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Dispersion engineering in spin-orbit-coupled spinor F = 1 condensates driven by negative masses
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In this paper, we bring out several potential signatures of negative mass regimes while investigating an
expanding spin-orbit-coupled spinor F = 1 Bose-Einstein condensate by analyzing the dispersion relation of the
single-particle quantum system. In spin-orbit-coupled spinor condensates, a negative-mass parameter generates a
wave packet that propagates in the opposite direction of the momentum. We analyze the dynamics of spin waves
analytically and present a simple approach to investigate the expansion of spinor condensates. In particular, we
examine the dynamics when both masses are negative, which results in the spinor condensates splitting into
two counterpropagating self-interfering packets. Using numerical simulations of the coupled Gross-Pitaevskii
equations, we demonstrate the density expansion and self-interference patterns with and without magnetization
for repulsive and attractive interactions with different coupling parameters. The highlight of our investigation is
that we are able to unearth several phenomena observed in experiments, such as self-interfering packets, pileup,
modulation instability, slow down, self-trapping, and gap solitons. In particular, the gap soliton exists at the gap
created by the intersection of two negative masses.
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I. INTRODUCTION

The interaction between a quantum particle’s spin and mo-
mentum, known as spin-orbit coupling (SOC), has opened up
numerous avenues in quantum science [1,2]. This peculiar yet
fascinating field of research finds applications in almost all
branches of physics like, for example, topological insulators
[3,4], the spin Hall effect [5], Majorana fermions [6], spin-
tronic devices [7], and quantum computing applications [8].
Recently, Bose-Einstein condensation, which belongs to the
class of ultracold atoms, has provided an excellent platform
for conducting quantum studies beyond natural conditions.
One of the major challenges in this investigation is that the
atoms are neutral, and coupling with the gauge field requires
engineering synthetic gauge fields. To overcome this inherent
issue of neutrality, several proposals have been put forward to
realize synthetic gauge fields for quantum gases [9–12].

In the past few years, research on synthetic gauge fields
has evolved towards the “on-demand” engineering of SOC
using laser beams. This field of research is promising due to its
ability to realize exotic configurations of nontrivial topology
and simulate vital electronic phenomena in condensed-matter
physics. The Spielman group at the National Institute of Stan-
dards and Technology made a seminal contribution to this
exciting field by engineering the SOC in neutral Bose-Einstein
condensates (BECs) using a pair of lasers to dress two atomic
spin states [2,13]. They achieved momentum-sensitive cou-
pling in 87Rb, which has equal contributions from Rashba and
Dresselhaus, by using a pair of Raman lasers to address two of
its F = 1 hyperfine spin states: | ↑〉 = |F = 1, mF = 0〉 and
| ↓〉 = |F = 1, mF = −1〉.

Following the pioneering work of the Spielman group at
NIST [13], synthetic SOC has been successfully engineered
with both neutral bosonic and fermionic ultracold atoms [14],

which not only exhibits many exotic phases, but also opens
up a lot of avenues to explore novel SOC physics with an
unprecedented level of tunability of experimental parameters.
Taking advantage of the exceptional tunability of experimen-
tal parameters, SOC in BECs presents an exciting possibility
of engineering more complex dispersion relations through
controlling the Raman laser setup. One of the fundamental
studies in this direction is the concept of negative mass by suit-
ably engineering the dispersion relation in diverse quantum
systems. The negative mass is a hypothetical concept of matter
whose mass is of opposite sign to the mass of normal matter,
say, for example, −2 kg. Such matter may violate some energy
conditions and exhibit strange characteristics [15]. Recently,
Khamehchi et al. have shown how the peculiar dispersion
relation of an atomic spin-orbit-coupled Bose-Einstein con-
densate could lead to unconventional wave-packet dynamics,
interpreted as negative-mass hydrodynamics and reported
phenomena such as self-trapping, soliton trains, and dynami-
cal instabilities [16]. Zhao et al. [17] reported a study on the
periodic transition between negative and positive inertial mass
with ac oscillation of a spin soliton driven by a constant force.
They further discussed the weak force that could be diagnosed
from the ac oscillation phenomena of the spin soliton, which
is similar to recent experiments observed in optomechanical
instruments. Farolfi et al. investigated the collisional dynamics
of magnetic solitons in a harmonically trapped binary mix-
ture using phase imprinting [18]. Following their work, Chai
et al. reported a magnetic soliton in a spin-1 Bose-Einstein
condensate using the magnetic phase imprinting method and
observed good agreement with numerical simulations based
on the one-dimensional Gross-Pitaevskii equation [19]. Meng
et al. investigated spin solitons employing the dispersion
relation with critical velocities to demarcate the boundary
between negative- and positive-mass regimes. A correlation
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between the width and the speed helped them to distinguish
between bright and dark solitons [20].

