moves the system along an exceptional surface of third
order. For B = 0, however, the Hamiltonian possesses an EP2

degenerated with the former isolated eigenvalue. The spectral
response strength of the second-order EP is ξ2 = |A|. Hence,
there is an abrupt transition without a diverging spectral re-
sponse strength. However, Eq. (30) is still correct as ξ3 = 0 in
the limit B → 0.

VI. A REALISTIC EXAMPLE

After we have discussed the toy model in Sec. V we now
turn our attention to a more realistic example studied in the
context of transport of chirality in a deformed microdisk cav-
ity [71]. Deformed microcavities have been studied a lot in
the field of non-Hermitian photonics and wave chaos [72]. In
the latter case, one is interested in the correspondence of wave
properties and ray dynamics in phase space. The relevant wave
properties in the deformed cavity in Ref. [71] are successfully
modeled by the 4 × 4 Hamiltonian

Ĥ0 =

⎛
⎜⎜⎝

�is V 0 0
V �ch A 0
0 B �ch V
0 0 V �is

⎞
⎟⎟⎠. (42)

This Hamiltonian describes the dynamics of a four-state
system. In the optics context, the energy eigenstates are
denoted optical modes and the eigenenergies are the eigen-
frequencies of the optical modes. If we ignore the coupling
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elements V , A, and B for a moment, then we can say that
two modes with complex frequency �is are localized in a
so-called regular-island chain, a nonchaotic part of the ray-
dynamical phase space. One regular-island chain corresponds
to clockwise propagation in real space and the other one to
counterclockwise propagation. The other two counterpropa-
gating modes with complex frequency �ch are localized in the
chaotic region of phase space between the two regular-island
chains. The coupling element V describes the dynamical tun-
neling between a regular-island chain and the surrounding
chaotic region. The backscattering between clockwise and
counterclockwise propagating waves in the chaotic region is
asymmetric, |A| �= |B|; see Ref. [73] for a review of asym-
metric backscattering. The asymmetry originates physically
from a waveguide that is connected to the cavity in a spatially
asymmetric manner.

The eigenvalues of the Hamiltonian in Eq. (42) are the
frequencies of the optical modes. A short calculation gives

�±,σ = �is + �ch + σ
√

AB

2

±

√√√√V 2 +
(

�is − �ch − σ
√

AB

2

)2

, (43)

where the sign in front of the square root and the quantity
σ = ±1 label up to four eigenfrequencies. Here we are inter-
ested in the special case A �= 0, B = 0 (the case A = 0, B �= 0
is similar and not discussed here) which gives two distinct
eigenvalues,

�± = �is + �ch

2
±

√
V 2 +

(
�is − �ch

2

)2

. (44)

If the square root is nonzero, then the system possess two
second-order EPs and otherwise a fourth-order EP. The ar-
gument in the square root can be considered as a complex
variable which can be varied to move the system within an
exceptional surface of second order towards an EP of fourth
order. Following the procedure in Sec. III the spectral re-
sponse strength of the two second-order EPs turn out to be

ξ2,± = |A| |V |2 + |�± − �is|2
|�∓ − �±|2 . (45)

The spectral response strength for the fourth-order EP is

ξ4 = |A|(|V |2 + |�± − �is|2), (46)

where the two eigenvalues �± are coalesced to (�is + �ch)/2.
It can be clearly seen that when the two second-order EPs
merge into a fourth-order EP, the response strength in Eq. (45)
diverges in accordance with Eq. (46) and Eq. (30) for k = 2.

VII. RELATION TO THE DIVERGENCE OF THE
PETERMANN FACTOR

The divergence of the spectral response strength in Eq. (30)
is reminiscent to that of the Petermann factor Kl approaching
an EP in Eq. (18). In fact, the behavior is exactly the same
if we understood

√
Kl as the response strength of isolated

eigenvalue and choose k = n − 1. This analogy between Pe-
termann factor and spectral response strength can be made

more rigorous. To do so, we consider an eigenstate |Rl〉 with
eigenvalue E (0)

l not an EP. The Green’s function from Eq. (20)
simplifies to Ĝ(E ) = P̂l/(E − E (0)

l ). Plugging it into inequal-
ity (10) yields ∣∣El − E (0)

l

∣∣ � ε‖Ĥ1‖2 ‖P̂l‖2. (47)

This is the Bauer-Fike theorem for the change of an isolated
eigenvalue under perturbation [74]. Comparison with inequal-
ity (16) shows that ‖P̂l‖2 plays for the isolated eigenvalue the
same role as the spectral response strength ξ for an EP.

The Bauer-Fike theorem is a standard result in perturbation
theory of non-normal matrices. It is also known that ‖P̂l‖2 is
related to the Petermann factor in Eq. (19), see, e.g., Ref. [74],
even though the name “Petermann factor” is not used in the
mathematical literature. For completeness we present a short
derivation of the relation between ‖P̂l‖2 and Kl . To do so, we
write the projector in terms of right and left eigenstates as

P̂l = |Rl〉〈Ll |
〈Ll |Rl〉 . (48)

This projector maps the right eigenstate |Rl〉 onto itself.
The conditions in Eq. (21) for the projectors are fulfilled as
〈Lj |Rl〉 = 0 if j �= l . The projector in Eq. (48) clearly has rank
1 and therefore with Eq. (1),

‖P̂l‖2
2 = ‖P̂l‖2

F = Tr(P̂†
l P̂l ). (49)

With the normalization ‖Rl‖2 = 1 = ‖Ll‖2 and with
Tr(|a〉〈b|) = 〈b|a〉 one gets

Tr(P̂†
l P̂l ) = 1

|〈Ll |Rl〉|2 . (50)

Using this equation together with Eq. (49) and the definition
of the Petermann factor in Eq. (19) yields

‖P̂l‖2 = √
Kl . (51)

Hence,
√

Kl can be considered as the spectral response
strength of the isolated eigenvalue with quantum number l .
The divergence of this quantity approaching an EP is then just
a particular case of the divergence of the spectral response
strength of an EP approaching a higher-order EP in Eq. (30).
The divergence of the Petermann factor is also artificial in
the sense that the change of the energy eigenvalues remains
in general finite. But it is also essential in the sense that the
strong response to small perturbations near a higher-order EP
is correctly described.

