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Ground-state properties and Bogoliubov modes of a harmonically trapped
one-dimensional quantum droplet
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We study the stationary and excitation properties of a one-dimensional quantum droplet in a two-component
Bose mixture trapped in a harmonic potential. By constructing the energy functional for the inhomogeneous
mixture, we elaborate the extended Gross-Pitaevskii equation applicable to both symmetric and asymmetric
mixtures into a universal form, and the equations in two different dimensionless schemes are in a duality relation;
that is, the unique parameters that are left are the inverse of each other. The Bogoliubov equations for the
trapped droplet are obtained by linearizing the small density fluctuation around the ground state, and the low-
lying excitation modes are calculated numerically. It is found that the confinement trap easily changes the flat-
top structure for large droplets and intensively alters the mean-square radius and the chemical potential. The
breathing mode of the confined droplet connects the self-bound and ideal-gas limits, with the excitation in the
weakly interacting Bose condensate for large particle numbers lying in between. We explicitly show how the
continuum spectrum of the excitation is split into discrete modes and finally taken over by the harmonic trap. Two
critical particle numbers are identified by the minimum size of the trapped droplet and the maximum breathing-
mode energy, both of which are found to decrease exponentially with the trapping parameter.
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I. INTRODUCTION

The ultradilute quantum droplet is a novel quantum state
whose self-bound nature arises from the competition between
two different interactions [1,2]. Beyond-mean-field (BMF)
interactions, also known as quantum fluctuations or Lee-
Huang-Yang (LHY) corrections [3], play a crucial role in
such a system. However, since the BMF term represents the
next-order correction, it is essentially a small quantity com-
pared to its mean-field (MF) counterpart. The interactions
in a Bose gas are highly tunable, allowing the MF term to
be significantly reduced or even eliminated [4–6]. Therefore,
multicomponent or dipolar systems with bosons are promising
platforms for the study of quantum droplets [7]. Experi-
mental realizations of quantum droplets have been achieved
in binary [8–11] and dipolar [12–14] Bose systems. The-
oretically, the form of the BMF term in a two-component
mixture depends on the dimensionality of the system. The
three-dimensional (3D) BMF term is effectively repulsive,
while in lower dimensions it can be either attractive or repul-
sive. Especially in the one-dimensional (1D) case, the system
can exhibit solitonlike features as the interaction strength
varies [15], and the transition from soliton to droplet behavior
has been studied [9,16]. Recent work focused on the super-
fluidity and vortex states in two-dimensional (2D) and 3D
quantum droplets [17,18], collective excitations [19,20], col-
lision dynamics [21–23], dimensional crossover [24], and the
universality and metastability in the droplet system [25,26].
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For the 1D self-bound droplet, the collective excitation
spectrum was first calculated by means of linearizing the ex-
tended Gross-Pitaevskii equation (EGPE) around the ground
state [15], and the rotational properties revealed simultaneous
rigid-body and superfluid behavior when the droplet was put
in a ring-shaped confinement carrying an angular momen-
tum [27]. Furthermore, the quantum Monte Carlo method
was applied to the 1D droplet system [28,29], and novel
phases such as pair superfluid droplets were found in the
Bose-Hubbard chain of droplets when loaded into a 1D optical
lattice [30,31]. Some very elegant review articles summarize
the latest developments on the frontiers of this new state of
matter [32–34].

The presence of an external potential is known to trans-
form a simple Bose-Einstein-condensate (BEC) system into
a nonuniform one, thereby changing its properties [35,36].
In dipolar systems, the anisotropic nature of the interactions
means that different shapes of external potentials can lead
to significantly different results, such as the ground states
and stability regions in the phase diagrams [37–40]. Sev-
eral techniques, including hydrodynamic models [41–44], the
variational approach [45,46], and Bogoliubov theory [15,47],
have been adopted to examine how the introduction of inter-
actions in many-body systems affects the low-lying collective
excitations of trapped BECs.

