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Bose mixture quantum droplets display a fascinating stability that relies on quantum fluctuations to prevent
collapse driven by mean-field effects. Most droplet research focuses on untrapped or weakly trapped scenarios,
where the droplets exhibit a liquidlike flat density profile. When weakly trapped droplets rotate, they usually
respond through center-of-mass motion or splitting instability. Here, we study rapidly rotating droplets in
the strong external confinement limit where the external potential prevents splitting and the center-of-mass
excitation. We find that quantum droplets form a triangular vortex lattice as in single-component repulsive
Bose-Einstein condensates (BECs), but the overall density follows the analytical Thomas-Fermi profile obtained
from a cubic equation. We observe three significant differences between rapidly rotating droplets and repulsive
BECs. First, the vortex core size changes markedly at finite density, visible in numerically obtained density
profiles. We analytically estimate the vortex core sizes from the droplets’ coherence length and find good
agreement with the numerical results. Second, the change in the density profile gives a slight but observable
distortion to the lattice, which agrees with the distortion expected due to nonuniform superfluid density. Lastly,
unlike a repulsive BEC, which expands substantially as the rotation frequency approaches the trapping frequency,
rapidly rotating droplets show only a fractional change in their size. We argue that this last point can be used to
create clouds with lower filling factors, which may facilitate reaching the elusive strongly correlated regime.
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I. INTRODUCTION

Rotating a Bose-Einstein condensate (BEC) results in
nonclassical phenomena due to the irrotational nature of su-
perfluid flow in the absence of density singularities [1,2].
A phase-coherent BEC carries angular momentum through
quantized vortices, forming a regular vortex lattice to mimic
solid body rotation. Single-component BECs with repulsive
interactions were experimentally observed to create a trian-
gular lattice of singly quantized vortices when rotated in an
isotropic harmonic trap [3-5]. The rotation frequency and
superfluid density dependence of the vortex core size, vortex
density, and condensate radius of the rotating repulsive BECs
are theoretically studied for both the Thomas-Fermi (TF) and
the lowest Landau-level (LLL) regimes [6]. On the other hand,
BEC:s of attractively interacting atoms are only metastable un-
der harmonic confinement, and they carry angular momentum
via center-of-mass (COM) rotation rather than vortices [7].

Vortex lattices of two-component BEC mixtures were
investigated for various intracomponent g;; and g;; and in-
tercomponent g, interactions [6,8—11]. Depending on the
strength of the repulsive gj, > 0, the mixture can exhibit
coincident or displaced lattices with triangular, square, or rect-
angular symmetries. For the attractive intercomponent g, <
0 and mechanically stable |g12| < /g11822 Bose mixtures,
both components coincide and form a triangular lattice [8].
However, the mean-field (MF) treatment of the Bose mixture
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problem predicts that the condensate is unstable towards col-
lapse for g12 < O and |g12| < ,/g11822 [1]. The mixture can be
metastable for a small number of particles if it is confined by
a harmonic trap.

Quantum fluctuations can drastically modify the mean-
field prediction toward collapse. Bose mixture quantum
droplets are mechanically stable self-trapped phases without
any external confinement, where attractive MF interaction
o« —8gn? is countered by the effectively repulsive beyond
mean-field (BMF) fluctuations o gBMan/ 2 [12]. Here, 6g =
|g12| — /&11822 and n is the condensate density. For large par-
ticle numbers N, the interaction energy dominates the ground
state, and the equilibrium density profile is almost like an
incompressible liquid with a constant density [12]. For smaller
N, the droplet can still stabilize itself, but the ground state ex-
hibits a smoothly decaying density profile. There is a critical
particle number below which the kinetic-energy cost is too
large and the droplet cannot sustain itself against expansion if
it is not trapped.

The quantum droplet has features of both the attractively
interacting BEC due to mean-field energy and the repulsively
interacting BEC due to quantum fluctuation. The response of
a quantum droplet to rotation is not straightforward. Specifi-
cally, the competition between the mean-field interaction and
the quantum fluctuations gives rise to a new length scale,
which is determined by the droplet’s equilibrium density. Re-
cent investigations of the problem mainly concentrated on the
unconfined or weakly trapped droplet. Angular momentum is
primarily carried by the COM rotation for the liquidlike flat-
density droplets in free space or weak external confinement
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[13—15]. This way, the droplet conserves the ground-state in-
teraction energy by preserving the flat-top density profile. By
the same physical reasoning, the droplets experience splitting
instability under a density perturbation, i.e., the droplet tends
to break into smaller fragments [16—19]. However, vortices
can be locally stable within the unconfined flat-top droplets if
phase imprinted [16,17] or the external confinement is adi-
abatically removed [18]. Even weak confinement can help
avoid splitting instability and make vortex states stable. A
rotating droplet under harmonic confinement is recently pre-
dicted to show a combination of COM rotation and vortex
states [13,14].

