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Controlling entanglement in a triple-well system of dipolar atoms
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We study the dynamics of entanglement and atomic populations of ultracold dipolar bosons in an aligned
three-well potential described by an extended Bose-Hubbard model. We focus on a sufficiently strong interacting
regime where the couplings are tuned to obtain an integrable system, in which the time evolution exhibits a
resonant behavior that can be exactly predicted. Within this framework, we propose a protocol that includes
an integrability breaking step by tilting the edge wells for a short time through an external field, allowing the
production of quantum states with a controllable degree of entanglement. We analyze this protocol for different
initial states and show the formation of highly entangled states as well as NOON-like states. These results offer
valuable insights into how entanglement can be controlled in ultracold atom systems that may be useful for the
proposals of new quantum devices.
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I. INTRODUCTION

Quantum entanglement is a phenomenon discovered in
the foundations of quantum physics that paved the way for
a new era of technological advances. It represents nonlocal
correlations between separate parts of a quantum system. As
a resource, entanglement has been proven to be very useful
for performing numerous tasks that face barriers in a classical
setting, finding broad applications in quantum information
processing [1–6], quantum teleportation [7–11], quantum se-
cure communication [12,13], and quantum metrology and
sensing [14–16].

Entangled states are key ingredients in the proposals
of protocols for the development of new quantum devices
[17–23], and hence understanding the mechanisms for pro-
ducing and controlling entangled states with a high degree of
precision is of fundamental importance. In this context, the
search for highly entangled states is the aim of many tech-
nological quantum applications [24], which can be exploited
through different platforms. Among these, ultracold atoms are
especially interesting because current techniques enable the
manipulation of atoms arranged in optical potentials, with
astonishing precision and versatility of the operating control
[25–27].

In recent experiments on ultracold quantum gases, dipolar
bosons are loaded into optical lattices to generate long-range
dipole-dipole interaction (DDI), allowing access to fascinat-
ing quantum properties and phases [28]. The dynamics of
such dipolar boson systems have been intensively studied and
described, with good results, by an extended Bose-Hubbard
model (EBHM) [29,30]. One interesting feature of the EBHM
with few bosonic modes is that the couplings of interac-
tions can be tuned to achieve an integrable regime, which
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is particularly suited for the design of quantum devices. For
instance, in Ref. [31], the conserved charge provided by in-
tegrability plays a crucial role when examining the quantum
dynamics of a dipolar Bose-Einstein condensate (BEC) on
a three-well aligned system, making it a potential candidate
for constructing an atomic transistor [32]. Other integrable
quantum systems are being recently utilized to support the de-
velopment of quantum technologies. These include quantum
circuits created from transfer matrices [33] and those created
through the star-triangle relation [34], central spin models for
quantum sensors [35], and the preparation of Bethe states on
a quantum computer [36–39].

Here we consider an integrable triple-well model of dipolar
bosons and propose a protocol to create quantum states with
controllable entanglement level. The control is realized by
breaking the integrability for a short time and the resulting
entanglement is characterized by the von Neumann entropy
and correlation functions. We test the protocol for a range of
different initial states, demonstrating how to produce highly
entangled states as well as other important quantum states
such as NOON-like states [40].

The paper is organized as follows. In Sec. II, we describe
the system and discuss the conditions for obtaining an ef-
fective description of the integrable system in the resonant
regime. In Sec. III, we analyze the dynamics of the system
and the entanglement behavior in the resonant regime. In
Sec. IV, we propose a protocol for controlling entanglement
by briefly tilting the edge sites of the system. In Secs. V–VII,
we analyze the action of the protocol on different initial states.
A discussion on interferometric applications of the protocol
and details on the ground state structure are provided in the
Appendices. The conclusions are given in Sec. VIII.

II. SYSTEM DESCRIPTION

We consider a system of dipolar atoms in an aligned
triple-well potential described by the following extended
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FIG. 1. Schematic representation of the triple-well system. Dipo-
lar atoms are confined by the potential trap Vtrap with the wells
aligned along the y axis. The neighboring wells are separated by
a distance L. The arrows represent the dipoles of atoms oriented
along the direction of polarization (assumed to be in the z direction).
The coupling J represents the hopping rate, U0 characterizes on-site
interactions, while Ui j characterizes the DDI between particles on
different sites.