For the spectral response strength and the Petermann
factor, the divergence indicates a structural change of the
eigenvalues (from isolated eigenvalue to EP or from lower-
order EP to higher-order EP) which can be directly observed
in experiments. This conclusion is consistent with the transi-
tion from Lorentzian spectral line shape to squared Lorentzian
discussed in Ref. [66].

VIII. NUMERICAL SCHEME BASED
ON RESIDUE CALCULUS

When the dimension of the Hilbert space exceeds four an
analytical calculation of the Green’s function in Eq. (8) is in
general becoming too cumbersome. Therefore, we introduce
here a numerical method based on Eqs. (20), (23), and (28) for
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FIG. 5. Relative error |ξnum − ξ |/ξ vs detuning |Eb − Ea| (both
are dimensionless) for the Hamiltonian in Eq. (32) in a double
logarithmic scale; see Fig. 2. The lower curve, interrupted by numer-
ically exact data points, marks the numerically determined spectral
response strength ξnum using residue calculus in Eq. (52). The upper,
dashed curve is based on the relation of Petermann factor and ξ in
Eq. (18); see Ref. [54]. The physical parameters are A = −1 = B and
Im Ea = Im Eb = 0. The parameter of the methods are rC = 10−11

and η = 10−21.

this scenario. For a given EP of order nl and eigenvalue EEP =
E (0)

l we apply residue calculus to the expansion in Eq. (20),
see also Ref. [1], to obtain

Ŵ = N̂nl −1
l = 1

2π i

∮
C

dE (E − EEP)nl −1Ĝ(E ), (52)

with C being a simple closed integration path in the com-
plex energy plane that separates the EP eigenvalue EEP under
consideration from the other eigenvalues. For convenience a
circle of radius rC is chosen. The Green’s function Ĝ(E ) is
calculated numerically for each energy E by matrix inversion
and is integrated along the path C in Eq. (52). Finally, the
spectral response strength ξnum is numerically determined by
Eq. (28).

Figure 5 shows for the toy model discussed in Sec. V the
error |ξnum − ξ | of this method relative to the exact spectral
response strength ξ from Eq. (35). With the relative error
below 10−15 in the entire regime of considered detunings,
the agreement between exact ξ and numerically determined
ξnum is extremely good. The missing data points indicate
that here the numerical result using double-precision floating-
point arithmetic in MATLAB is even exact within machine
precision.

The dashed curve in Fig. 5 shows the relative error of
the numerical scheme based on the relation of the Petermann
factor and ξ in Eq. (18). According to the scheme introduced
in Ref. [54] one keeps the Petermann factor finite by adding a

tiny random perturbation of size η to the Hamiltonian. This
random perturbation has an influence on the relative error
which can be reduced by adapting the random perturbation
separately for each value of the system parameters. Here we
simply choose a uniform size of the random perturbation η =
10−21 close to the optimum for the full interval of considered
detunings. We clearly see that this approach performs suffi-
ciently well for most purposes but our novel approach based
on residue calculus is far superior in terms of accuracy. It is,
however, one to two orders of magnitude slower. Moreover,
the superiority in terms of accuracy is reduced in a noisy
environment (not shown), for instance for the random EPs
studied in Ref. [54].

IX. CONCLUSION

We have extended the theory of the spectral response
strength to EPs of arbitrary order and to arbitrary Hilbert-
space dimension. The theory gives an accurate bound for the
changes of the energy eigenvalues for large parameter regions
(in a given exceptional surface) in very good agreement with
numerical solutions of the eigenvalue problem. Only very
close to higher-order EPs the spectral response strength shows
a divergence to infinity that is in general not accompanied by a
divergence of energy eigenvalue changes. However, the diver-
gence signals a phase transition and is essential for describing
the strong response near higher-order EPs. This intriguing
phenomenon has been demonstrated for two example systems
and has been linked to the divergences (and their cancellation)
of the Petermann factors of two energy eigenstates coalescing
at a second-order EP.

We have combined the general theory with residue calculus
to establish an accurate and robust numerical scheme for the
computation of the spectral response strength for the general
case. For an exactly solvable model, we have demonstrated
an excellent agreement between theoretical and numerical
results.

We believe that the presented study is beneficial for the
design of complex non-Hermitian systems in particular for
sensing applications in optics and photonics. It allows to
couple EPs to isolated eigenenergies but also to other EPs of
variable order. Moreover, our theory can be used to search for
high-response regions in a given exceptional surface. The di-
vergence of the spectral response strength can be exploited as
a numerical indicator for a higher-order EP when parameters
are varied within the exceptional surface. This is analog to the
usage of the Petermann factor K or the phase rigidity 1/

√
K

[75–79] as an indicator for EPs.
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