A more comprehensive theoretical study on the negative-
mass effect in spin-orbit (SO)-coupled BECs was reported
recently by Colas et al. [21]. In this work, the authors have
discussed the conceptual evidence and the physical interpre-
tation of the negative masses beyond the description reported
in Ref. [16]. They have also brought out the characteris-
tics of several regimes that determine the signs of different
effective-mass parameters, say m1 and m2 derived from the
energy-dispersion relation. At this juncture, it is worth point-
ing out that both these investigations on the negative-mass
effect were centered around SO-coupled spin-1/2 BECs,
which means that the ramifications of negative mass on SO-
coupled spinor F = 1 BECs have still not yet been explored.
Thus, inspired by the distinct features of SOC and the phys-
ical relevance of the F = 1 system, we intend to study the
dynamical behavior of negative mass in SO-coupled BECs.
In this paper, we investigate the impact of negative mass
in SO-coupled F = 1 spinor condensates. First, we discuss
the situation at the single-particle level, showing the peculiar
features of the single-particle energy spectrum. We then study
the dynamics in a regime where both the masses, m1 and m2,
are negative.

The paper is organized as follows. After a detailed intro-
duction, Sec. II presents the theoretical model that describes
the concept of negative mass and the Hamiltonian of the
problem under investigation. The energy-dispersion relation
and the characteristics of the dispersion curve are discussed in
Sec. III. In Sec. IV, we bring out through numerical simulation
several interesting signatures of negative-mass regimes like
symmetric expansion, the self-interference pattern (SIP), etc.
We then conclude with the highlights of the investigation in
Sec. V.

II. THEORETICAL MODEL

We review the fundamental concepts of negative mass
using the energy-dispersion relation [22]. Expanding the
energy-dispersion relation up to the second order, we get
E (p) = E0 + vg(p − p0) + (p − p0)2/[2m2(p0)], which can
be used to deduce two mass parameters, m1 and m2, that
dictate the dynamics of the system under consideration by

m1 = p

vg
= p

(
∂E

∂ p

)−1

, (1a)

m2 =
(

∂2E

∂ p2

)−1

. (1b)

Both mass parameters are equally important if one has to con-
sider both the propagation and the diffusion of wave packets.
In an isotropic system, the mass parameters m1 and m2 are
respectively related to the group velocity and the acceleration
of wave packets as given by Eq. (1). In the case of anisotropic
materials, the above relations hold with a slight modification,
such that the particle momentum and velocity can be related as
pi = mi jv j , where mi j is the effective-mass tensor, pi and v j

(i, j = x, y, z) are the components of momentum and velocity,
respectively. For the present study, we adopt the experimental
realization of tunable SO-coupled BEC in 87Rb reported by

Lin et al. [13]. In that configuration, two counterpropagating
Raman lasers of wavelength (λr) were used to couple the
states with strength �. The Raman wave vector is given by
kL = 2π sin(βr/2)/λr , where βr is the orientation of Raman
lasers.

In this context, we consider the SOC among the three
spin components of the F = 1 hyperfine state 5S1/2 of
87Rb, namely, |F = 1, mF = 1〉, |F = 1, mF = 0〉, and |F =
1, mF = −1〉, where mF is the z projection of F [23]. The
observation of Feshbach resonances in 87Rb to manipu-
late scattering lengths has been extensively analyzed earlier
[24–26]. Then, the single-particle Hamiltonian of the quasihy-
perfine spin-1 SO-coupled BEC confined along the x axis by a
strong transverse trap along the y and z axes can be written as

H0 = p2
x

2m
+ kL pxΣz + V (x) + �Σx. (2)

We consider three possible SO couplings in the above
Hamiltonian of the forms kL pxΣx, kL pxΣy, and kL pxΣz,
where kL is the SOC parameter; � is the Rabi frequency;
V (x) is the trapping potential; px = −ih̄∂x is momentum
operator; and Σx, Σy, and Σz are the spinor-1 angular
momentum operators, which are given by

Σx = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, Σy = i√

2

⎛
⎝0 −1 0

1 0 −1
0 1 0

⎞
⎠,

Σz =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠. (3)

In the standard computational basis, the matrix notation of
the Hamiltonian is

H0 =

⎛
⎜⎜⎜⎝

p2
x

2m + pxkL
�√

2
0

�√
2

p2
x

2m
�√

2

0 �√
2

p2
x

2m − pxkL

⎞
⎟⎟⎟⎠. (4)

By setting the trapping potential as zero, the energy eigen-
spectra corresponding to the homogeneous noninteracting
SO-coupled BECs can be written as

