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Quantum phases of multiorbital bosonic gases in a hexagonal lattice
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Orbital degree of freedom plays an important role for understanding quantum many-body phenomena. In
this paper, we study an experimentally related setup with ultracold bosons loaded into hybridized bands of
two-dimensional hexagonal optical lattices. We find that the system supports various quantum many-body phases
at zero temperature, including chiral superfluid and chiral Mott insulating phases by breaking time-reversal
symmetry, and the time-reversal-even insulating phase, based on dynamical mean-field theory. In the deep
insulating regime, the time-reversal-even phase arises from the interplay of effective Dzyaloshinskii-Moriya
and Heisenberg exchange interactions. To relate to experimental situations, we make band-structure calculations
to obtain the Hubbard parameters, and show that these orbital ordering phases persist also in the presence of
next-nearest-neighbor hopping.
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I. INTRODUCTION

Quantum simulation plays an important role for under-
standing difficult quantum problems in physics [1–4], such as
quantum magnetism [5] and topological quantum matter [6].
Ultracold gases in optical lattices are one of the most promis-
ing and flexible quantum simulators for quantum many-body
problems with an unprecedented level of control. Different
species or hyperfine states of atoms have been loaded into
optical lattices [7,8], which are treated as pseudospin degrees
of freedom, and significant efforts have been made to explore
magnetic phases in ultracold systems [9–11]. Complex optical
lattices, such as triangular [12,13], hexagonal [14,15], Lieb
[16], and kagome lattices [17], trigger even more rich physics,
as a result of geometric frustration arising when magnetic in-
teractions between adjacent spins on a lattice are incompatible
with lattice geometry [18,19].

In addition to spin, an alternative approach towards opti-
cal lattice simulators is based on orbital degrees of freedom,
which provide an opportunity to investigate new orbital
physics [20,21]. Here, higher-Bloch bands can be imple-
mented as orbital degrees of freedom, where p-orbital systems
have been explored extensively both in theories [22–29]
and experiments [30–33] in recent years. Various interesting
phases have been observed, including chiral superfluid [30]
and sliding phases [33], where the key element is onsite inter-
actions between atoms for building many-body correlations.
Recently, special attention has been paid to the complex-
lattice setup, and ultracold 87Rb atoms have been successfully
loaded into the s and px,y bands of a hexagonal lattice [34–36].
In contrast to the square-lattice case [29–31], a special prop-
erty of this hexagonal system is that it possesses nearly flat
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dispersion relations around the K and M points of the first
Brillouin zone [37]. Distinct phenomena have been observed
experimentally even in the weakly interacting regime, in-
cluding Potts-nematic superfluid [34] and chiral superfluid
phases [35] with bosons condensing at M and K points in
the first Brillouin zone, respectively. These experiments in-
dicate that nontrivial underlying mechanics appears for the
multiorbital system in a hexagonal lattice, where temperature
and interaction may play important roles for understanding
these quantum phenomena. Another open question is that it is
still unclear how orbital textures adapt to the hexagonal-lattice
geometry in the strongly interacting regime.

Motivated by the experiments [34,35,38], we study a
bosonic system in a two-dimensional (2D) hexagonal lat-
tice with alternating deep and shallow wells, and focus on
emergent phenomena from multiorbital effects and lattice ge-
ometries. To explore the physics in the strongly correlated
regime, a strong laser is utilized to freeze the motional de-
grees of freedom of atoms in the third direction. By adjusting
the sublattice potential imbalance, the s orbital of the shal-
low wells can be in resonance with the px,y orbitals of the
deep sites, realizing a multiorbital system with neglecting
all the other orbitals. For a sufficiently deep lattice, the sys-
tem can be described by an extended Bose-Hubbard model.
It is expected that various quantum phases appear as a re-
sult of the multiorbital interplay in the strongly interacting
regime.

To explore the many-body physics of the multiorbital sys-
tem, we utilize a bosonic version of dynamical mean-field
theory (BDMFT) applied within the full range from small
to large coupling. With BDMFT, local quantum fluctuations
are taken into account to resolve competing long-range or-
ders. To explore various exotic magnetic or superfluid phases
which break lattice-translational symmetry, we implement
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FIG. 1. Setup of the two-dimensional bipartite hexagonal lattice,
which possesses two sets of sublattices labeled by S and P , re-
spectively. By adjusting sublattice potential imbalance, the s- and
p-orbital bosons can be loaded to the shallow and deep wells, respec-
tively, as achieved in the experiments [34,35], realizing a multiorbital
bosonic system in optical lattices.

real-space BDMFT, where the self-energy and Green’s func-
tion capture quantum many-body phases with exotic orbital
textures. We find that the system supports various quantum
many-body phases, including chiral superfluid, chiral Mott
insulating, and time-reversal-even insulating phases, based on
BDMFT. To explain the underlying mechanics for the time-
reversal-even Mott phase, a fourth-order orbital-exchange
model is derived. Finally, we make band-structure calcula-

tions to obtain the Hubbard parameters with hopping terms up
to next-nearest neighbors, and map out the many-body phase
diagram, which is more closely related to the experimental
situation.