Bose-Hubbard model:

H = U0

2

3∑
i=1

Ni(Ni − 1) +
3∑

i=1

3∑
j=1; j �=i

Ui j

2
NiNj

− J√
2

(a†
1a2 + a†

2a1 + a†
2a3 + a†

3a2), (1)

where ai, a†
i , and Ni = a†

i ai are the bosonic annihilation, cre-
ation, and number operators of the well (or site) i = 1, 2, 3,
respectively. The coupling J denotes the hopping rate of
atoms between neighboring wells and U0 and Ui j = Uji set the
on-site and long-range interactions, respectively. The on-site
interaction U0 = Usr + Udd results from short range interac-
tion Usr and on-site dipole-dipole interaction (DDI) Udd . The
short-range interaction Usr ∝ 4π h̄2a/m is determined by the
s-wave scattering length a, which is controlled through a mag-
netic field via Feshbach resonance, and m is the mass of the
atom. The on-site DDI Udd ∝ μ2 and long-range interactions
Ui j ∝ μ2 follow from an inverse cubic law of the relative posi-
tion between polarized particles whose strength is determined
by the permanent magnetic dipole moment μ of dipolar atoms
considered, and highly depends on the geometry of poten-
tial trap and the polarization direction of dipoles [29,41]. A
schematic representation of this system is presented in Fig. 1.

For potential wells aligned along the y axis, separated by
a distance L at the same depth, and with all dipoles orien-
tated in the z direction, the interaction energies are balanced,
satisfying U12 = U23 as a consequence of symmetry. After
setting the value of the s-wave scattering length, the depth of
the wells can be tuned to satisfy the condition U13 = U0 (see
Appendix A). Under these conditions, the Hamiltonian given
by Eq. (1) is integrable [42] and can be reduced, up to a global
constant, to

H = U (N1 − N2 + N3)2

− J√
2

(a†
1a2 + a†

2a1 + a†
2a3 + a†

3a2), (2)

where N = N1 + N2 + N3 is the total number of particles and
U = (U0 − U12)/4 represents the effective interaction energy.
A discussion on the feasibility of a physical realization of
this system by means of Bose-Einstein condensates of dipolar
atoms can be found in Ref. [31]. In this integrable case,
the model can be formulated and solved using the quantum
inverse scattering method and Bethe ansatz methods [42]. The
system acquires the additional conserved operator

Q = 1
2 (N1 + N3 − a†

1a3 − a†
3a1), (3)

besides the Hamiltonian H and the total number of particles
N , resulting in three independent conserved operators in an
equal number of system modes. The conserved charge Q plays
an important role in the resonant regime, characterized by the
emergence of coherent oscillations of the atomic populations
in the edge wells (labeled by i = 1 and 3), with atoms passing
directly through the middle well (i = 2) without accumulating
in it as a consequence of a second-order process that occurs in
a relatively strong interaction regime [29,43]. This behavior
can be understood from the combination of two opposite
effects. On the one hand, in the relatively strong interaction
regime, the identification of single mode a13 ≡ (a1 + a3)/

√
2

of sites 1 and 3 provides the two-site structure of the Hamil-
tonian (see Appendix B) that leads to a self-trapping behavior
[44] and, consequently, to the conservation of atomic popula-
tion initially in the subsystem of wells 1 and 3. On the other
hand, the condition of integrability cancels the interaction
energy (U13 − U0)N1N3 in the Hamiltonian so that sites 1 and
3 effectively form a noninteracting double-well system, with
the atomic population free to oscillate harmonically within
this subsystem [see Fig. 2(a)]. In order to reach the resonant
regime we consider the initial state

|�0〉 = |N − k − l, l, k〉, (4)

where l (l = 0, ..., N) and k (k = 0, ..., N − l) represent the
number of atoms initially at wells 2 and 3, respectively. The
resonant regime is then achieved when |U (N − 2l )/J| � 1
and the quantum dynamics of the Hamiltonian (2) can be well
described by the effective Hamiltonian [31],

Heff = ωlQ, (5)

where constant ωl is given by

ωl = λl J
2, (6)

with λl = 1
4|U | (

l+1
N−2l−1 − l

N−2l+1 ) depending on the initial
number l of bosons in the middle well. The constant ωl will
play the role of the resonant tunneling frequency, with period
Tl = 2π/ωl . For the case where l = 0, let us simply denote it
by T ≡ T0.

In the following sections, we first discuss the dynamical
quantities that characterize the behavior of the system and
provide information about its quantum entanglement. After
that, we provide a protocol that briefly tilts wells 1 and 3
to control the entanglement of the quantum state. Then, we
analyze the effects of the protocol on different initial states.