ωy,z(p) = p2
x

2m
and ω±y,z(p) = p2

x

2m
±

√
�2 + p2

xk2
L. (5)

If we consider SOC along the y or z axis, the eigenvalues
remain the same. On the other hand, the energy of the system
considering SOC along the x axis is given by

ωx(p) = p2
x

2m
and ω±x(p) = p2

x

2m
± kL px − �. (6)

Under the Hartree approximation, the spinor BEC in a
quasi-one-dimensional trap can be described by a set of three
coupled Gross-Pitaevskii (GP) equations for the three compo-
nents of the wave function ψ j , j = −1, 0, and +1, as [27–31]
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ih̄
∂
±1

∂t
=

[
− h̄2

2m

∂2

∂x2
+ V (x) + c0n + c2(n±1 + n0

−n∓1

]

±1 + c2


2
0
∗

∓1 + �√
2

0 ∓ ih̄kL

∂
±1

∂x
,

(7a)

ih̄
∂
0

∂t
=

[
− h̄2

2m

∂2

∂x2
+ V (x) + c0n + c2(n+1 + n−1)

]

0

+2c2ψ+1
−1

∗
0 + �√

2
(
+1 + 
−1), (7b)

with

c0 = 2h̄2(a0 + 2a2)

3ml2
yz

, c2 = 2h̄2(a2 − a0)

3ml2
yz

, (8)

where a0 and a2 are the s-wave scattering lengths in the total
spin-0 and spin-2 channels, respectively. n = ∑

j n j is the
total density, with n j = |
 j |2, and j = 1, 0, and −1 are the
densities of the individual spin components.

We choose spin-1 87Rb atoms with scattering lengths
a0 = 101.8aB and a2 = 100.4aB, where aB is the Bohr ra-
dius, and we use the experimental trapping frequency range
2π × 230 Hz [32] in our numerical simulations. If c0 > 0
and c2 < 0, the interaction is repulsive, while it is attractive
for c0 < 0 and c2 < 0 [31,33], and the concept of Feshbach
resonance can be employed for manipulating the scattering
lengths [34,35] to determine the characteristics of the conden-
sates [36].

The harmonic trap is given as V (x) = mω2
x x2/2, and lyz =√

h̄/(mωyz ) is the oscillator length in the transverse y−z plane,
where ωyz = √

ωyωz. The normalization condition is

∫ ∞

−∞
dx

1∑
j=−1

|
 j (x)|2 = N. (9)

In the above, N is the total number of atoms, which is of the
order of 103, and l0 = √

h̄/mωx is the oscillator length along
the x axis.

It is convenient to transform Eq. (7) into a dimensionless
form, for which we use the following change of variables,

x = l0x̃, t = ω−1
x t̃, 
(x, t ) = N

1
2 l

− 1
2

0 ψ j (x̃, t̃ ). (10)

By applying the change of variables (10) to Eq. (7), the cou-
pled GP equations can be expressed as

i
∂ψ±1

∂t
=

[
−1

2

∂2

∂ x̃2
+ Ṽ + c̃0ñ + c̃2(ñ±1 + ñ0 − ñ∓1)

]
ψ±1

+c̃2ψ
2
0 ψ∗

∓1 + �̃√
2
ψ0 ∓ ik̃L

∂ψ±1

∂x
, (11a)

i
∂ψ0

∂t
=

[
−1

2

∂2

∂ x̃2
+ Ṽ + c̃0ñ + c̃2(ñ+1 + ñ−1)

]
ψ0

+2c̃2ψ+1ψ−1ψ
∗
0 + �̃√

2
(ψ+1 + ψ−1), (11b)

FIG. 1. Plots of (a) energy dispersion in the absence of spin-orbit
coupling and (b) energy dispersion as a function of momentum for
some representative values of Rabi coupling with fixed parameters of
m = 1 and kL = 5.

with

c̃0 = 2Nl0(a0 + 2a2)

3l2
yz

, c̃2 = 2Nl0(a2 − a0)

3l2
yz

, (12)

where Ṽ = x̃2/2; k̃L = h̄kr/mωxl0; �̃ = �/h̄ωx; ñ j = |ψ j |2,
with j = 1, 0, and −1; and ñ = ∑1

j=−1 |ψ j |2. Since the num-
ber of atoms N is absorbed in the dimensionless quantities,
the normalization and magnetization conditions satisfied by
the ψ j’s become

∫ ∞

−∞

1∑
j=−1

ñ j (x̃)dx̃ = 1 (13)

and

M =
∫ ∞

−∞
[ñ1(x̃) − ñ−1(x̃)] dx̃. (14)

For the sake of simplicity of notation, we denote the dimen-
sionless variables without a tilde in the rest of the paper. The
numerical results are discussed in Sec. IV for repulsive and
attractive interactions with and without magnetization.