The literature on quantum droplets mostly focuses on
their self-trapping property, making the confinement potential
mostly irrelevant. Here, we classify the physical regimes for
a trapped droplet by investigating the energy scales in the
problem. Relative strengths of the potential and interaction en-
ergies and the interplay between the free equilibrium density
and particle number decide the significance of the confining
potential for the rotating problem. We argue that a strongly
confined droplet can be driven into the rapidly rotating regime,
forming a large vortex lattice.

We study such rapidly rotating droplets in the strongly
confined TF regime by numerical and approximate analytical
methods. We numerically find that the confined droplet ex-
hibits a triangular vortex lattice under rapid rotation. Strong
confinement ensures that the splitting instability is avoided
even when the rotation frequency is close to the trap fre-
quency. The density profile of the vortex lattice closely
follows the TF profile, with a convex peak at the center
and a rapid fall at the TF radius. As the rotation frequency
approaches trapping frequency €2 — 1, the effective confine-
ment o (1 — ©2) weakens, and the density profile of the
vortex lattice converges to flat-top droplet density. Contrary to
the diverging size of rapidly rotating repulsive BECs [20,21],
the strongly confined TF droplet converges to a finite radius at
the limit  — 1. Thus, the physics of self-trapping plays an
important role in the rapid rotation limit.

Our numerical simulations show that the vortex core sizes
near the center and the edge of the droplet are noticeably
different. We develop an approximate analytical formula for
the density dependence of the core size. The vortex cores
in the repulsive BECs scale as ¢ o 1/,/ng, where ny is the
condensate density. For the strongly confined TF droplet,
however, we find the core size ¢ W, where

the pole in the denominator n, is approximately equal to
the equilibrium density of the unconfined droplet. The diver-
gence at a finite density creates an observable difference in the
core size in different regions of the vortex lattice. We also
calculate the deviation of the vortex lattice from a perfect
triangular lattice. While this deviation remains small, it is ob-
servable and agrees with numerical results. Finally, we argue
that the rapidly rotating droplets present an opportunity to re-
alize BECs where the number of particles is within an order of
magnitude of the number of vortices in the condensate. While
the Gross-Pitaevskii (GP) equation and our assumptions about
local energy of fluctuations are expected to break down in this
limit, we argue that rapidly rotating droplets may facilitate
reaching the strongly correlated regime.

This paper is organized as follows. In Sec. I, we introduce
the effective GP equation of mixture droplets and tabulate
different parameter regimes of the problem. In Sec. III, we
discuss the TF solution for the strongly confined droplet and
compare it with the numerical results of the GP equation.
In Sec. IV, we obtain a formula for the vortex core size
and compare it with the numerical solution. We also discuss
the corrections to the uniform triangular lattice. In Sec. V,
we discuss the possibility of obtaining a vortex lattice with
lower filling factors. In Sec. VI, we discuss the experimental
parameters required to realize the suggested phenomena and
outline future research directions.

II. MODEL AND PARAMETER REGIMES

We consider a weakly interacting binary BEC with equal
masses m; = mp = m and wave functions ¥(r) = ¥,(r) =
W(r), and equal number of atoms N; = N, = N/2. Intra-
component s-wave scattering lengths are also assumed equal
and repulsive a;; = ay = a > 0 but the intercomponent scat-
tering length is negative: aj» < —a. This gives a slightly
attractive MF interaction such that effectively repulsive BMF
energy becomes significant for the condensate’s mechani-
cal stability [12]. We assume that the density gradient is
sufficiently low throughout the condensate such that the local-
density approximation (LDA) holds [12,22,23]. The droplet is
confined radially with angular frequency w, and along the z
axis with an angular frequency .. The total energy functional
of the mixture is

i 1 1
E = de{E|VW|2 + Emwfz2|\11|2 + Emwirzlll'l2

1 — o 842

4 157

ga®* (1 + o)W ¢,

(D

where r = (x,y) is the position vector, o; = |ajz|/a is the
ratio of the scattering lengths, and g = 4x/i>a/m is the cou-
pling constant. The first and second terms in the second line
of Eq. (1) are the MF and BMF energies, respectively. Note
that the MF energy becomes attractive when o, becomes
slightly greater than 1. In the experiments, o, can be tuned
via Feshbach resonance.