III. DYNAMICS OF POPULATIONS AND ENTANGLEMENT

We start by considering the dynamics of the system de-
scribed above in the integrable and resonant regime, and for
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FIG. 2. (a) Fractional expectation values 〈N1〉/N (green line) and 〈N3〉/N (yellow line) for N = 20, initial state |�0〉 = |20, 0, 0〉, U = −2,
and J = 1. The marks represent the analytic expression (10). (b) Time evolution of the entanglement entropy S1 in units of Smax

1 = ln(N + 1).
(c) Time evolution of correlation functions C13 in units of Cmax

13 = N/4. The numerical simulation (11) is represented by the solid line, while
the marks result from the closed form expression. The vertical dotted lines mark the instant t = T/4, where 〈N1〉 = 〈N3〉 and the values of S1

and C13 are maximum.

convenience, we set h̄ = 1. We focus on the time evolution of
the average number of particles per well

〈Ni〉 = 〈�(t )|Ni|�(t )〉 (7)

and the von Neumann entanglement entropy

Si(t ) = −Tr[ρi(t ) ln ρi(t )], (8)

where the density matrix is defined as ρ(t ) = |�(t )〉〈�(t )|
and ρi(t ) is the reduced density matrix of site i where the
remaining subsystem is traced out. The von Neumann entropy
quantifies the bipartite entanglement between the site i and the
subsystem of the other two sites. In the integrable regime, an
initial state described by |�0〉 will evolve in time according to

|�(t )〉 = U (t )|�0〉, (9)

where U (t ) ≡ e−iHt is the time-evolution operator. In what
follows, we will use |�〉 to refer to states obtained using
the Hamiltonian (2), and we will use the notation |�̃〉 with
a tilde to denote analytic states obtained using the effective
Hamiltonian (5), from which analytic results can be derived. A
comparison between the quantum states |�〉 and |�̃〉 obtained
for the same set of parameters will be quantified through the
fidelity defined as F = |〈�|�̃〉|2. We will consider that the
state |�〉 theoretically approaches the analytic state |�̃〉 when
F > 0.95.

For the case of initial state (4), the state |�̃(t )〉 predicts
that 〈N2〉 = l remains constant, while the atoms oscillate har-
monically between sites i = 1 and i = 3, according to the
expectation values given by [31]

〈Ni〉 = 1
2 [N − l + (2 − i)(N − l − 2k) cos(ωl t )]. (10)

The expression above shows a maximum amplitude with
oscillations of period T = 2π/ω0 when all atoms are initially
located in one of the edge wells (i.e., when |�0〉 = |N, 0, 0〉 or
|�0〉 = |0, 0, N〉) and an equilibrium with 〈N1〉 = 〈N3〉 = N/2
remaining constant when the edge wells initially have the
same number of atoms (i.e., when |�0〉 = |n, 0, n〉, with N =
2n). These two extreme cases will be the subject of our study
later on. In Fig. 2 are shown some numerical results for the
case |�0〉 = |N, 0, 0〉 using the Hamiltonian (2). Figure 2(a)

shows the perfect agreement between the results of the nu-
merical simulation and the expectation values given in (10).
In Fig. 2(b) the time evolution of the entanglement entropy
S1 presents a period of T/2 and its first maximum occurring
at t = T/4, exactly when the populations reach an equilib-
rium with 〈N1〉 = 〈N3〉. Nevertheless, despite the fact that the
von Neumann entanglement entropy is the most frequently
used measure to quantify entanglement, it does not depend
on any particular observable, making it difficult to perform a
direct experimental measurement of its magnitude. In order
to generate signatures to indicate the formation of highly
entangled states, in addition to enabling experimental mea-
surements, we also evaluate the two-site correlation function
defined as

Ci j ≡ |〈Ni〉〈Nj〉 − 〈NiNj〉|. (11)

Using the state |�̃(t )〉, we can derive the correlation function
in the closed form C13 = (N/4) sin2(t ω0), from which a max-
imum value is directly obtained at t = T/4. The agreement
between numerical simulation of C13 and its analytic formula
can be seen in Fig. 2(c). From Figs. 2(b) and 2(c) it is clear that
the maximum values of the two-site correlation functions and
the entanglement entropy occur simultaneously. This result
shows that the two-site correlation function is also able to
reveal information about the quantum entanglement of the
subsystem of wells.

It is worth noting that the entanglement entropy S2 van-
ishes, since the state of site 2 remains constant in the resonant
regime, while S1 = S3 �= 0 shows that bipartite entanglement
is present only in the subsystem of sites 1 and 3.