The paper is organized as follows. In Sec. II, we introduce
the system and the model studied here, as well as the theoret-
ical approach. In Sec. III, we present a detailed discussion of
many-body properties of the system. We conclude in Sec. IV.

II. MODEL AND METHOD

A. Model

We consider a single-component bosonic gas loaded into
a hexagonal lattice consisting of two sublattices, denoted as
S and P . By adjusting sublattice potential imbalance [34,35],
a multiorbital system can be realized with S and P hosting
the s and px,y orbitals, respectively, as shown in Fig. 1. The
corresponding annihilation operators for the s- and px,y-orbital
bosonic particles are denoted as ŝ and p̂x,y, respectively. Here,
a strong confinement is added to freeze the motional degrees
of freedom in the third direction, realizing a two-dimensional
bipartite lattice system. For a sufficiently deep lattice, the sys-
tem can be described by a generalized Bose-Hubbard model:

Ĥ = tsp

∑
r∈S

∑
a=1,2,3

[
ŝ†

r

( �̂pr+da · ea
) + H.c.

] − μs

∑
r∈S

n̂r,s − μp

∑
r′∈P

(
n̂r′,px + n̂r′,py

) + Us

2

∑
r∈S

n̂r,s(n̂r,s − 1)

+
∑
r′∈P
σ=x,y

Upσ

2
n̂r′,pσ

(
n̂r′,pσ

− 1
) + 2 Upxy

∑
r′∈P

n̂r′,px n̂r′,py + J
∑
r′∈P

( p̂†
r′,x p̂†

r′,x p̂r′,y p̂r′,y + H.c.), (1)

where the unit vectors e1 = (
√

3
2 , 1

2 ), e2 = (−
√

3
2 , 1

2 ), e3 =
(0,−1), and di = a0ei are the relative positions between the
two sublattices, with a0 being the lattice constant. tsp is the
hopping amplitude between the S and P sublattices, �̂pr =
( p̂r,x, p̂r,y ) is the shorthand notation for the annihilation op-
erators p̂x and p̂y at site r, and n̂r,σ is the number operator
for the σ orbital at site r. μs and μp are the chemical poten-
tials for the s and p orbitals, respectively. Us, Upx , Upy , and
Upxy are onsite density-density interactions for the s, px, and
py orbitals, respectively, and J denotes the orbital-changing
interaction. According to symmetry analysis, the hexagonal-
lattice system possesses Upx = Upy and J = Upx −2Upxy

2 for the
p-orbital interaction terms. In the deep lattice limit, the har-
monic approximation for a lattice site yields Upx = Upy =
3Upxy = 0.75Us [39]. In this approximation, the last three
terms of Eq. (1) can be rewritten as

Ĥint,P = Upx

2

∑
r∈P

(
n̂2

r,p − 1

3
L̂2

z,r

)
, (2)

with the density n̂r,p = n̂r,px + n̂r,py , and the orbital angular
momentum L̂z,r = i( p̂†

r,x p̂r,y − p̂†
r,y p̂r,x ) [22].

B. Method

To understand this generalized Bose-Hubbard model, we
utilize BDMFT [40,41] to calculate many-body ground states
of the system described by Eq. (1). The advantage of dynami-
cal mean-field theory beyond static mean-field theory is that it
includes local quantum fluctuations of the strongly correlated
system. The key point of BDMFT is to map the many-body
lattice system to a single-site problem, which is then solved
self-consistently. For exploring various exotic magnetic or
superfluid phases which break lattice-translational symmetry,
we implement a real-space BDMFT (RBDMFT) [42–46].
Within RBDMFT, the self-energy is taken to be local, but
depends on the lattice site, i.e., �i, j = �iδi j , where δi j is a
Kronecker delta. In RBDMFT, our challenge is to solve the
single-site problem, and the physics of site i is given by
the local effective action Si

eff , which can be obtained from the
standard derivation [47]. Here, we have two sets of sublattices
labeled by S and P , which indicates that we need two types
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of the local effective actions SS
eff and SP

eff :

SS
eff =

∫ β

0
dτdτ ′ ∑

σ=x,y

(
b∗

0,s(τ )
b0,s(τ )