We assume tight confinement in the z direction and
integrate the energy functional by assuming a Gaussian
7Z2/2a§

—L e , with a, = /- ie.,

wave function ¢y(z) = ) e

W(r, z) = ¥ (r)¢o(z). While tight confinement in the third
direction may seem to contrast with the LDA assumption,
recent works have shown that the transition from three- to two-
dimensional (2D) behavior is smooth [24,25]. The integrated
form of the local-energy functional in Eq. (1) is qualitatively
similar to the strictly two-dimensional LDA functional where
the energy functional has the form |W|*In(|¥|?/\/e) [17,18].
They both feature a shallow minimum below zero and a rapid
rise after becoming positive. We also expect that integrating
out the z axis provides better quantitative agreement with
the typical experimental confinement scenarios. In a frame
rotating with angular velocity £ = é,, minimization of the
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functional £ — QL, [26], with L, being angular momentum,
gives the dimensionless extended GP equation scaled with the
radial trapping frequency w, as

= =3V =@ x Y + 3721 - @)y
+ Vi [(1 = )P > + Buny ¥ P19, )

V=a,V, ¥ =ary, Q=9Q/w,.

arameters  are it = /274 and
a;

LHY = 31\/%—‘7@“?/32/; (1 4+ )%, where a, = %
that in the rapid rotation limit Q — 1 the gas is still
mechanically stable due to the balance between mean-field
attraction and Lee-Huang-Yang (LHY) quantum fluctuations,
in stark contrast with regular BECs.

Physical scales in the strictly two-dimensional limit are
determined by the oscillator length a,, the inter- and intra-
component scattering lengths a;, and a, and the total particle
number N. The oscillator length a,, giving the typical 2D
cloud size in the trap, is used as the unit of length. The con-
finement along z creates an additional length scale a,, which
will be used to tune effective two-dimensional interaction
Yint ~ a/a;. The ratio of inter-to-intracomponent interaction
oy = |az|/a controls the attractive mean-field interaction, and
the droplet forms when it is larger than 1 yet the gas re-
mains dilute. Last but not least, the dimensionless parameter
Bruy determines the importance of the Lee-Huang-Yang BMF
repulsion compared with the MF attraction. Although the pa-
rameters o, BLay, and Yy seem to be interdependent at first
sight, each is a unique combination of s-wave scattering and
the two oscillator lengths, and we choose to consider them as
independent parameters in the following for simplicity.

The limit of dominant interactions over both the kinetic
and potential energies is a particularly important regime for
droplet physics. In this case, the GP equation in (2) reduces to

AV = Vil (1 = @)Y 1> + Braay [ 1. 3)
The equilibrium density 7, can be found by minimizing the
term in the square brackets in (3) with respect to || as
2
Rmin = 4(3;71)’ “4)
LHY
which is the density of a self-trapped droplet. In the “TF
droplet” regime, the kinetic energy is negligible and the
density is flat if the trap potential is weak. Stronger trap
potential squeezes the cloud to the center to minimize the
confinement energy, which gives a convex peak at the center
that rapidly falls near the surface. Outside the TF regime,
which we call the “weak droplet” regime, the kinetic energy
is non-negligible compared to the interaction energy, and the
wave-function gradient gradually smears the flat-top profile.
Here, the droplet is still self-trapped but the density profile
has deviations from np;, due to the kinetic energy.

To quantify these regimes, we consider a constant density
droplet with ¥/ (¥) = \/fimin® (RTr — 7), where 6 is the Heav-
iside step function. For N particles uniformly filling a circle
of radius R, the scaling is obtained as E; ~ N/R* for ki-
netic energy, E, ~ NR? for potential energy, Emr ~ (N/R*)N
for MF interaction, and E gy ~ (N/R?)3/2N for fluctuations.
However, due to the length scale corresponding to density
Pmin, the radius and the particle number are not independent.

where T =r/ay,
The interaction

Note

TABLE 1. Different regimes of the rotating confined droplet
problem. The conditions in Egs. (8) and (9) are used to determine
the different regimes.

Strongly confined Weakly confined
1 1
TF drOplet m < 1 m < 1
Biny N> 1 Biny N <1
th‘%*”s ~ Vind%*“s
1 ~ 1 ~
Weak droplet et > 1 Yol T |
ﬁ]i].[y > ﬁﬁHY
Vlm\ax*”‘sN ~ 1 me\ax*HSN <1

Expression [ nmind°F = N gives the TF radius of the flat-top

droplet Rtp = %\/ﬁ and we find

Eim — —14 Vint|0‘x - 1|3

135 By

9 IBI%HY 2
= — TLHY A2 6
P 16m Jag — 102 ©

27 Jorg — 12
Eg= "t —
9 ﬂLHY

where Ej, is the total interaction energy. In the TF regime, the
total interaction energy is much larger than the kinetic energy:

Ek _ 307 1
|Eint| 14 )/int|as - 1|N

In the strong confinement regime, the potential energy is
larger than the interaction energy:
4

E, _ 1215 By N> L ©)

|Eint| 224w yim|ax - 1|5 ~
Since yi, independently scales the interaction energy, one
can drive the system into the weakly confined TF regime by
increasing yine o a/a;. Interaction energy (5) and the potential
(6) scale with N and N?, respectively, whereas the kinetic
energy (7) has a slower dependence [considering the full GP
equation rather than the estimations Eqs. (5)—(7)]. Therefore,
the strongly confined TF regime can be achieved by large
particle number N. Note that the condition (8) for the TF
regime is independent of PBryy, since both the interaction
(5) and kinetic (7) energies scale with Srpy. The different
parameter regimes are summarized in Table I. The strongly
confined TF regime, where kinetic energy is negligible but po-
tential energy causes a significant curvature in the equilibrium
density, is eventually realized for all parameters if the number
of particles is large enough.