III. ANALYTICAL RESULTS

The energy-dispersion relation is the fundamental frame-
work of the investigation which governs the dynamics of
the underlying dynamical system. It is evident from Eq. (5)
that the energy spectrum consists of two branches. The
± sign denotes the different helicity basis corresponding to
either parallel or antiparallel spin-index with reference to the
wave vector. It is interesting to note that in the conventional
BECs, the atoms condense at the ground state often recog-
nized as a nondegenerate zero-momentum state, which does
not occur in the SO-coupled BECs where one comes across
multiple lowest degenerate energy states due to nonparabolic
energy-momentum dispersion, unlike the conventional BECs.
Figures 1(a) and 1(b) show the energy spectrum correspond-
ing to BECs without and with SOC and Rabi coupling
respectively. It is quite obvious from the above that the energy
spectrum exhibits a single free-particle parabolic dispersion
demonstrating the lowest energy state in the absence of the
spin-orbit and Rabi couplings, i.e., ω± = p2

x/2m. In other
words, without SOC, the Hamiltonian represented by Eq. (4)
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has a unique minimum at px = 0 as shown in Fig. 1(a). It
is straightforward to note from the expressions of the mass
parameters that purely parabolic dispersion amounts to equal
values of m1 and m2. As evident from Fig. 1(b), the SOC
changes the energy spectrum considerably leading to a non-
parabolic energy dispersion, where the two mass parameters
cannot be equal. In the present case, we identify the non-
parabolic energy dispersion as a consequence of the negative
effective-mass parameter which is related to the negative
curvature of the dispersion relation. Another notable feature
is that the introduction of Rabi coupling when reinforced
with the SOC generates a symmetric double-well potential as
shown in Fig. 1(b) unlike the results reported in Ref. [21].
The symmetric nature of the double-well potential can be
attributed to the absence of detuning parameter in the Hamil-
tonian unlike in Ref. [21]. It should also be reiterated that
the SOC term has been added as a linear perturbation in the
Hamiltonian given by Eq. (2), which contributes to the double-
well potential unlike in Ref. [37] where the SOC has been
reinforced with momentum giving rise to a quadratic term
in the Hamiltonian, thereby generating a triple-well structure.
Dispersion with negative curvature plays an increasingly im-
portant role in quantum hydrodynamics, fluid dynamics, and
optics. Manifestations of negative-mass effects are observed
in several quantum systems and the SO-coupled BECs can
be exploited to witness controllable dispersion engineering
through negative masses. In accordance with our results, more
recently, a similar form of the double-well dispersion relation
has been identified [38]. In contrast to the above, the standard
spin F = 1 BEC may have a three-well structure also. This
arises due to the fact that the SOC term has been reinforced
with momentum in the Hamiltonian, making it quadratic,
which contributes to the three-well structure.

From the general expression given by Eq. (1), one can
compute the mass parameters corresponding to the underlying
system as

m1 = m(
1 − mk2

L√
�2+p2

xk2
L

) , (15a)

m2 = m(
1 − k2

L�2m
√

�2+p2
xk2

L

(�2+p2
xk2

L )2

) . (15b)

As the dispersion regime and other related characteristics
critically depend on the strength of the Rabi coupling, we
show, in Figs. 2(a) and 2(b), the effective-mass parameters
in the momentum space for some representative values of
Rabi coupling. It is evident from Fig. 2 that the effective
mass is sensitive to the Rabi strength. As the strength of the
Rabi coupling increases, the negative region of both mass
parameters shrinks, with m2 being more sensitive to � than
m1. The variation of the group velocity as a function of the
momentum is portrayed in Fig. 3 using Eq. (1). The absolute
value of the group velocity of the wave packet is found to be

v− = p

m
− pk2

L√
�2 + p2k2

L

. (16)

It is apparent from the above discussion that the mass param-
eters and the group velocity of the wave packets depend on

FIG. 2. Plots of (a) the variation of mass parameter m1 and
(b) the variation of mass parameter m2 as a function of momentum
are shown for a selected set of Rabi coupling strengths with fixed
parameters m = 1 and kL = 5.

the strength of the SO and Rabi couplings, which is indeed
a manifestation of the potential of the SO-coupled BECs for
more effective dispersion engineering on quantum systems.
In Fig. 4, we display the variation of the system parameters in
the momentum space for some representative values of kL and
� corresponding to the lower branch of the energy spectrum.
The inflection point representing the change of the sign of m2

can be estimated using Eq. (1b) as

px1,2 = ±
√(

m�2

kL

)2/3

−
(

�

kL

)2

. (17)

Similarly, the points on the momentum space at which the
effective mass m1 diverges can be deduced from Eq. (1a) as
follows:

px3,4 = ±
√

−�2 + m2k4
L

kL
. (18)