IV. PROTOCOL FOR QUANTUM ENTANGLEMENT
CONTROL

We now focus on establishing a protocol for generating
and controlling maximally entangled states. The control of
quantum entanglement can be achieved by tilting wells 1 and 3
through the action of an additional coherent light beam super-
imposed on the triple-well system designed on an optical trap.
During the presence of tilt on wells 1 and 3 the dynamics is
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FIG. 3. Schematic representation of the control protocol se-
quence. The tilt �V between the potentials of sites 1 and 3 is
induced through an external field. The duration of the field allows
the entanglement in the subsystem consisting of sites 1 and 3 to be
controlled.

governed by the Hamiltonian [32]

H(ε) = H + ε(N3 − N1), (12)

where H is the integrable Hamiltonian (2) and the parame-
ter ε characterizes the energy offset between edge potential
wells (see Fig. 3). Other properties of this Hamiltonian (12)
can be found in Refs. [31,45,46]. Here we will examine the
case where the tilt is introduced into the protocol as a short-
duration square pulse just after the initial state evolves to the
state with maximum correlation at t = T/4, as identified in
the previous section. It will be seen that the amount of quan-
tum entanglement is completely determined by the duration
of the square pulse.

The full description of the protocol can be represented as
follows:

|�(t )〉 = |�k (t )〉, tk−1 � t � tk,

where the states for steps k = 1, 2, and 3 of the protocol are
given sequentially by

|�1(t )〉 = U (t − t0, 0)|�0〉,
|�2(t )〉 = U (t − t1, ε)|�1(t1)〉,
|�3(t )〉 = U (t − t2, 0)|�2(t2)〉.

Here, U (t, ε) ≡ e−iH(ε)t is the time evolution operator. This
sequence is depicted in Fig. 3 below, illustrating the depen-
dence on the parameter ε.

In what follows, we continue to adopt the notation |�〉
(without tilde) for states obtained using the Hamiltonian (12),
and |�̃〉 for analytic states obtained using the effective Hamil-
tonian Heff(ε) = Heff + ε(N3 − N1), where Heff is given by
(5).

At the end of the whole process, the protocol generates the
state

|�out〉 ≡ |�3(t3)〉
= U (�t3, 0)U (�t2, ε)U (�t1, 0)|�0〉, (13)

where �tk = tk − tk−1 is the duration of the kth (k = 1, 2, 3)
step of the protocol. As mentioned earlier, we are assuming
that t0 = 0, �t1 = T/4, and �t2 	 �t1,3 such that the break-
ing of integrability is the dominant effect in the second step
of the protocol. In the following sections, the action of the
protocol on different initial input states will be investigated in
detail.

V. FOCK INPUT STATE

We start by first considering the case of a completely lo-
calized initial state given by |�0〉 = |N, 0, 0〉. Figure 4 shows
the effect of the protocol on the dynamics for different values

FIG. 4. Time evolution of the fractional expectation values (row a) 〈N1〉/N (green line), 〈N2〉/N (dotted line), 〈N3〉/N (yellow line);
entanglement entropy in units of Smax

1 = ln(N + 1) (row b); and two-site correlation function in units of Cmax
13 = N/4 (row c). Each column

represents a different value of �t2. The first column represents the integrable case, where �t2 = 0. The other columns show the cases where
�t2 = Tε/8, �t2 = Tε/4, and �t2 = Tε/2, in sequence. In all cases, N = 20, initial state |�0〉 = |20, 0, 0〉, U = −2, J = 1, and ε = 1. The
vertical dashed lines represent the instant t = t2.
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FIG. 5. Entanglement entropy of state |�out〉 as function of φ ∈
[0, 2π ] for �t3 = T/16 (green), �t3 = T/8 (blue), and �t3 = T/4
(magenta), for N = 20, using the initial state |�0〉 = |20, 0, 0〉, U =
−2, J = 1, and ε = 1. The dashed vertical line represents �t2 =
Tε/4.

of duration of a square pulse �t2 counted in units of period
Tε = 2π/
ε , where 
ε = 2ε.

In the first line of the Fig. 4, after the action of the square
pulse (t � t2), the expectation value of the fractional popula-
tion of sites i = 1, 3 is shown, which is given by

〈Ni〉/N = 1/2 − (1 − i/2) sin[ω0(t − t2)] cos φ, (14)

and φ is a dimensionless parameter defined as

φ = 2ε�t2.

We observe that the amplitude of the expectation values of
〈Ni〉/N decreases gradually with increasing the pulse duration
�t2 until the dynamics becomes stationary balanced for a long
time at �t2 = Tε/4 (or φ = π/2) and completely reversed
at �t2 = Tε/2 (or φ = π ). In the second line of Fig. 4, the
range of values of entanglement entropy gradually decreases
with increasing duration of the pulse, becoming stationary at
its maximum value at �t2 = Tε/4. The dynamics of entan-
glement of the state |�(t )〉 along the control process is also
signaled in the third line of Fig. 4 through the correlation
function of sites 1 and 3.