N, (&)

; (7

< L ®)

III. STRONGLY CONFINED THOMAS-FERMI REGIME

Rotating weakly confined droplets result in either COM
motion that preserves the cloud density profile [13,14] or so-
called splitting instability that divides the system into smaller
fragments [16,17]. Stronger confinement prevents both of
these undesirable effects and enables access to rapid rotation
limits with stable vortex lattices. In this section, we focus
on strongly confined rotating droplets in the TF regime and
examine the coarse-grained density profile of the cloud as a
function of the rotation frequency .
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FIG. 1. (a) The local chemical potential fuio(F) = 2 — $72(1 —
$2?)in (10) vs |i/| (blue line). Since oy > 1 and By yy is positive, Lo
shows a local negative minimum at |g5| = /Tmin, then monotonically
increases with |/|. The solution to (10) for i > fimin can be found
by evaluating (%) for different 7, along the curved arrow. The
density jumps to zero when the local chemical potential is equal
to the minimum value py;,. (b) The analytical solutions of the GP
equation (10) of the rotating Bose mixture droplets in the strongly
confined TF regime for various Q. The parameters are oy = 1.05,
Biay = 6 x 1073, ¥4 = 1, N = 10°. The convexity due to the strong
confinement flattens and approaches the flat-top profile as 2 — 1.

When a regular vortex lattice is formed, the kinetic energy
of the rotating condensate is nearly equal to the energy of a
solid body rotating with angular velocity 2. The GP equa-
tion governing the coarse-grained density profile is found by
neglecting the first term in (2):

B — AP = QY = yinl(1 — o)l > + Buny W11,
(10)

which manifests that the rotation affects the density pro-
file mainly through centrifugal potential. The particles are
squeezed toward the center for strong confinement, whereas
the centrifugal potential softens the effective trapping fre-
quency (1 — ©?).

As shown in Fig. 1(a), the local chemical potential fij.
obtained from (10) as a function of || has negative mini-
mum fimi, at || = A/Tmin, since g > 1 and Brgy > 0. Now
consider the solution || of (10) for a given chemical po-
tential i > fimin. At the center of the trap 7 = 0, || takes
its maximum value. As 7 increases, the value of || fol-
lows the path shown by the curved arrow in Fig. 1(a). For
the radial position 7 = R, at which |}/ (Ry)| = A/Tmin, the
local chemical potential it — %?2(1 — ?) reaches its min-
imum, and then | (7)| abruptly falls to zero for 7 > Ry.
We solve the cubic equation analytically as shown in the
Appendix. The solutions of Eq. (10) for different rotation
frequencies 2 are shown in Fig. 1(b), which demonstrate that
the cloud flattens as the rotation frequency approaches the
limit & — 1.

We verify the above qualitative description by solving the
nonlinear GP equation (2) fully numerically in the strongly
confined TF regime for the rapid rotations. We find the
ground state in the rotating frame by the imaginary time
evolution iterated by the split-step Fourier method [27,28].
We consider a typical choice of strongly confined TF regime
parameters: oy = 1.05, Brgy =6 X 1073, Vint = 1, and

N = 10°. This choice gives Ilfi:(\ =137 x 1074, ;—:ll =
2.3 x 103, nyn &~ 30, and TF radius Rr &~ 32. We tested
the convergence of the numerical routine by using random,
Gaussian, and Jacobi-theta initial wave functions [10]. Each
resulted in almost identical density profiles and locally
triangular vortex lattices with occasional dislocation defects.
The displayed results in Fig. 2 are for Jacobi-theta function
initial conditions, which have a perfectly periodic vortex
lattice with a single vortex per hexagonal unit cell. This
choice accelerates the convergence to minimum energy
considerably and prevents unwanted dislocations in the
lattice. The lower panel of Fig. 2 shows the density profiles of
the cloud, which follows the solutions of the TF equation (10)
(solid lines) with remarkable accuracy. With increasing
rotation, the peak density at the center decreases, and the
overall profile flattens, whereas the kinetic energy makes a
marginal influence by smoothing the jump at the edge of the
cloud.