In the parametric space of interest, one of the notable charac-
teristic differences between the spin-1/2 reported in Ref. [21]
and the present case of F = 1 is the shape of the energy
spectrum. The energy-dispersion spectrum is symmetric in
the momentum space, as is evident from Fig. 4, unlike in

FIG. 3. Plot of group velocity as a function of px with fixed
spin-orbit coupling (kL = 5) and mass (m = 1) for different Rabi-
coupling strengths (�).
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FIG. 4. Plots showing the variation of energy (solid black line
with circles), group velocity (dashed blue line), and mass parameters
(m1 is denoted by the dash-dotted green line and m2 is denoted by
the solid red line) in momentum space presented for two different
scenarios: (a) kL = 6 and � = 2, and (b) kL = 5 and � = 5, with a
fixed parameter of m = 1.

Ref. [21]. It should be emphasized that the shape of the
energy spectrum dictates the dynamics of the system under
investigation. One can understand from Fig. 4 drawn out for
two different sets of parameters that the energy spectrum,
the group velocity, and the mass parameters depend on the
strengths of Rabi coupling and SOC, which means the shape
of the energy spectrum can be manipulated accordingly, lead-
ing to dispersion engineering.

It is worth observing from the above that one can inter-
pret most of the dynamical behaviors of the system from
the momentum-dependent velocity v(px ) given by Eq. (16),
which can be straightforwardly related to the mass parameters
m1 and m2 as defined by the expression (1). Figure 4 shows
how the group velocity, the energy, and the mass parameters
vary in momentum space as a function of Rabi coupling and
SOC. It can be observed from Figs. 4(a) and 4(b) that the
linear part on either side of the zero momentum when the
mass parameter m2 diverges corresponds to a local maximum
or minimum in the group velocity. The maximum and min-
imum are sensitive to the strength of the Rabi coupling as
predicted earlier from Fig. 3. In addition, the point where
the velocity becomes zero corresponds to the maxima of the
energy-dispersion curve, and the region where the velocity
attains negative values corresponds to the domain where the
energy-dispersion curve tends to its minima. One of the key
features of the velocity curve is the existence of the negative
region owing to the negative-mass parameters where the wave
packet moves in the opposite direction in response to the
impulse.

IV. NUMERICAL SIMULATIONS

We begin our simulation with an expanding spin-orbit-
coupled three-component spinor condensate with the time
integration of the equation using the split-step method [39,40].
The negative mass regime, which had been associated with
several interesting phenomena like the SIP, self-trapping, etc.,
had earlier been observed by Colas et al. for spin 1/2 SO
coupled Bose-Einstein condensates which is given by a single
band Gross-Pitaevskiii equation [16,21], by initially position-

ing the condensate at the bottom of the lower branch and
releasing the trap from one side.

We adopt the same approach for SO-coupled spinor
F = 1 condensates and observe some of the dynamical
phenomena like solitons, dynamical instability, pileup, the
self-interference pattern, and self-trapping effects when the
condensate starts to expand in the three different compo-
nent densities (|ψ+1|2, |ψ0|2, and |ψ−1|2). To start with, we
prepare the ground-state wave functions of one-dimensional
(1D) harmonically trapped condensate by taking the initial
condition as a Gaussian wave employing the imaginary-time
propagation of the Gross-Pitaevskii equation (7). We study the
dynamics by initially positioning the condensate at the bottom
of the lower branch and releasing it from the harmonic trap
during real-time propagation [41].

A. Expansion dynamics and self-interference

In a recent development, Su et al. demonstrated the self-
interfering dynamics of a wave packet using the Wigner
distribution function [42]. They observed the self-interfering
dynamics in a noninteracting condensate by engineering dis-
persion using either optical lattice or spin-orbit coupling.
Additionally, they observed asymmetric expansion dynamics
by positioning the wave packet at the center (x = 0) and
keeping detuning nonzero, while symmetric expansion is wit-
nessed for zero detuning.

Here, density fluctuations are observed from the center
to the tail of the condensate. This accumulation of density
fluctuations, often referred to as “dynamical instability” at
the edges, is called “pileup” and it occurs for different Rabi-
coupling strengths. The density fluctuations are much more
pronounced when we increase � from 2 to 6 while keeping
kL = 5.

Moreover, the expansion of the condensate depends on
the strength of the nonlinearities. For smaller nonlinearities,
the wave packets expand faster and continuously. How-
ever, for larger nonlinearities, by increasing the number of
atoms, the expansion slows down, and the condensate stops
expanding and becomes self-trapped, similar to the case
of Bose-Einstein condensates in optical lattices by Wang
et al., who studied larger nonlinearities with different atom
numbers [43].