)T

G−1
0,s,s′,pσ ,p′

σ
(τ − τ ′)

(
b0,s′ (τ ′)
b∗

0,s′ (τ ′)

)

+
∫ β

0
dτ

⎧⎨
⎩

∑
〈0 j〉,σ=x,y

t0 j (b∗
0,s(τ )φ j,pσ

(τ ) + φ∗
j,pσ

(τ )b0,s(τ )) + Us

2
n0,s(τ )(n0,s(τ ) − 1)

⎫⎬
⎭, (3)

SP
eff =

∫ β

0
dτdτ ′ ∑

σ=x,y

(
b∗

0,pσ
(τ )

b0,pσ
(τ )

)T

G−1
0,pσ ,p′

σ ,s,s′ (τ − τ ′)
(

b0,p′
σ
(τ ′)

b∗
0,p′

σ
(τ ′)

)

+
∫ β

0
dτ

⎧⎨
⎩

∑
〈0 j〉,σ=x,y

t0 j
(
b∗

0,pσ
(τ )φ j,s(τ ) + φ∗

j,s(τ )b0,pσ
(τ )

) + 2 Upxy n0,px (τ )n0,py (τ )

+
∑

σ=x,y

Upσ

2
n0,pσ

(τ )
(
n0,pσ

(τ ) − 1
) + J

(
b∗

0,px
(τ )b∗

0,px
(τ )b0,py (τ )b0,py (τ ) + H.c.

)
⎫⎬
⎭, (4)

where

G−1
0,ν1,ν

′
1,ν2,ν

′
2
(τ − τ ′)

=

⎛
⎜⎝

(∂τ ′ − μν1 )δν1,ν
′
1
+ ∑

〈0 j〉,〈0 j′〉 t0 jt0 j′G1
j, j′,ν2,ν

′
2
(τ, τ ′)

∑
〈0 j〉,〈0 j′〉 t0 jt0 j′G2

j, j′,ν2,ν
′
2
(τ, τ ′)

∑
〈0 j〉,〈0 j′〉 t0 jt0 j′G2∗

j, j′,ν2,ν
′
2
(τ ′, τ ) (−∂τ ′ − μν1 )δν1,ν

′
1
+ ∑

〈0 j〉,〈0 j′〉 t0 jt0 j′G1
j, j′,ν2,ν

′
2
(τ ′, τ )

⎞
⎟⎠,

with G1
j, j′,ν2,ν

′
2
(τ, τ ′) = −〈b j,ν2 (τ )b∗

j′,ν ′
2
(τ ′)〉0 + φ j,ν2 (τ )φ∗

j′,ν ′
2
(τ ′) and G2

j, j′,ν2,ν
′
2
(τ, τ ′) = −〈b j,ν2 (τ )b j′,ν ′

2
(τ ′)〉0 +

φ j,ν2 (τ )φ j′,ν ′
2
(τ ′). Here, G−1

0,ν1,ν
′
1,ν2,ν

′
2

is a local noninteracting propagator interpreted as a dynamical Weiss mean field which
simulates the effects of all other sites. The static bosonic mean fields are defined as φ j,ν (τ ) = 〈b j,ν (τ )〉0, where 〈. . .〉0 means the
expectation value in the cavity system without the impurity site. Note here that we use b̂i,ν to denote the bosonic annihilation
operator for the ν orbital at site i to shorten the notation of the function. Actually, it is difficult to resolve this effective action
analytically. In order to obtain many-body ground states, we utilize the Hamiltonian representation and express the effective
action in terms of the Anderson impurity Hamiltonian [48,49]:

ĤS
A =

∑
〈0 j〉,σ

t0 j (φ∗
j,pσ

b̂0,s + H.c.) + Us

2
n̂0,s(n̂0,s − 1) − μsn̂0,s +

∑
l

εl â
†
l âl +

∑
l

(Vl,sâ
†
l b̂0,s + Wl,sâl b̂0,s + H.c.), (5)

ĤP
A =

∑
〈0 j〉,σ

t0 j (φ∗
j,sb̂0,pσ

+ H.c.) +
∑

σ

[
Upσ

2
n̂0,pσ

(
n̂0,pσ

− 1
) − μpn̂0,pσ

]
+ 2Upxy n̂0,px n̂0,py

+ J
(
b̂†

0,px
b̂†

0,px
b̂0,py b̂0,py + H.c.