It is important to compare the coarse-grained properties
of the rapidly rotating droplet with the vortex lattices in the
usual repulsive BEC experiments. In ordinary BECs, the TF
profile always remains an inverted parabola, and its radius
increases with increasing rotation. For droplets, there is a
finite density jump at the surface and the functional form
smoothly changes from a high curvature profile to a flat
profile with increasing density. Notice that the cloud size of
the rotating droplet for & = 0.8 and 0.97 is not substantially
different in Fig. 2. In fact, as Q increases towards 1, the
cloud radius converges to the nonrotating TF radius Rrg,
whereas it diverges for the repulsive BECs in both TF and
LLL regimes [9,20,21,29]. This is a remnant of the celebrated
self-trapping property of the droplets, where in this case the
fast rotation diminishes the external trapping potential but
the competition between MF attraction and LHY repulsion
constrains the increase of the cloud radius. More concretely,
for the repulsive BEC in TF and LLL regimes, the cloud radius
scales with R($)/R(0) = (1 — Q*)73/" and (1 — Q)74 re-
spectively [6]. For the TF droplet, we calculate the radius for
various €2 from (10) in the Appendix, and also estimate it from
the full numerical solutions of Eq. (2) as shown in Fig. 3.
One can see that the droplet radius remains much smaller
than the regular BEC cloud radius, even in the extremely rapid
rotation limit.

Most of the rotating BEC experiments were limited in the
upper rotation frequencies due to the imperfections in the
harmonic trap [30]. These imperfections are harder to control
away from the trap’s center, and as the cloud radius gets larger
they dissipate angular momentum. We believe that the small
change in the size of the droplet with rotation can make the
rapid rotation limit easier to reach.

IV. PROPERTIES OF THE VORTEX LATTICE

The numerical results shown in Fig. 2 reveal that the vortex
core sizes are visibly different at the edge of the droplet
compared with the center (see Fig. 4 for a comparison). This
sharply contrasts with the repulsive BECs where the cores
in the vortex lattices are almost uniform in size throughout
the system [31]. In this section, we focus on the core sizes

033315-4



VORTEX LATTICES IN STRONGLY CONFINED ...

PHYSICAL REVIEW A 108, 033315 (2023)

(a) 2=0.80

20 20

(c) Q=097

20

400 400 400 —
a"‘\\ Lattice Cut
] AN _ _
300 1 \ 300 300
D f \ AT
= \ / \
2200 1 200 1 / \ 200 1 Joreey
2 / AT I
9] / /|
o /
100 100 ( 100{ 7
0 ; - ; 0 L | ! 0 : : :
20 -1 0 10 2 -2 -0 0 10 2 -20 -10 0 10 20
X X X

FIG. 2. The numerical solutions of the GP equation (2) of the rotating Bose mixture droplets for the parameters oy = 1.05, By = 6 X
1073, ¥ = 1, N = 10°, and (a) © = 0.80, (b) & = 0.90, and (c) £ = 0.97. Upper panel: 2D density profiles of the vortex lattices. Lower
panel: Density profile of the vortex lattices along the x axis (orange lines) and the rotating TF solution of the GP equation (10) (blue lines).

The scaled lengths are ¥ = x/a, and ¥y =y/a,.

in the rapidly rotating TF droplet, and also the related lattice
distortions previously known in the study of nonuniform su-
perfluids, to better understand these observations.
Substituting the chemical potential &t = (1 — a5)ny +
,BLHYnS/ 2 corresponding to a uniform bulk density ng in

Eq. (3), one can obtain

V2 = (1 — a) (¥ ? = no)¥ + Buay (101 — ng/*) .

Y

First, we obtain an analytical formula for the coherence
length as follows. We consider a semi-infinite condensate fill-
ing the right half plane near an impenetrable surface to reduce

=

83'5 this equation to a one-dimensional (1D) form. Multiplying
= Repulsive TF both sides of Eq. (11) by dyr/9% and assuming a positive real
~3.0 1 Repulsive LLL wave function v (¥) > 0 for ¥ > 0, we obtain
S = = Droplet TF 2 -
525 ° Full Numerical li % _ B_V% -0 (12)
g Solution of GP / 2 9%\ ax% 31& ax

22.04 -

o 0 o

'(c:; 151 . < ’ 20 Density n(F) (Z21)
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FIG. 3. The comparison of the radius of the condensates for -20 0 P
the rotation frequency 2 € [0, 1]: Repulsive BEC in the TF regime A 2, 10 20

(dotted), repulsive BEC in the LLL regime (solid), and droplet in
the TF regime (dashed). The scattered data present the radius of the
full numerical solutions of GP (2). The droplet radius converges to
a finite value as € — 1, contrary to the diverging behavior of the
repulsive BECs.