We first study the self-interference packet for the repulsive
condensates with nonlinearities c0 = 0.25 and c2 = −0.001.
Figure 5 shows the condensate expansion for different values
of � while keeping kL = 5 and magnetization at zero. We
observe a symmetric expansion where the densities of |ψ+1|2
and |ψ−1|2 are equal, while |ψ0|2 has a different density. The
snapshots at t = 30 are depicted in Figs. 5(a)–5(f). Figure 5(a)
shows fluctuations only at the edges when � = 1. In contrast,
Fig. 5(b) exhibits a decrease in density while the fluctuations
begin to appear from the center to the edges, and the expan-
sion slows down compared to Fig. 5(a). The density is much
smaller for � = 6, � = 8, and � = 10, as shown in Figs. 5(d)
and 5(e), and the fluctuations are observed from the center to
the edges. Here, the expansion is slower compared to the other
cases. The slower expansion rate of the condensate leads to an
increase in the effective mass, which is identical to that of
Ref. [41].
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FIG. 5. The snapshots of the one-dimensional symmetric ex-
pansion of a spin-orbit-coupled Bose-Einstein condensate without
magnetization (M = 0) for kL = 5 and for different strengths of
(a) � = 1, (b) � = 2, (c) � = 4, (d) � = 6, (e) � = 8, and (f)
� = 10 at t = 30.

It can also be observed from Fig. 5 that, when we re-
lease the trap and allow the condensates (wave packet) to
expand by increasing the strengths of Rabi coupling, the width
and the density of the wave packet decrease. This ultimately
leads to the trapping of the atoms within the condensates, a
phenomenon which we refer to as “self-trapping.” The word
“self-trapping” arises because we switch off the trap, which
allows the condensates to trap the atoms inside by increasing
the Rabi coupling. The self-trapping phenomenon in BECs
has many applications, such as matter-wave interferometry,
atom optics, and quantum information processing [44]. It is
worth pointing out at this juncture that the introduction of
magnetization does not impact the dynamics of self-trapped
BECs as well.

Similarly, Fig. 6 shows the condensate expansion for dif-
ferent strengths of �, with kL = 5 and a fixed magnetization
of M = 0.4. All these figures are similar to Fig. 5, except that
three distinct densities are observed for each case due to the
removal of degeneracy, while the other observations remain
the same as before.

Using real-time propagation, we perform a numerical sim-
ulation of the expansion of a quasi-1D ferromagnetic BEC by
releasing it from a harmonic trap. The densities of the spin
components, |ψ j |2 ( j = 0 and ±1), at three different time
instances are depicted in Figs. 7(a)–7(c). Figures 7(d)–7(f)
present a space-time plot of the densities, showing that the
self-interaction causes the momentum distribution to broaden,
making them spread in real space. In the absence of mag-
netization, ψ+1 and ψ−1 have equal pseudo-spin-component
densities. However, the presence of a magnetic field breaks
the spin-1 component’s degeneracy, leading to lower density
fluctuations at the edges [32]. Figures 7(d) and 7(f) exhibit

FIG. 6. The snapshots of the one-dimensional symmetric
expansion of a spin-orbit-coupled Bose-Einstein condensate with
magnetization (M = 0.4) for kL = 5 and for different strengths of
(a) � = 2, (b) � = 4, (c) � = 6, and (d) � = 8 at t = 30.

the same density for ψ+1 and ψ−1, whereas Fig. 7(e) shows a
different density, ψ0, when the magnetization is zero.

Similarly, the SIP is also observed in Figs. 8(a) to 8(c),
which depict the component densities |ψ j |2 ( j = 0 and ±1)
at three different instants of time. The space-time plots of the
densities are shown in Figs. 8(d) to 8(f) when the magnetiza-
tion is 0.4.

We have also observed a SIP for attractive interactions
in Fig. 9, which shows the numerically calculated real-time
propagation of the three component densities ψ j where j = 0
and ±1 of a quasi-1D ferromagnetic BEC with the release of
the harmonic trap, with nonlinearities being c0 = −1.5 and
c2 = −0.3. Figures 9(a), 9(b), and 9(c) show the expansion
dynamics when the magnetization is zero, which emphasizes

FIG. 7. Plots showing the expansion dynamics with coupling
parameters � = 2 and kL = 5, numerically calculated with nonlin-
earities c0 = 0.25 and c2 = −0.001, for the case without magnetiza-
tion. The 1D density plots at times t = 0, 10, and 20 are shown in
panels (a), (b), and (c), respectively. Panels (d), (e), and (f) show the
dynamics of the spin-component densities |ψ+1|2, |ψ0|2, and |ψ−1|2.
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FIG. 8. Plots displaying the real-time expansion of a BEC with
coupling parameters � = 2 and kL = 5, as computed numerically
with nonlinearities c0 = 0.25 and c2 = −0.001 and a magnetization
of 0.4 at different times: (a) t = 0, (b) t = 10, and (c) t = 20. The
space-time plot shows the dynamics of the densities for (d) |ψ+1|2,
(e) |ψ0|2, and (f) |ψ−1|2.