) +
∑

l

εl â
†
l âl +

∑
l,σ

(
Vl,σ â†

l b̂0,pσ
+ Wl,σ âl b̂0,pσ

+ H.c.
)
, (6)

where the bath of condensed bosons is represented by the
Gutzwiller term with φ j,ν = 〈b̂ j,ν〉 for the component ν. The
normal bath is described by operators â†

l with energies εl ,
where the coupling between the normal bath and impurity site
is realized by Vl,σ and Wl,σ . The l denote the bath orbitals. By
diagonalizing the Anderson Hamiltonian in the Fock basis, the
corresponding solution of the impurity model can be obtained.
The numerical parameters are chosen as follows: the number
of bath orbitals is 4, the maximum occupation number for
each bath orbital is 2, and the maximum occupation number
of bosons per orbital state is 5. After diagonalization, we
finally obtain the local Green’s functions in the Lehmann

representation:

G1
A,νν ′ (iωn) = 1

Z

∑
m,n

〈m|b̂ν |n〉〈n|b̂†
ν ′ |m〉

× e−βEn − e−βEm

En − Em + ih̄ωn
+ βφνφ

∗
ν ′ ,

G2
A,νν ′ (iωn) = 1

Z

∑
m,n

〈m|b̂ν |n〉〈n|b̂ν ′ |m〉

× e−βEn − e−βEm

En − Em + ih̄ωn
+ βφνφν ′ , (7)
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where ωn denotes Matsubara frequency. Then, the local self-
energy for each site can be obtained via the Dyson equation:

�A(iωn) = G−1
A (iωn) − G−1

A (iωn), (8)

where G−1
A (iωn) denotes the noninteracting Weiss Green’s

function of the Anderson impurity site. In the framework of
RBDMFT, we assume that the impurity self-energy �A(iωn)
coincides with lattice self-energy �lattice(iωn). Therefore, we
can employ the Dyson equation in real-space representation
to compute the interacting lattice Green’s function:

G−1
lattice(iωn) = G−1

0 (iωn) − �lattice(iωn), (9)

where the noninteracting lattice Green’s function G−1
0 (iωn) =

(iωnσz + μ) − t, with the matrix of hopping t determined
by lattice structures. Note here that the boldface quantities
denote matrices with site-dependent elements [see details in
Eq. (A1)]. The self-consistency RBDMFT loop is closed by
the Dyson equation to obtain a new local noninteracting prop-
agator. The new Anderson impurity parameters εl , Vl,σ , and
Wl,σ are then calculated by comparing the old and new Green’s
functions, and the procedure is then iterated until convergence
is reached.

III. RESULTS

A. Many-body phase diagrams

In the first part, we investigate many-body phase dia-
grams of the bosonic atoms in a 2D hexagonal lattice for
different interactions, based on RBDMFT. To distinguish var-
ious quantum phases, the superfluid order parameters φν =

1
Nlat

∑
i |〈b̂i,ν〉| and local orbital order 〈Ŝi〉 = [〈ŜX

i 〉, 〈ŜY
i 〉, 〈ŜZ

i 〉]
are introduced. Here, Nlat is the number of lattice sites,
and the pseudospin operators from the orbital degrees
of freedom are utilized to quantify orbital order, with
ŜX

i = 1
2 (b̂†

i,px
b̂i,py + b̂†

i,py
b̂i,px ), ŜY

i = 1
2i (b̂

†
i,px

b̂i,py − b̂†
i,py

b̂i,px ),

and ŜZ
i = 1

2 (b̂†
i,px

b̂i,px − b̂†
i,py

b̂i,py ). Accordingly, we define
the structure factor of the real-space orbital textures, S�q =
| 1

Nlat

∑
i〈Ŝi〉ei �q·�ri | [50]. To study the multiorbital interplay

regime, we choose a special case with the chemical potentials
μs = μp ≡ μ, and the interaction strengths Upx = Upy = Us.
To verify finite-size effects, the largest lattice size Nlat =
24 × 24 × 2 is chosen in our simulations.

Figure 2 displays the many-body phase diagrams for dif-
ferent orbital-changing interactions J/Us = 1/6 (upper panel)
and J/Us = −1/6 (lower panel). As expected, the system
favors a superfluid phase for larger hopping, and Mott states
develop in the lower hopping regime. As shown in the inset of
Fig. 2, we clearly observe a first-order Mott-superfluid phase
transition. To examine the effect of a finite number of bath
sizes [51], we also calculated the case of five bath orbitals.
We find the numerical results remain largely unaffected by in-
cluding more bath orbitals. A typical feature of the many-body
phase diagram is the unusual sequence of lower Mott lobes
[2,52], as a result of the multiflavor orbital degrees of freedom.
We observe that the phase boundaries for different Mott states
are not in the same positions for different sublattices, since the
interaction forms of the S and P sites are distinct from each