FIG. 4. Density profile of the vortex lattice with Q = 0.8 in
Fig. 2(a). The insets show the 2D zooms of equal areas in the vortex
lattice near the edge (Z1) and the center (Z2) of the droplet. The core
size is larger, and the vortex unit cell area decreases near the edge.
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FIG. 5. (a) The vortex core area estimates by numerical solutions
of 1D (solid line) and 2D (dashed line) healing length equation (11),
analytical approximation (14) (dotted line), and the full numerical so-
lution of GP (2) for (filled points) = 0.8. The density levels n for
the numerical and analytical solutions to (11) and (14) are taken from
the strongly confined TF droplet equation (10). The difference in the
core size along the TF droplet is more tractable than the repulsive
BECs. (b) The vortex density of the rotating TF droplet calculated
up to the first order in (15) for Q = 0.80 (gray), = 0.90 (black),
Q = 0.95 (blue), and = 0.97 (red). The dotted lines represent the
uniform vortex densities 1,y = /7. The scattered data show the
vortex density computed on the full numerical solution of GP (2)
in Fig. 2, whereas the solid lines are the solutions to (15). The vortex
density closely follows the uniform limit with an agreement on the
corrections.

VP =1 — a) (30 — no¥?) + Buay (39° — ny/>9?).
(13)

This shows that %(81/}/3)?)2 — V[¥] is a constant of motion.
Evaluating~this constant for the limits ¥ — 0 and oo, where
limz_.0,00 ¥ = 0, /1o, gives the healing length scale of the

condensate ¢ & /ng/ lim;cﬁo(%):
1
£= 6% 12 12y (19
\/ VmLSﬂLHY 1o (”o —ny )

2 . .
where n, = 253(6";—;1) is the droplet density scale npyi, up to a

numerical factor L(;[% order 1. The analytical approximation fails
for densities g below n., signaling the splitting instability. For
a better comparison, we also calculate the coherence length by
numerically solving Eq. (11) in 1D and 2D geometries with
the same boundary conditions.

Note that either solution estimates the core size using a
constant density ng in the bulk, whereas the vortex lattice den-
sity follows the TF density profile n(7), which is the solution
of Eq. (10). Therefore, we derive the radial dependence of
the core size ¢ (7) by replacing ny with n(7). We also extract
independent estimations from the full numerical solutions of
the GP equation (2). As shown in Fig. 5, both the numerical
estimates and the analytical result agree with the full numeri-
cal solution of GP (2). The core size at the center of the droplet
is smaller with respect to the surface of the cloud since the
density of the condensate decreases towards the edge.

In the rapidly rotating repulsive BECs in the TF regime,

the core size ¢ oc \/€2/2gny [6] and the TF density profile

is inverse parabola. For the TF droplet, the core size scales
with the form given in Eq. (14), and the density is still finite
nmin Near the surface. The density scale n, at the denomina-
tor gives a greater sensitivity of the core size to the density
changes in the condensate. Furthermore, the finite density near
the surface makes the vortices near the surface more visible
compared to the surface of the inverse-parabola profile. We
expect that the differences in the vortex cores at the center and
near the surface of the condensate should be more observable
for the TF droplets with respect to the repulsive BECs.

Inhomogeneous superfluid density causes deviations in the
local lattice constant, and the vortex density of an infinite uni-
form lattice given by Feynman relation 1,9 = /7 changes
slightly. For rotating droplets, we numerically calculate this
local change in the triangular lattice using image processing
tools on the full numerical solution of the GP (2) and observe
similar deviations. To estimate such changes in the vortex
density, we follow the approach in Ref. [32]:

o Q 1 o 1 9| neiy1 e
= e {M ["(r) n(n@(f)m(f))“’
(15)

where 1,(€2) is the vortex density, n(7) is the condensate
density, and ¢ (7) is the coherence length. The first term in (15)
is the uniform vortex density n,o in dimensionless form, and
the second term is the aforementioned small correction. We
find the value of Eq. (15) numerically in the strongly confined
TF droplet regime using the analytical superfluid density n(7)
calculated in Eq. (A1), and the coherence length ¢ (7) calcu-
lated from (14) by replacing ny with n(7). As the system is still
well described by a single collective wave function, we expect
the deviation between the superfluid density and the particle
density to be small. We compare the results with the vortex
density profile of the full numerical GP solution for different
values of €2 in Fig. 5(b).

The deviations from the uniform vortex density are due to
the gradient of the superfluid density. Since the TF density
profile becomes more flat as the rotation Q increases, the
deviations from the uniform vortex density are greater for the
slower rotations. Deviations become larger close to the edge
of the droplet due to the convex profile. However, as & — 1,
the density profile approaches a flat-top shape, and the vortex
density gets close to the uniform vortex density throughout the
condensate. We expect an almost perfect triangular lattice for
the highest rapid rotation rates, unlike the radially distorted
vortex lattice in the repulsive TF BECs [32].