that the density expansion is the same for ψ+1 and ψ−1,
whereas it is different for ψ0. On the other hand, Figs. 9(d),
9(e), and 9(f) correspond to the expansion dynamics when the
magnetization is 0.4, demonstrating that the density expansion
is different for all three cases, which indicates the removal of
degeneracy. Moreover, one can also observe a clear expansion
of the self-interference packet with time evolution.

FIG. 9. Plots illustrating the evolution of spin-component densi-
ties, |ψ j |2, for coupling parameters � = 2 and kL = 5 and interaction
strengths of c0 = −1.5 and c2 = −0.3 at different instances of time.
Panels (a)–(c) depict the scenario where magnetization is absent,
while panels (d)–(f) correspond to the case where magnetization is
present. The time intervals shown are t = 0, t = 25, and t = 50.

FIG. 10. Plot of the density of the expanding wave packet in the
momentum space, ψ+1(px ), at t = 10, 20, and 30. The parameters are
fixed at c0 = 0.25 and c2 = −0.001, � = 2, and kL = 5 (cf. Fig. 7).

From the dispersion relation shown in Fig. 1, one observes
a gap between the two lowest bands around px = 0 which
indicates that the system may admit gap solitons. To extract
gap solitons, one begins with the expansion dynamics shown
in Fig. 7 and transform it into the momentum space. We
then superimpose the dispersion relation and negative masses
onto the wave-packet dynamics in the momentum space. From
Fig. 10, one witnesses a localized wave around px = 0. This
soliton is situated at the intersection of two negative masses
and is confined within a narrow interval on both sides of
px = 0 termed as a band gap. This gap soliton is completely
different from what is being observed in Ref. [37] where one
observes two peaks by virtue of two maxima in the triple-well
potential. The presence of one maxima (energy) in the disper-
sion relation gives rise to one peak (localized pulse) which lies
at the intersection of two negative masses.

B. Velocity profile during expansion and phase transition

Next, we investigate the velocity profile of the condensate
during symmetric expansion. We calculate the expansion ve-
locity during time evolution by recording the time taken for
the expanding wave front, with a threshold amplitude typically
a few percent of the maximum amplitude, to cross each spatial
grid point. Figure 11 depicts the distance versus time graph of
the expanding condensate for various strengths of �, with kL

fixed at 5 and without magnetization. The plot drives home
the point that for small values of Rabi frequency, i.e., when
� = 1 and � = 2, the wave packet expands faster in a shorter
interval of time. The wave-packet expansion “slows down” as
we increase the Rabi coupling, as seen in the cases of both
� = 2 and � = 4. When � = 6, 8, or 10, the expansion of
the condensate slows down significantly. This “slow down”
of the wave packet is another signature of the negative-mass
regime. In particular, one observes a flat profile for kL = 2
and ω = 4.1. The velocity profile exhibited during the con-
densate expansion is comparable to the one observed in a
prior study by Khamehchi et al. [16]. The flat profile has
motivated us to look for the time evolution of spinor BECs
for the same choice of parameters. The plots depicted in
Figs. 12(a)–12(c) showcase the dynamics of spin-component
densities for kL = 2 and � = 4.1, observed at various time
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FIG. 11. Distance versus time plot showing the expansion for
various values of �, with kL fixed at 5 (without magnetization). The
slopes of these curves correspond to the expansion velocities and
are v = 4.10 (� = 1), 3.64 (� = 2), 2.94 (� = 4), 2.38 (� = 6),
1.92 (� = 8), and 1.52 (� = 10) in units of l0 × ωx . The magenta
dash-dotted line corresponds to kL = 2 and � = 4.1.

intervals. Figures 12(d)–12(f) illustrate the temporal evolu-
tion and unearth the potential emergence of a localized state
resulting from the interplay of nonlinear atomic interactions
with SOC and Rabi parameters. This phenomenon leads to the
formation of a localized region with relatively high density,
often referred to as a soliton. The soliton remains localized
around x = 0 with a marginal change in amplitude during the
time evolution.