0.5 1.50 1 2
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0.1

0.05

0
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MIΙΙΙ MIΙΙΙ

MIΙΙ MIΙΙ
MIΙΙMIΙ

FIG. 2. Phase diagrams of the multiorbital bosonic atoms in a 2D
bipartite hexagonal lattice. Insets: Order parameters φν are shown as
a function of the hopping amplitude tsp for a fixed chemical potential
μ/Us = 0.3 (vertical blue dotted line), indicating a superfluid-Mott
insulating phase transition. The chemical potentials are μ ≡ μs =
μp, the interaction strengths Upx /Us = Upy /Us = 1, and J/Us = 1/6
(upper) and J/Us = −1/6 (lower).

other. Note here that the case of a bipartite square lattice was
also discussed [53].

RBDMFT also resolves long-range orbital order of the
many-body phases, since it takes higher-order orbital fluctu-
ations into account in the simulations. We observe orbital-
changing-interaction dependent orbital orders. For positive
interaction with J/Us = 1/6, we find nonzero orbital angular
momentum with 〈L̂z,i〉 
= 0 both in the superfluid and Mott
phases (MIII with n > 1) by breaking time-reversal symmetry.
As shown in Fig. 3(a), real-space orbital texture of the P
sites demonstrates a homogeneous orbital angular momentum
〈L̂z,i〉 for the superfluid, where the atoms condense in the K
point of the first Brillouin zone [inset of Fig. 5(a)], consis-
tently with experimental observations [35]. The nonzero value
of angular momentum in these phases is not surprising, since
the p-orbital interactions, which are described by Eq. (2),
favor the angular momentum order. For negative interaction
J/Us = −1/6, however, it is expected that 〈L̂z,i〉 = 0 both in
the superfluid [Fig. 3(b)] and Mott phases (MII and MIIII)
[Fig. 3(d)] to lower the energy of the system. But we do
not observe Potts-nematic condensing at the M point [inset
of Fig. 5(a)] for negative orbital-changing interactions, which
was experimentally observed recently [34], and the reason
may be due to the single-site solver used in our BDMFT
approach.
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0.0
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0.4

0.0

0.2

0.4

(c)

(e) (f.)

0

1

(a)

0

1

(b)

(d)

FIG. 3. Real-space distributions of orbital textures for the P
sites with J/Us = 1/6 (a), (c) and J/Us = −1/6 (b), (d). (a), (b)
real-space distributions of orbital angular momentum 〈L̂z,i〉 for the
superfluid with μ/Us = 0.3 and tsp/Us = 0.11. The color of the
dots represents the value of 〈L̂z,i〉. (c), (d) Real-space orbital tex-
tures for the Mott phases with filling n = 1 for μ/Us = 0.3 and
tsp/Us = 0.04, where the blue arrows represent real-space distribu-
tions of local orbital order 〈ŜX,Z

i 〉 for the P sites. (e), (f) The contour
plots of the static orbital order structure factor S�q corresponding to
(c) and (d).

Interestingly, we find a 120◦ in-plane orbital order in
the Mott phase (MII) with filling n = 1 (ns = 1 and np =
1) both for positive J/Us = 1/6 [Fig. 3(c)] and negative
interactions J/Us = −1/6 [Fig. 3(d)], where 3 × 3 orbital
textures of 〈ŜX,Z

i 〉 appear for the P sites with 〈L̂z,i〉 = 0
by respecting time-reversal symmetry. To understand the
physical phenomena in the Mott insulating phase with fill-
ing n = 1, we need an effective orbital-exchange model
for the deep Mott regime. The effective orbital-exchange
Hamiltonian is obtained by considering the tunneling part
as a perturbation to the full Hamiltonian [54–57]. In the

FIG. 4. Orbital-exchange interactions of the effective model as a
function of the tunneling amplitude for J/Us = 1/6 (a) and J/Us =
−1/6 (b). Jx/Jz = −3 and D/Jz = √

3 for arbitrary hopping, as a
result of rotational symmetry of the hexagonal lattice.

strong-coupling limit tsp � Us, we can use two projection
operators P̂ and Q̂ = 1 − P̂ to divide the Hilbert space
into two orthogonal subspaces. Here, P̂ projects onto the
subspace HP with only one atom occupied per site, and
Q̂ projects onto the complementary subspace HQ (see the
Appendix B for details). For Hamiltonian Ĥ , we divide it
into two parts Ĥ = Ĥt + ĤU , where Ĥt describes tunneling
terms and ĤU describes interaction terms. The Schrödinger
equation reads

Ĥ |ψ〉 = (Ĥt + ĤU )(P̂ + Q̂)|ψ〉 = E |ψ〉, (10)

which leads to an effective Hamiltonian Heff in the Mott phase
with unit filling:

Ĥeff = P̂Ĥt Q̂
1

E − Q̂ĤQ̂
Q̂Ĥt P̂. (11)

Because E ∼ t2/U , we obtain 1
E−Q̂ĤQ̂

≈ 1
−Q̂ĤU Q̂−Q̂Ĥt Q̂

. Using
1

A−B = 1
A

∑∞
n=0(B 1

A )n, with A = −Q̂ĤU Q̂ and B = Q̂Ĥt Q̂, we
obtain the effective Hamiltonian:

Ĥeff = P̂Ĥt Q̂
1

−Q̂ĤU Q̂

∞∑
n=0

(
Q̂Ĥt Q̂

1

−Q̂ĤU Q̂

)n

Q̂Ĥt P̂. (12)

Since the system has two sets of sublattices, the second-order
terms are then trivial. Taking a p-orbital atom as an example,
it can tunnel to its neighboring S site as an s-orbital atom, and
then the s-orbital atom can only tunnel back to the empty P
site as a p-orbital atom. This is nothing but an onsite energy
shift. Thus, it is not possible to generate effective interaction
terms between the orbitals via second-order processes. There-
fore, one must include fourth-order terms O(t4/U 3), which
give rise to the coupling between P sites to reach a nontrivial
effective Hamiltonian. The effective orbital-exchange model
is finally given by

Ĥeff =
∑
〈i j〉

JxŜX
i ŜX

j + JzŜ
Z
i ŜZ

j + D(Ŝi × Ŝ j )y, (13)

where 〈i j〉 denotes the nearest-neighbor sites i and j of the P
sublattice, and the Heisenberg exchange coupling terms Jx,z

and the Dzyaloshinskii-Moriya term D [58,59] are given in
Appendix B. We find the disappearance of the Heisenberg
exchange term Jy and the appearance of the Dzyaloshinskii-
Moriya interaction D in the y direction in the effective
exchange model, which is the underlying physics of the dis-
appearance of orbital angular momentum with 〈L̂z,i〉 = 0 for
the Mott phase with filling n = 1. Instead, the Dzyaloshinskii-
Moriya term competes with the normal exchange terms, and
can induce coplanar orbital textures. We remark here that, in
our system, mirror symmetry is actually broken as a result of
the anisotropy of the p orbital. This is explained in more detail
in Appendix C.

In Fig. 4, the coupling strengths are shown as a function
of the tunneling amplitudes. Interestingly, we observe Jx/Jz =
−3 and D/Jz = √

3 for arbitrary hopping, as a result of rota-
tional symmetry of the hexagonal lattice. Indeed, the interplay
of the Dzyaloshinskii-Moriya and the normal exchange terms
results in a 120◦ coplanar orbital order for the Mott insulating
phase with n = 1, as shown in Figs. 3(c) and 3(d), where
the blue arrows represent the real-space distribution of local
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FIG. 5. (a) Band structure of an optical lattice with V1 = 15ER and V2 = 13.6252ER, which have triple band crossings between the second,
third, and fourth bands, indicating the s orbital being in resonance with the px,y orbitals, where ER is the recoil energy. Insets: Schematic diagram
of the first Brillouin zone and high-symmetry points (top) and enlarged view of the second, third, and fourth bands (bottom). (b) Interaction and
hopping parameters as a function of lattice depth V1. Inset: s- and px,y-orbitals resonance for different lattice depths V1 and V2. (c) Phase diagram
of the multiorbital bosonic atoms in a 2D hexagonal lattice, where the Hubbard parameters are obtained from band-structure simulations. Inset:
Order parameters φν are shown as a function of V1 for a fixed chemical potential μ/Us = 0.25, indicating the superfluid-Mott insulating phase
transition.

orbital order 〈ŜX,Z
i 〉 of the P sites. This phase is also charac-

terized by the structure factor S�q. As shown in Figs. 3(e) and
3(f), the structure factor exhibits six peaks at K and K ′ points.