V. VORTEX LATTICES WITH LOW FILLING FACTORS

Reaching the strongly correlated regime in rapidly ro-
tating ultracold gases to mimic the physics of electrons in
quantum Hall systems is one of the major challenges in
atomic, molecular, and optical physics [30,33]. Recently, the
realization of fractional quantum Hall states is reported for
photons and Bose gases but only with few particles [34,35].
These experiments are far from simulating the full many-body
physics at the mesoscopic scale, where some emergent prop-
erties, such as interaction-induced incompressibility, can be
observed. Rapid rotation, which is the analog of the strong
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magnetic field in a neutral cold atomic gas, effectively reduces
the confining potential for the repulsive BECs in a harmonic
trap. As Q increases, the condensate enters the MF LLL
regime, where intervortex spacing becomes comparable to
vortex core size. For a two-dimensional condensate uniform
over a length Z in the transverse direction, the cloud size is

8Nad? 1/4 : . .
Z(]—_é)) in the MF LLL regime [6], which

diverges as € — 1. As the interparticle distance approaches
the intervortex spacing, the quantum fluctuations become rel-
evant, and the GP MF description becomes insufficient [30].
One may still ask, however, whether some preliminary hints of
many-body correlations emerge from the GP approach before
it breaks down completely.

The importance of correlations is characterized by the fill-
ing factor v = N/N,, where N and N, are particle and vortex
numbers, respectively [36,37]. For v ~ 5-10, the quantum
fluctuations are expected to melt the vortex lattice and drive
the system into a fractional quantum Hall phase [38]. In the
MF LLL regime, the number of vortices is given by N, ~
R3/a% and the corresponding filling factor is [6,30]

v N _ /M_ (16)
N, 8a

For typical values of Z/a ~ 100, N ~ 1000, rotation rates
Q > 0.99 are needed to achieve v ~ 5. For such high values
of €, the cloud size is much larger than the nonrotating con-
densate size.

As discussed in the previous sections, a rotating droplet’s
size changes only fractionally in the strongly confined TF
limit, hinting at the possibility of achieving lower filling fac-
tors. Rotating droplets approach a flat-top particle density
nmin Whereas the approximate vortex density is n,9 = Q/m.
Assuming that the radius is close to the flat-top TF radius Rrr,
the filling factor of the rotating droplet becomes

given by Ry = (

N min
b= = (17)
7T RENy Q

This shows that a lower filling factor can be achieved via
smaller droplet density 7. As an example, we consider
the parameters N = 500, oy = 1.25, Brgy = 0.15, yine = 10,
which theoretically result in a strongly confined TF droplet
with npin &~ 1.2, Ry = 11.5. For Q = 0.99, the filling factor
is close to v &~ 3.8. The full numerical solution of the GP
equation (2) is obtained for these parameters, and the 2D
density profile of the vortex lattice is shown in Fig. 6, which
displays about 70-80 vortices giving a filling factor v & 6.25.
The difference between the numerical result and the theoreti-
cal expectation is due to the fact that the density profile is far
from the flat-top regime for this parameter choice.

The vortex lattice in a droplet has two distinct instabilities
in the rapid rotation limit. At low filling factors, quantum
melting due to fluctuations destroys the vortex lattice, paving
the way for the strongly correlated phases. The other possi-
bility is that as the droplet density becomes flatter a large
portion of the density approaches ny;, and vortex core sizes
exceed the intervortex spacing. This is the same mechanism
of splitting as seen in weakly trapped droplets. As our above
example shows, it is possible to get into the low filling factor
regime while avoiding the weakly trapped regime. We believe

18 Q=0.99 Density n(7)
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FIG. 6. The vortex lattice of a rotating strongly confined droplet
with a low filling factor. There are approximately 80 vortices for par-
ticle number N = 500, i.e., v & 6.25. The parameters are oy = 1.25,
Bray = 0.15, ¥ine = 10, and € = 0.99.

that the tunability of the equilibrium density, as well as the
weak size change under rapid rotation, make droplets ideal
systems to probe low filling factor physics.

VI. DISCUSSION, EXPERIMENTAL REALIZATION,
AND CONCLUSION

The standard approach of using a modified GP equation to
describe the system can break down in two ways. On one
hand, condensate wave function W can be destroyed in a
strongly correlated phase, giving rise to a many-body phase
without a local order parameter. On the other hand, the vor-
tex lattice can strongly modify fluctuations so that the LDA
assumption is violated even before the onset of the strongly
correlated regime. We do not expect the GP equation to de-
scribe the system near the transition quantitatively. However,
we believe that our calculations show that much lower fill-
ing factors than what has been observed are possible with
droplets.

There are several intriguing questions that require further
research. To achieve an analog of electronic phases under ul-
trastrong magnetic fields, it becomes essential to import larger
angular momenta into the system, resulting in lower filling
factors. The central challenge in cold atom experiments, as
discussed earlier, is the cancellation of trapping potential due
to the centrifugal potential. Our paper reveals that droplets can
overcome this challenge through self-trapping, a consequence
of the balance between attractive MF interactions and effec-
tively repulsive LHY quantum fluctuations. It is important
to note that a low filling factor does not necessarily imply
strongly correlated physics for a droplet, as the GP formalism
is still a mean-field approach. Similarly, whether a rapidly
rotating quantum droplet can be described within the LLL
regime needs more investigation. The traditional condition for
the LLL regime, u ~ gny < 2hw,, is not applicable since
the chemical potential of the self-trapped droplet is negative.
Consequently, the stabilization of the cloud by quantum fluc-
tuations and whether this stabilization mechanism still exists
in the LLL regime should be explored.