A gaseous condensate is typically achieved in experi-
ments by confining atoms in a harmonic potential. Even in
experiments with self-bound droplets, as shown in [8–10],
researchers strive to reduce the strength of the trap as much
as possible to approximate the self-bound state in free space.
Therefore, it is crucial to study the influence of weak exter-
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nal potentials on 1D self-bound droplets. Two recent papers
focused on the effect of the external potential on the proper-
ties of Bose-mixture droplets in the (quasi-)one-dimensional
case, one of which used an EGPE that takes into account
BMF corrections to study the bistable features of symmetric
trapped droplets; in that case, the chemical potential var-
ied with the number of particles and validated the results
by dynamical evolution [48]. The other paper adopted the
nonperturbative many-body Hamiltonian to investigate the
correlated dynamics of collective excitations by quenching the
trapping frequency [49]. These are good attempts; however, a
unified theory of the excitation spectrum is still lacking for
symmetric and asymmetric 1D droplets, and the stationary
properties and how the collective excitation transitions from a
self-bound droplet to an ideal gas with the trapping strength
and particle number are still not clear. Starting with a 1D
trapped droplet system, in this paper we propose two different
but complementary dimensionless equations to bridge the gap
between self-bound droplets and ideal gases. We focus on how
the particle number and trapping parameter affect the ground-
state properties and the excitation modes of the system.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the appropriate time-dependent extended
Gross-Pitaevskii equation for this binary 1D quantum droplet
in a harmonic external potential and present two equations in
mutually dual dimensionless forms. In Sec. III, the details of
the numerical approach based on the EGPE for the ground
states and the Bogoliubov theory for low-lying excitation
modes are introduced. We show how the stationary properties
in the ground state are affected by the trapping potential in
Sec. IV, and the excitation spectrum, especially the breathing
mode of the trapped droplet, is analyzed within several energy
scales, along with the trend of the breathing mode for weak
and strong confinements and small and large particle numbers,
in Sec. V. Finally, we conclude our main results in Sec. VI.

II. MODEL

The energy density of a 1D quantum droplet emerging
in the homogeneous two-component Bose mixture is written
as [2,15]

E1D =
(
g1/2

11 n1 − g1/2
22 n2

)2

2
+ gδg

(
g1/2

22 n1 + g1/2
11 n2

)2

(g11 + g22)2

− 2
√

m

3π h̄
(g11n1 + g22n2)3/2, (1)

where n1,2 denotes the density of the two components in dif-
ferent hyperfine states of the same atom of mass m, g11,22 and
g12,21 represent the repulsive intracomponent and attractive
intercomponent interaction strengths with g12 = g21, and the
parameters g and δg are related to the coupling constants in
the two components as g = √

g11g22 and δg = g + g12 > 0,
respectively.

The first two terms in Eq. (1) are the contribution of the MF
theory, and the last one is the LHY correction arising from the
quantum fluctuation. Under the condition of minimizing the
dominant first MF term in Eq. (1), the densities of these two
components will follow the ratio n1/n2 = √

g22/g11, which is
also true in the inhomogeneous mixture for smooth enough

variation of the total density. This allows us to reduce the
mixture to an effective single-component system character-
ized by the wave function ψ (x), which is related to that of
each component as

ψ1,2(x) =
(

1

2

√
g22,11

G

)1/2

ψ (x), (2)

where we further define G = (
√

g11 + √
g22)2/4. This def-

inition ensures that |ψ (x)|2 = |ψ1(x)|2 + |ψ2(x)|2, i.e., the
density of the effective single component is the sum of each
component in the mixture, n(x) = n1(x) + n2(x). The energy
functional for the inhomogeneous mixture is taken as

E[ψ (x), ψ∗(x)] =
∫

dx

(
h̄2

2m
|∇ψ |2 + V (x)|ψ |2

+gδg

4G |ψ |4 − 2
√

m

3π h̄
g3/2|ψ |3

)
. (3)

Minimizing the energy functional (3) with respect to inde-
pendent variations of ψ (x) and its complex conjugate ψ∗(x)
subject to the condition that the total number of particles
N = ∫

dx|ψ (x)|2 must be constant, we obtain the equation of
motion of the system or the time-dependent EGPE for a 1D
droplet in a harmonic trapping potential:

ih̄∂tψ =
[
− h̄2

2m
∇2 + 1

2
mω2

x x2 + gδg

2G |ψ |2 −
√

m

π h̄
g3/2|ψ |

]
ψ,

(4)

where ωx is the harmonic trapping frequency. Note this equa-
tion applies equally to the binary mixture for both symmetric
(g11 = g22) and asymmetric (g11 �= g22) interaction strengths.