In Fig. 5 we present the entanglement entropy of state
|�out〉 as a function of φ for three time intervals �t3 =
T/16, T/8, T/4. We observe that entanglement entropy can
be controlled over a larger range of values at �t3 = T/4.
Therefore, for fixed duration �t3 = T/4, the protocol predicts
the following quantum state:

|�̃out(φ)〉 = [sin(φ/2) a†
1 + cos(φ/2) a†

3]N

√
N!

|0, 0, 0〉, (15)

where |0, 0, 0〉 is the vacuum state. From the above ex-
pression, the correlation function of sites 1 and 3 can be
determined analytically as a function of parameter φ and it
is given by C13 = (N/4) sin2 φ. When performing the con-
trol within the interval �t2 ∈ [0, Tε], the expression above
shows that the maximized correlation Cmax

13 = N/4 occurs at
φ = π/2 (3π/2), when the state |�out〉 has the maximum
entanglement entropy with all atoms into the (anti)symmetric
coherent state with fidelity F = 0.99827 (0.999509):

|�̃out〉 = (a†
1 ± a†

3)N

√
2N N!

|0, 0, 0〉.

If all atoms are initially loaded into site 3 (i.e., |�0〉 =
|0, 0, N〉), the states with maximum correlation are generated

FIG. 6. (a) Entanglement entropy for �t2 = 0 (blue line), �t2 =
Tε/8 (green line), and �t2 = Tε/4 (dashed line), and (b) correlation
for �t2 = 0 (brown line), �t2 = Tε/8 (pink line), and �t2 = Tε/4
(dashed line). For all cases, the initial state |�0〉 = |10, 0, 10〉 was
used for N = 20, U = −2, J = 1, and ε = 1. The vertical dashed
lines represent the instant t = t2.

with symmetry reversed compared to the case where |�0〉 =
|N, 0, 0〉. In the next section, we consider the case where
initially both sites 1 and 3 have the same number of atoms.

VI. TWIN-FOCK INPUT STATE

In this section we investigate the quantum entanglement
control for the case of the initial twin-Fock state in sites 1
and 3, given by |�0〉 = |n, 0, n〉, for which N = 2n and the
expectation values 〈N1〉 = 〈N3〉 = n remain constant under
integrable time evolution in the resonant regime. Figure 6
presents the dynamics of the entanglement entropy of state
|�(t )〉 for three different durations of a square pulse.

Again, for �t2 = Tε/4, the entanglement entropy is sta-
tionary.

Figure 7 shows the entanglement entropy S1 as a func-
tion of dimensionless parameter φ and three time intervals
�t3 = T/16, T/8, and T/4. In this case, the output state
|�out〉 presents high entanglement entropy with a small dip
at �t2 = Tε/4 in its signature, and for �t3 = T/4 the state
predicted by our protocol is given by

|�̃out(φ)〉 = (2 cos φ a†
1a†

3 + sin φ[(a†
1)2 − (a†

3)2])n

2nn!
|0, 0, 0〉.

(16)

FIG. 7. Entanglement entropy of state |�out〉 as a function of
φ ∈ [0, 2π ] for �t3 = T/4 (magenta), �t3 = T/8 (blue), and �t3 =
T/16 (green), using the initial state |�0〉 = |10, 0, 10〉, for N = 20,
U = −2, J = 1, ε = 1, and �t1 = T/4. The dashed vertical line
represents �t2 = Tε/4.
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The above state allows determining analytically the correla-
tion function of sites 1 and 3 as a function of parameter φ,
given by

C13 = n(n + 1)

2
sin2 φ.

In particular, for φ = π/2 and φ = 3π/2, the correlation
achieves its maximum value C13 = n(n + 1)/2 and the state
|�̃out〉 is highly entangled with the respective fidelities F =
0.998315 and F = 0.998771, given by (up to global phase)

|�̃out〉 = [(a†
1)2 − (a†

3)2]n

2nn!
|0, 0, 0〉.

The above state shows that the protocol acts on the initial
twin-Fock state by performing a discrete Fourier transform on
modes 1 and 3 defined as a†

1(3) → (a†
1 ± a†

3)/
√

2 [47], which
leads to a quantum state with only an even number of particles
at sites 1 and 3. This result can be interpreted as a destructive
interference process on the odd number of particles, similar to
the well-known Hong-Ou-Mandel (HOM) effect [48,49].