The Bose mixture droplets without any trap are
experimentally realized by several groups [39-42]. Similar
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to our assumptions in this paper, the validity of the LDA
treatment of the MF and LHY terms, and the physics of
vortices and vortex lattices, are theoretically established in
the recent work on dipolar droplets [43—48]. Furthermore,
the vortex arrays are experimentally obtained in rotating
dipolar condensates [49,50], in which the extended GP
equation with the LDA is numerically benchmarked. It is
promising for our proposal that the extended GP approach
shows good agreement between the numerical estimates and
the experimental results [49,50].

Let us consider the feasibility of an experiment to realize
the vortex lattices in the Bose mixture droplets. The nondi-
mensional parameters Which control the different regimes
of the problem are oy = a”‘, Vint = 2 & T and Brpy =

_16v2 &
35r4 aPa)
rameter ch01ce of this paper, we consider a Bose mixture

of hypothetical atoms with 39 atomic mass units in states
|1,0) and |1, —1) with total particle number N = 10°. The
scattering lengths are a = 60ay and a;, = —63ay, where ag
is the Bohr radius. The radial and vertical trap frequencies
are w, /2w = 505 Hz and w, /27w = 410 Hz. The correspond-
ing trap length scales are a, ~ 800 nm and a; ~ 715 nm.
These conditions yield 2.8—4.5-pm size of the rotating droplet
for  ~ 0.80-0.97. For the case a;; # apy, the qualitative
behavior of the rotating droplets should stay the same as
long as 8a o aip + /aiiaxn < 0. However, the MF and LHY
energies should be revised accordingly. We believe that this
generalization is not necessary to explain the fundamental
arguments of this paper, but may be left for future work. Fur-
thermore, the three-body losses can be suppressed by either
lowering the equilibrium density np;, or directly cooling into
the vortex lattice state [51]. Note that this particular choice
of parameters is only illustrative. Similar phenomena can be
observed in a wide regime of parameters.

In summary, we find that a triangular vortex lattice is
obtained for a strongly confined TF droplet under rapid ro-
tation. The overall density profile of the cloud follows the
TF form even in the presence of the lattice. We investigated
the lattice’s vortex core size and vortex density and obtained
good agreement between analytical and numerical results.
The condensate size does not diverge at extreme rapid rota-
tion € — 1, due to self-trapping. This behavior can provide
greater experimental feasibility to reach rapid rotation. Fur-
thermore, the lattices with low filling factors can be achieved
by tuning the droplet density. A more detailed investigation
of the rapidly rotating droplet phase is required to determine
if the fluctuation-induced stability mechanism extends to non-
condensed bosonic phases such as the fractional quantum Hall
states. Additionally, this research can also be carried out for

-(I+ay y>/2. To obtain results close to the pa-

the heteronuclear droplets, in which the three-body losses are
suppressed more effectively [41].

Note added. Recently, we became aware of a paper that
studies the rotating Bose mixture droplets at the limit Q = 1
[52].
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APPENDIX: ANALYTICAL SOLUTION
OF THE CUBIC TF EQUATION

The cubic equation ax® + bx> +cx+d =0 can be re-
duced into the depressed form 34+ pt +q =0 with the

2
change of variables t = x + Jac—b

3a?
3
%. The real solutlon to the problem can be found

in the trigonometric form. Now consider the GP equation (10)
for the strongly confined TF droplet, which is a cubic equa-
tion with ¢ = 0. Apply the change of variables t = || +
129 The trigonometric solution becomes

BLuy
Rup)| = 2(a; — 1) + 1
= — COS | — arccos
" 3By |2 3

G
x| 1+ 'BLHY—M(? , (A1)

2Yint(g — 1)
where the local chemical potential pjoc () = 1 — ?(1 - Q%
and Rrg is the TF radius of the strongly confined TF droplet,

where |¢7(I?TF)| = /Nmin. We calculate Rtg, where the den-

sity falls rapidly, by using | (Rrp)| = %

4yinl(as - 1)3> 2
Rip = n _
T \/ <“ 2By 12

— 2(/”“ - Mmin)
1-Q2 7

_ im(e=1)°
27/SEHY
top droplet. Consider the limit & — 1, in which the external
trap is effectively removed by the centrifugal effect, and the
droplet approaches the flat-top profile. Hence, the divergence
of the droplet radius is prevented as limg_, | £ = fmin. In fact,

one should recover the flat-top radius Ry = %«/ﬁ at
the limit  — 1.

~, where p = and ¢ =

GRS

(A2)

where (Umin = is the chemical potential of the flat-
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