To get a neat dimensionless form of the EGPE, we need to
rescale the length, time, and wave function, respectively, as

x = x0x′, t = t0t ′, ψ = ψ0ψ
′, (5)

where the prime denotes dimensionless quantities and the sub-
script 0 indicates the characteristic units. Note that all terms
in the square brackets in (4) are energies, and the energy and
time units can be derived from the definition of the length unit
x0 using the following relationship:

E0 = h̄2

mx2
0

= h̄

t0
. (6)

For the purpose of making the final dimensionless equa-
tion contain as few adjustable parameters as possible, we first
require that the two nonlinear terms have the same coeffi-
cients; that is, they need to satisfy

gδg

2G ψ2
0 =

√
m

π h̄
g3/2ψ0, (7)

which results in the following characteristic factor for the
wave function:

ψ0 = 2G√
mg

π h̄δg
. (8)

Hence, the crucial step is the choice of length unit x0, for
which there are two different conventions to follow in the field
of cold atoms, which we will refer to as the λ scheme and the
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β scheme, respectively. The λ scheme is commonly used in
self-bound quantum droplet systems, as suggested in [15,46]:
the length unit xλ is derived by equating the kinetic energy and
the interaction energy,

h̄2

mx2
λ

=
√

m

π h̄
g3/2ψ0, (9)

which leads to

xλ = π h̄2

mg

√
δg

2G . (10)

Thus, a scaling factor for the number of particles is generated
by the normalization condition of the wave function∫

|ψ ′|2dx′ = Ñ, (11)

where Ñ = N/Nλ is the number of particles in units of Nλ and

Nλ = ψ2
0 xλ = 1

π

(
2G
δg

)
. (12)

The EGPE is then cast into the following dimensionless form:

i∂tψ = (− 1
2∇2 + 1

2λ2x2 + |ψ |2 − |ψ |)ψ, (13)

where we have omitted all the prime symbols, and

λ = ωx

ωλ

(14)

is the trapping potential energy in units of the interaction
energy in the self-bound droplet Eλ = h̄ωλ [15], with

ωλ = 2mg2G
π2h̄3δg

. (15)

The dimensionless EGPE (13) obtained in the λ scheme can
describe the influence of the external potential on the self-
bound quantum droplet. When the characteristic length of the
harmonic potential is equal to that of a self-bound droplet, i.e.,
λ = 1, the external potential is considered to be significant. At
this point, the characteristic units defined in the λ scheme may
not be as appropriate; thus, we provide a second path.

Once the trapping potential is strong enough, it is more
reasonable to use the characteristic length of the harmonic
trapping potential as the unit of length, which is actually done
by equating the kinetic energy and the harmonic potential,

h̄2

mx2
β

= 1

2
mω2

x x2 (16)

and

xβ =
√

h̄

mωx
. (17)

Similarly, the scaling factor for the number of particles in the
β scheme is

Nβ = ψ2
0 xβ = 4

√
mgG2

π2h̄3/2δg
√

ωx
. (18)

Then the dimensionless EGPE reads (where the primes are
omitted)

i∂tψ = [− 1
2∇2 + 1

2 x2 + β(|ψ |2 − |ψ |)]ψ, (19)

where

β = ωλ

ωβ

(20)

is the interaction energy in units of the trapping potential with
ωβ = ωx. The dimensionless EGPE (19) obtained in the β

scheme depends solely on one dimensionless parameter, β,
which can equally be used to elucidate the roles of the two
types of interactions, i.e., MF and LHY, in the properties of a
trapped droplet.

It is interesting that the dimensionless EGPEs from these
two schemes are in a duality relation; that is, the parameters
are the inverse of each other,

β = 1/λ, (21)

from which the length unit and the particle number unit are
related as

xλ = xβ√
β

, Nλ = Nβ√
β

. (22)

Therefore, in order to better present the results, all physical
quantities in the figures presented in this paper are dimension-
less and characterized via the λ scheme. It is worth noting that,
by setting g11 = g22, we naturally arrive at G = g = g11,22

and the system enters the familiar symmetric case (be careful
with the definition of n) which was discussed in detail in
Refs. [2,33,46].