B. Band-structure simulations and many-body phases

In the previous part, we study the multiorbital system with
ideal Hubbard parameters. In this part, we investigate the
robustness of quantum phases against Hubbard parameters,
which can be obtained from band-structure simulations. In
particular, we consider a two-dimensional bipartite hexagonal
lattice potential:

Vhex(r) = − V1

∑
α=1,−1
σ=1,2,3

[
3 + eiα(bσ ·r− 2π

3 )
]

− V2

∑
α=1,−1
σ=1,2,3

[
3 + eiα(bσ ·r+ 2π

3 )
]
,

(14)

where V1 and V2 are the lattice depths of the two sets of
lattices, and b1 and b2 are reciprocal-lattice vectors for the
two-dimensional hexagonal lattice in the xy plane. In the
third direction, we consider a strong laser field with Vz =
50 ER to freeze the motional degree of freedom, where ER

is the recoil energy. We choose b1 = 4π
λ

( 3
4 ,−

√
3

4 ), b2 =
4π
λ

(0,
√

3
2 ), and b3 = b1 + b2 to generate a two-dimensional

hexagonal lattice as shown in Fig. 1.
Experimentally, the potential difference between the S and

P wells can be readily adjusted by tuning the ratio V1/V2, just
as already done in the experiments [34,35,38]. In our case, we
consider only three bands, i.e., second, third, and fourth bands,
which can be isolated from other bands with atoms loading
into these bands via band swapping technique [32,34,35].
Figure 5(a) shows the energy spectra of the six lowest-energy
bands for V1 = 15 ER and V2 = 13.6252 ER, based on a plane-
wave expansion. Here, the second, third, and fourth bands

are isolated from other bands, and the corresponding orbitals
are the s orbital in the shallow S sites and the px,y orbitals
in the deeper P sites, realizing a multiorbital system in a
two-dimensional optical lattice.

For a sufficiently deep lattice, a tight-binding model can
be utilized to describe the system, as shown in Eq. (1),
based on the Wannier-function basis. The corresponding Hub-
bard parameters, such as interaction and hopping parameters,
can be calculated using numerical methods. Here, we cal-
culated the parameters of the Hubbard model using the
maximally localized Wannier functions for composite bands
[60–62], based on the software package [63]. In addition,
we introduce the next-nearest-neighbor hopping terms tNNs

and tNNp, which are the nearest-neighbor hopping ampli-
tudes within the same sublattice. Under the resonance of
the s and px,y orbitals by controlling the ratio V1/V2, the
hopping amplitudes and interactions are shown as a func-
tion of V1 in Fig. 5(b). Here, we take 87Rb as an example,
and choose the wavelength λ = 1064 nm, and s-wave scat-
tering length as = 100.4 a0 with a0 being Bohr radius. We
find that the next-nearest-neighbor hopping terms decrease
quickly, approaching tiny values even for a moderate lattice
depth.

Based on the Hubbard parameters obtained from band-
structure simulations, we calculate the phase diagram of the
multiorbital bosonic system in a two-dimensional hexagonal
lattice. Generally, the next-nearest-neighbor hopping terms
between the px,y orbitals prefer a Potts-nematic superfluid
with 〈L̂z,i〉 = 0 by condensing atoms at the M point of the
first Brillouin zone for the hexagonal lattice. However, the
next-nearest-neighbor hopping is strongly suppressed for a
moderately deep lattice, and, even for the lattice depth V1 =
5 ER, the physics is dominated by the nearest-neighbor hop-
ping with developing chiral superfluid with 〈L̂z,i〉 
= 0. Upon
increasing the lattice depth, the atoms localize, and a Mott
insulator develops with a 120◦ coplanar orbital order for filling
n = 1, as shown in Fig. 5(c).
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IV. CONCLUSION

In summary, we study an experimentally related setup
with ultracold bosons loaded into the s and px,y bands of
two-dimensional hexagonal optical lattices, and obtain zero-
temperature quantum phases, based on bosonic dynamical
mean-field theory. A rich phase diagram, including chiral
superfluid, chiral Mott insulating, and time-reversal-even in-
sulating phases, is found. In the strongly interacting regime,
a fourth-order orbital-exchange model is derived, and a
consistent description is found. To relate to experimental ob-
servations, we make band-structure calculations to obtain the
Hubbard parameters, and resolve various quantum many-body

phases, indicating the chance to observe these phases using
current experimental techniques.
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APPENDIX A: SITE-DEPENDENT ELEMENTS OF THE LATTICE GREEN’S FUNCTION

G−1
0 (iωn) =

⎛
⎜⎜⎜⎜⎜⎜⎝

iωn + μs 0 −t spx
ei 0 −t

spy
ei 0

0 −iωn + μs 0 −t spx
ei 0 −t

spy
ei

−t spx
ei 0 iωn + μp 0 0 0
0 −t spx

ei 0 −iωn + μp 0 0
−t

spy
ei 0 0 0 iωn + μp 0
0 −t

spy
ei 0 0 0 −iωn + μp

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A1)

where t spx
ei = xitsp and t

spy
ei = yitsp with ei = (xi, yi ) (see main text).