We then study the expansion velocity of the condensate for
different combinations of kL and �. Figures 13(a) and 13(b)
show the variation of expansion velocity as a function of kL for
different values of � for attractive and repulsive interactions,
respectively. It may be observed that the velocity decreases

FIG. 12. Emergence of solitons in the dynamics of Bose-Einstein
condensates (BEC) with coupling parameters kL = 2 and � =
4.1 computed numerically with nonlinearities c0 = 0.25 and c2 =
−0.001, without magnetization at different times: (a) t = 0, (b) t =
50, and (c) t = 100, and the corresponding space-time plot for
(d) |ψ+1|2, (e) |ψ0|2, and (f) |ψ−1|2.

FIG. 13. The plot of the wave-packet expansion velocity as a
function of kL for different values of �, with (a) c0 = 0.25 and c2 =
−0.001 (repulsive interaction) and (b) c0 = −1.5 and c2 = −0.3
(attractive interaction), in the absence of magnetization.

for small values of kL and reaches a minimum close to zero
at a critical value. After this critical kL, the velocity increases
linearly with kL, which is shown in Fig. 13(a). Similarly, in
Fig. 13(b) for small values of kL, the velocity is nearly equal
to zero and there is a sudden increase in velocity after the
critical point. Another interesting observation is that the crit-
ical value of kL that separates the condensates with different
velocity profiles is almost the same, except that for attractive
interactions the momentum is imparted to the condensates
only after the critical value. This implies that the self-
trapping of the condensates is more pronounced in attractive
interactions.

In addition, we have numerically computed the expansion
velocities in the kL−� plane for a range of values: kL ∈ [0, 6]
and � ∈ [0, 8]. Figure 14(a) illustrates a phase diagram of
the velocity profiles of the expanding wave-packet front in
the kL−� plane for the repulsive case with c0 = 0.25 and
c2 = −0.001. Based on these figures, we observe that the
velocity patterns are nonuniform and vary according to the
values of kL and �. By varying kL and �, we have observed
that the expansion velocity approaches zero for certain critical
values of these parameters. At the critical point, there is an
effective localization. This observation suggests the occur-

FIG. 14. Phase diagram illustrating the wave-packet expansion
velocity as a function of kL and �, with (a) c0 = 0.25 and c2 =
−0.001 (repulsive interaction) and (b) c0 = −1.5 and c2 = −0.3 (at-
tractive interaction), in the absence of magnetization. The theoretical
� = k2

L boundary, where the transition from plane-wave to stripe-
wave pattern occurs, is denoted by the white dash-dotted curve.
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rence of a quantum phase transition, which is actually from
the plane-wave phase to the stripe-wave phase. To determine
the critical values of kL and �, we have examined the density
profiles of the condensate. The values we obtained are consis-
tent with those computed using the single-particle dispersion
relation described in Eq. (5). The dispersion relation predicts
a plane-wave phase for � < k2

L and a stripe-wave phase for
� > k2

L.
Similarly, in Fig. 14(b), we show the velocity profiles of

the expanding wave-packet front as a function of the strengths
of the SO and Rabi couplings, kL and �, for the attractive case
with c0 = −1.5 and c2 = −0.3. We can see that the velocity
is equal to zero, and the condensate does not expand for
small values of the SOC strengths. However, for large kL, the
velocity patterns resemble those of the repulsive case shown
in Fig. 14(a). Since the system is attractive, it is quite natural
to observe self-trapping for small values of kL. The phase
transition from the plane-wave phase to the stripe-wave phase
occurs close to the analytical prediction, which is � = k2

L.
Similar phase transitions have been reported for harmonic
traps in previous works [45–47].

V. CONCLUSION

In this paper, we have investigated the dynamics of F = 1
spinor spin-orbit-coupled BECs described by a three-coupled
GP equation in a range where the effective mass becomes
negative due to the interplay between SOC and Rabi coupling.
The density and time evolution profiles of the condensates
show the existence of SIPs for different coupling parameters

for magnetized and unmagnetized states for both repulsive
and attractive interactions. The density fluctuations are ob-
served from the center to the tail, and we have found that
increasing � while keeping kL constant reduces the expansion.
Our investigation highlights the observation of a symmetric
double-well potential that identifies two stable regimes, in
contrast to spin-1/2 SO-coupled BECs. Our results suggest
the possibility of observing multiple stable states based on the
SOC, the Rabi coupling, and the interaction strength. Further-
more, we have observed a quantum phase transition from a
plane-wave phase to a stripe-wave phase, where the expan-
sion velocity becomes nearly zero. This transition may have
wider ramifications in the areas of quantum and condensed-
matter physics. Besides, several signatures associated with the
negative-mass regime, such as symmetric expansion, pile-up,
modulation instability, slow down, self-trapping, and gap soli-
tons, have also been identified, in addition to SIPs. We believe
that the results of our paper may motivate researchers to in-
vestigate the implications of negative masses in spinor F = 1
spin-orbit-coupled BECs from an experimental perspective.
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