It is worth noting that, in the resonant regime, the time
evolution operators U (T/4, 0) and U (�t2, ε) used to generate
the output state |�out〉 play an analogous role of the 50:50
beam-splitter and phase-shifter operations in a Mach-Zehnder
(MZ) interferometer [50,51] This shows the protocol is ca-
pable of performing interferometric operations in which the
phase estimation sensitivity depends on the choice of the ini-
tial state and the observable to be detected (see Appendix C).

VII. ENTANGLED INPUT STATE

In the previous sections, we considered a class of nonen-
tangled initial states in which the state of well 2 remains
constant over time, and therefore remains disentangled from
the rest of the system. Now we will consider an entangled
initial state in which quantum entanglement between well 2
and the subsystem composed of the other two wells is also
manifest. To this end, let us analyze the effect of the protocol
on the initial state defined as

|�0〉 = 1√
2
|0, N, 0〉 + 1√

2N!

(
a†

1 + a†
3√

2

)N

|0, 0, 0〉. (17)

The above state has a NOON-like state (NLS) structure, in
the sense that it is a superposition between the state with
all particles in well 2 and the state with all atoms in the
subsystem of wells 1 and 3. However, the state of the sub-
system of wells 1 and 3 has all particles into a coherent state

|CS〉 = 1√
N!

( a†
1+a†

3√
2

)N |0, 0, 0〉. The motivation for its study lies
in the possibility of the three-well system to serve as a basic
component for directing the transfer of two-mode NOON
states within a larger integrated network. In addition, the NLS
is directly related to the ground state of the integrable Hamil-
tonian (see Appendix B), which in principle could be prepared
in the laboratory by controlling the system parameters.

FIG. 8. Entanglement entropies (in units os SNOON = ln 2) S1

(solid line), S2 (dot line), and S3 (dot-dashed line) of state |�̃out〉 (18)
as a function of φ ∈ [0, 2π ], for N = 10 and U = −1.3.

Now, considering the case of initial state (17), the effective
Hamiltonian is still given by (5) with l = 0, since ωN = ω0.
Then, the protocol predicts the following quantum state:

|�̃out(φ)〉 = 1√
2
|0, N, 0〉

+ 1√
2N!

(cφa†
1 − sφa†

3)N |0, 0, 0〉, (18)

where we define

cφ = cos

(
φ

2
− π

4

)
, sφ = sin

(
φ

2
− π

4

)
.

Figure 8 presents the change of entanglement entropies S1,
S2, and S3 with respect to the parameter φ. The figure clearly
shows that the entropy S2 remains constant at S2 = ln 2 while
the other entropies exhibit a dip at φ = π/2(3π/2) with the
typical value S1(3) = ln 2 of a NOON state.

In addition, the two-site correlation functions obtained
from the quantum state (18) are given by (see Fig. 9)

C13 = N (N − 2)

16
cos2 φ,

C12 = N2

4
cos2

(
φ

2
− π

4

)
,

C23 = N2

4
sin2

(
φ

2
− π

4

)
.

From Fig. 9, it is clear the occurrence of maximum of C12

coincides with the cancellation of C23 and vice versa when

FIG. 9. Correlation functions (in units of Cmax = N2/4) C12

(solid line), C23 (dot-dashed line), and C13 (dot line) for N = 10 and
U = −1.3.
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C13 = 0, at φ = π/2, and φ = 3π/2, producing the corre-
sponding states

|�̃out(π/2)〉 = 1√
2
|0, N, 0〉 + 1√

2
|N, 0, 0〉,

|�̃out(3π/2)〉 = 1√
2
|0, N, 0〉 + (−1)N

√
2

|0, 0, N〉,

with the fidelities F = 0.996123 and F = 0.973085, respec-
tively. The above NOON states can be seen as the result
of an entanglement deconcentration process [52–54] through
unitary transformation on the NLS state, since they are pro-
duced in the subsystems 12 and 23 with less entanglement
entropy S1,3 than the initial state. This result shows that the
protocol controls the transition between the biseparable and
fully entangled quantum state of a tripartite system [55],
since only two modes are entangled in the states |�̃out(π/2)〉
and |�̃out(3π/2)〉, whereas all modes are entangled in the
states |�̃out(0)〉 or |�̃out(π )〉 [see Eq. (18)]. It also suggests
that the triple-well system can be thought of as a potential
shared router operating at the interface between two individual
quantum devices to perform a transfer of a NOON state. The
triple-well system itself can be viewed as an example of two
interconnected double-well systems, where each of them can
perform Mach-Zehnder interferometry using the NOON input
state [56]. In addition, the three-well system can be appropri-
ately integrated into a larger arrangement of wells where it and
the subsystems in its vicinity can be individually confined and
sequentially manipulated via additional external fields. This
makes it possible to apply the functionality of the three-well
system to more complex well network architectures.