APPENDIX B: EFFECTIVE ORBITAL-EXCHANGE MODEL

The fourth-order orbital-exchange model is given by

Ĥeff = P̂Ĥt Q̂
1

−Q̂ĤU Q̂
Q̂Ĥt Q̂

1

−Q̂ĤU Q̂
Q̂Ĥt Q̂

1

−Q̂ĤU Q̂
Q̂Ĥt P̂. (B1)

In the tight-binding regime, we consider a three-site (P,S,P) problem, and then the subspace HP, where all lattice sites are
occupied with one atom, is

HP : {|px, s, px〉 , |px, s, py〉 , |py, s, px〉 , |py, s, py〉}, (B2)

where |pσ , s, pσ ′ 〉 denotes the orbital state px or py in the P site and s in the S site. The subspace HQ, where one lattice site is
occupied with two atoms, is

HQ : {|0, ss, px〉 , |0, ss, py〉 , |px, ss, 0〉 , |py, ss, 0〉 , |0, s, px px〉 , |0, s, px py〉 , |0, s, py py〉 , |px px, s, 0〉 , |px py, s, 0〉 ,

|py py, s, 0〉 , |px, 0, px px〉 , |px, 0, px py〉 , |px, 0, py py〉 , |py, 0, px px〉 , |py, 0, px py〉 , |py, 0, py py〉 , |px px, 0, px〉 ,

|px py, 0, px〉 , |py py, 0, px〉 , |px px, 0, py〉 , |px py, 0, py〉 , |py py, 0, py〉}. (B3)

From these two subspaces, we can obtain the matrix form of P̂Ĥt Q̂, Q̂ĤU Q̂, and Q̂Ĥt Q̂. Equation (B1) yields the effective
orbital-exchange model, which is described by Eq. (13). The three coupling strengths are given by

Jx = 6t4
sp

2U 2
s Upxy

+ 6t4
sp

4UsU 2
pxy

+ 3t4
sp

16U 3
pxy

+ 24Jt4
sp

−U 2
s Ũ

+ 24Jt4
sp(Upx + Upy )

−UsŨ 2
+

6t4
sp

(
4J3 + JU 2

px
+ JU 2

py
+ JUpxUpy

)
−Ũ 3

,

Jz = 2t4
sp

2U 2
s Upxy

+ 2t4
sp

4UsU 2
pxy

+ t4
sp

16U 3
pxy

+ t4
sp(6Upy − 2Upx )

−U 2
s Ũ

+
t4
sp

(
6U 2

py
− 2U 2

px
+ 16J2

)
−UsŨ 2

+
t4
sp

(
(3U 3

py
− U 3

px
)/2 + 2J2Upx + 10J2Upy

)
−Ũ 3

,

D =
√

3t4
sp(4J + Upx − 3Upy )

−U 2
s Ũ

+
√

3t4
sp

(
4JUpx + 4JUpy + U 2

px
− 3U 2

py
− 8J2

)
−UsŨ 2

+
√

3t4
sp

(
4J3 + JU 2

px
+ JU 2

py
− J2Upx − 5J2Upy + JUpxUpy + (

U 3
px

− 3U 3
py

)
/4

)
−Ũ 3

, (B4)

with Ũ = UpxUpy − 4J2.
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TABLE I. A list of operators and their counterparts after undergoing symmetry operations.

Ô IÔI−1 MxyÔM−1
xy MxzÔM−1

xz MyzÔM−1
yz

b̂i,px −b̂i′,px b̂i′,px b̂i′,px −b̂i′,px

b̂i,py −b̂i′,py b̂i′,py −b̂i′,py b̂i′,py

ŜX
i ŜX

i′ ŜX
i′ −ŜX

i′ −ŜX
i′

ŜZ
i ŜZ

i′ ŜZ
i′ ŜZ

i′ ŜZ
i′

(Ŝi × Ŝ j )y (Ŝi′ × Ŝ j′ )y (Ŝi′ × Ŝ j′ )y −(Ŝi′ × Ŝ j′ )y −(Ŝi′ × Ŝ j′ )y

APPENDIX C: SYMMETRY ANALYSIS

We denote the spatial inversion operator as I and the mirror reflection operator as Mαβ=xy,xz,yz with respect to the αβ plane.
Under the symmetry operations I and Mαβ , the p-orbital wave functions obtain a change due to its intrinsic anisotropy, so the
operators ŜX,Z

i and (Ŝi × Ŝ j )y are also changed (shown in Table I). We use the labels i( j) and i′( j′) to represent the positions
before and after the symmetry operation, respectively. The nonzero Dzyaloshinskii-Moriya interaction term in our model is a
result of the break of mirror symmetry (Mxz, Myz ), which is essentially caused by the anisotropy of the p orbital.
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