VIII. CONCLUSION

We have proposed a protocol to generate states with con-
trolled levels of entanglement, where the control is realized
by breaking the integrability for a short period of time. Our
study provides closed formulas for correlation functions to
characterize the entanglement in terms of the integrability
breaking time, which allowed us to predict the time required
to generate highly entangled states. In the action of protocol
on one of the initial states, the maximum correlation predicts
the formation of NOON states, whereas, for other unentangled
initial states, the maximum correlations are closely related to
interference processes.

Our results have the potential to open new avenues for
the manipulation and short-range transfer of entangled states
within multimode systems. This can be achieved, for instance,
by adapting the steps of our protocol to small parts of a mul-
timode system through the application of external local fields.
In future research, we will adjust our protocol to investigate
the transfer of entangled states in the four-well system in ring
and star configurations, which are the simplest geometries
after the three-well model within the family of integrable
multiwell systems [42]. These studies may find applications in
quantum routing processes of new devices based on ultracold
quantum technology.
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APPENDIX A: INTEGRABILITY CONDITION

In this section, we provide additional information on the
integrability condition, aiming to offer a physical description
of its experimental feasibility. To calculate the interaction
parameters, we consider the wells to be aligned along the
y direction, where the position of the center of site i is de-
noted by ri=1,2,3, and the neighboring sites are separated by
a distance L. We assume that atoms are tightly confined in
the optical trap and the interaction energies involved are not
strong enough to excite higher Bloch bands, so that the wave
function Wi(r) = W (r − ri ) of site i is a Gaussian of the form
W (r) = ϕ(x)ϕ(y)ϕ(z), where

ϕ(b) =
(

1

πσ 2
b

)1/4

e−b2/(2σ 2
b ),

σb=x,y,z = √
h̄/(mωb) is the width of Gaussian, and ωb=x,y,z

denote the trap frequency in the b direction, which can be
tuned by the potential depth of optical trap. The interaction
parameters are given by [43]

Usr = 4π h̄2a

m

∫
|W1|4dr,

Ui j =
∫

|Wi(r)|2|Wj (r′)|2Vdd (r − r′)drdr′,

Udd = U11,

where m is the mass of the dipolar atom considered, the short-
range interaction Usr is controlled by s-wave scattering length
a via Feshbach resonance, Udd arises from the dipole-dipole
interaction (DDI) between particles in the same site, while Ui j

(i �= j) refers to DDI between particles on different sites. The
DDI is governed by the inverse cubic law of the distance r =
|r| between two polarized dipoles, whose potential is defined
by

Vdd (r) = μ0μ
2

4π

(1 − 3 cos2 θ )

r3
,

where μ0 is vacuum magnetic permeability, μ is the perma-
nent magnetic dipole moment of the dipolar atom considered,
and θ is the angle between the dipole polarization and the
relative position r − r′. In addition, we are assuming that all
dipoles are oriented along the z direction [see Fig. 10(a)].

For the case σ ≡ σx = σy and σz = σ/κ , the aspect ratio
κ determines the three possible geometries of a potential
trap: prolate shape (κ < 1), spherical (κ = 1), or oblate shape
(κ > 1) [57]. By setting the dimensionless parameters q ≡
d/(

√
2σ ) and β ≡ a/add , where d is the distance between

sites i and j and add = μ0μ
2m/(12π h̄2) is the dipolar length,
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FIG. 10. (a) Schematic figure of the triple-well system. The wells are aligned along the y axis, with the neighboring wells separated by
a distance L, and dipoles (represented by the arrows) are polarized along the z direction. (b) The parameter β as function of q for the aspect
ratios κ = 0.7 (solid line), κ = 1.0 (dashed line), and κ = 1.2 (dotted line). It can be observed that the curves possess an absolute maximum
value βmax = maxq β(q) for which the interval of scattering length 0 < a � βmax add allows to obtain the integrability.

the interaction energy parameters can be calculated using the
Fourier transform [29], resulting in the formulas

Usr = 4π h̄2aκ

m

(
q

d
√

π

)3

,

Udd = −β−1 f (κ )Usr,

Ui j = 2β−1Usr

[
e−q2 − 3

q2

∫ q

0

t2(1 − t2)e−t2√
κ2q2 + t2(1 − κ2)

dt

]
,

where

f (κ ) = 1 + 2κ2

1 − κ2
− 3κ2arctanh

√
1 − κ2

(1 − κ2)3/2

expresses that the nature of the on-site DDI is dependent on
the geometry of the potential trap. In particular, Udd = 0 for
spherical trap potential, since limκ→1 f (κ ) = 0. The condition
of integrability Ui j = U0 = Usr + Udd allows to obtain the
parameter β as function of q:

β(q) = f (κ ) + 2e−q2 − 6

q2

∫ q

0

t2(1 − t2)e−t2√
κ2q2 + t2(1 − κ2)

dt,

which provides the tolerances on the scattering length values
needed to maintain integrability in an experiment, since the
function β(q) is clearly upper-bounded, as can be seen in
Fig. 10(b). The above equation can be numerically solved to
provide the trap frequencies

ωx = ωy = 2h̄

m

( q

d

)2
, ωz = κ2ωx

that allow to achieve the integrable regime. For the integrabil-
ity condition U13 = U0, we consider d = 2L.

APPENDIX B: GROUND STATE

In this section, we discuss the structure of the ground state
of integrable Hamiltonian (2) in the resonant regime with
U < 0, with the aim of clarifying the conditions required to
prepare the initial state used in Sec. VII. To this end, we

first note that the Hamiltonian (2) can be reduced to a Bose-
Hubbard Hamiltonian of a two-site structure (see, for instance,
Ref. [58])

H = U (N13 − N2)2 − J (a†
2a13 + a†

13a2),

by identifying the single-mode operator a13 = a1 + a3√
2

and

the total number of particles N13 = N1 + N3 in the subsystem
of sites 1 and 3. On the other hand, for a small number
of atoms, it is known that the ground state of the two-site
Bose-Hubbard Hamiltonian admits the generation of NOON
state |NOON〉 = 1√

2
(|N, 0〉 + |0, N〉) in the strong repulsive

interaction regime [59], which has the entanglement entropy
SNOON = −Tr(ρ1 ln ρ1) = ln 2 due to it having only one pair
of equally likely base Fock states. Likewise, in the resonant
regime (with U < 0) for small N ∼ 10, the ground state |GS〉
of the three-mode integrable Hamiltonian (2) presents high
fidelity (above 0.99) to the NOON-like state (NLS),

|NLS〉 = 1√
2
|0, N, 0〉 + 1√

2

(a†
13)N

√
N!

|0, 0, 0〉.

Figure 11 presents the fidelity F = |〈NLS|GS〉|2 as a function
of |U/J| and N for U < 0.

APPENDIX C: INTERFEROMETRY

In this section, we discuss some interferometric aspects of
the protocol proposed in Sec. IV.

First, we consider the state produced in Eq. (15) to cal-
culate the imbalance population between sites 1 and 3. This
provides an interference pattern as a function of parameter φ

according to the equation

〈N1 − N3〉 ≡ 〈�̃out(φ)|N1 − N3|�̃out(φ)〉 = −N cos φ.

Note that the unconventional negative sign can be changed
by extending the duration of the last operation to �t3 =
3T/4. The phase uncertainty can be obtained using the error
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FIG. 11. (a) Fidelity vs |U/J| for U < 0 and N = 5 (turquoise), N = 10 (magenta), and N = 12 (pink). (b) Fidelity vs N for U = −1.0
(dashed line), U = −1.3 (solid line), and U = −2.0 (dot dashed line). The vertical lines mark |U/J| = 1.3 and N = 10, values used in Sec. VII.

propagation theory [60] and is given by

�φ = �(N1 − N3)

|∂φ〈N1 − N3〉| = 1√
N

,

where the notation �X =
√

〈X 2〉 − 〈X 〉2 is the standard devi-
ation of operator X . The above result shows the uncertainty of
parameter φ is the shot noise limited.

The sensitivity of parameter φ can be improved for the
case of initial twin-Fock state |n, 0, n〉 at sites 1 and 3. This
can be achieved by detecting the parity operator �1 = e−iπN1

[56], whose expectation value for the output state generated in
Eq. (16) is given by

〈�1〉 ≡ 〈�̃out(φ)|�1|�̃out(φ)〉 = Pn[cos(2φ − π )],

where

Pn(x) =
�n/2�∑
k=0

(−1)k

2n

(
n

k

)(
2n − 2k

n

)
xn−2k

are the Legendre polynomials. The sensitivity of parameter φ

can be estimated by

�φ = ��1

|∂φ〈�1〉| , (C1)

which shows the uncertainty of parameter φ approaches the
Heisenberg limit �φ ≈ 1/(2n) when φ ≈ π/2 (see Ref. [56]
for details).
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