III. BOGOLIUBOV THEORY

In this section, we use the Bogoliubov method to study
the low-lying collective excitations of the system. To quan-
titatively determine the density profile of the ground state and
the collective excitations of the quantum droplet, it is neces-
sary to solve the stationary EGPE for the ground-state wave
function

Ĥψg = μψg, (23)

with μ being the chemical potential in units of E0 and the
operator Ĥ denoted in the λ and β schemes as

Ĥλ = − 1
2∇2 + 1

2λ2x2 + ψ2
g − ψg, (24)

Ĥβ = − 1
2∇2 + 1

2 x2 + β
(
ψ2

g − ψg
)
, (25)

and then to solve the Bogoliubov equations for small-
amplitude excitations around the condensate[

Ĥ − μ + M̂ M̂
−M̂ −Ĥ + μ − M̂

][
u j

v j

]
= ω j

[
u j

v j

]
, (26)

where we have defined the operators

M̂λ = ψ2
g − 1

2ψg, (27)

M̂β = β
(
ψ2

g − 1
2ψg

)
(28)

and have used the fact that the stationary ground state ψg is
real. The Bogoliubov equations are obtained by assuming a
small density fluctuation around the ground state, i.e., using
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the ansatz

ψ (x, t ) =
{

ψg(x) +
∑

j

[
u j (x)e−iω j t + v∗

j (x)eiω j t
]}

e−iμt

(29)

to expand the EGPE to the first order of uj and v j . We empha-
size that the dimensionless Bogoliubov equations (26) can be
obtained either from the dimensionless EGPEs (13) and (19)
by reinserting the wave function with fluctuation (29) or from
the original EGPE (4) by assuming a similar fluctuating wave
function and performing the dimensionless procedure. The
excitation energy (frequency) ω j in units of E0 and the am-
plitudes u j and v j in units of ψ0 are labeled by an integer j
with j = 0, 1, 2, . . . . This linearization process is a standard
method for studying low-lying excitations.

In the numerical workload for obtaining the collective
excitation spectrum, we first evolve the stationary EGPE in
imaginary time to obtain the ground-state wave function.
This allows us to construct the Bogoliubov matrix, which is
then diagonalized using Arnoldi’s method [50] to obtain the
eigenvalues representing the collective excitation spectrum.
The Implicitly Restarted Arnoldi Method (IRAM), which is
implemented in the ARPACK software package, enables finding
the M largest or smallest eigenvalues of the operator matrix
in (26), where M is selected by the user. In the program we
take M = 40, which contains 20 pairs of opposite eigenvalues,
and in the end only 20 of these positive values are retained.
The sine-spectral method [51,52] is used to deal with the
kinetic term, which is known for its higher accuracy compared
to the conventional finite-difference method. Specifically, this
method introduces the sine interpolation of a function u(x) to
approximate its second-order derivative ∂xxu(x) at grid points
which can be formulated as a matrix-vector multiplication.

IV. STATIONARY PROPERTIES

We first consider the effect of the applied confinement
potential on the static properties of the quantum droplet from
the numerical solutions of the stationary EGPE. It is al-
ready known that the density of a self-bound droplet takes a
Gaussian-like profile for a small number of particles, while it
exhibits a flat-top structure when the number of particles is
large. Here we do the numerical simulations in the λ scheme
for the reduced particle numbers in the range Ñ = 0.01 to 50
and consider three representative values for the parameter λ:
0, 0.03, and 0.1.

The density profiles of the system are shown in Fig. 1.
The case with λ = 0 describes the self-bound droplets in
free space whose density profiles undergo a smooth transition
from the flat-top structure at large particle numbers Ñ = 20
to the Gaussian shape for a few atoms Ñ = 1 [Fig. 1(a)].
The presence of an external potential introduces a slight inho-
mogeneity into the system, and especially, the central region
of the droplet feels this more sensitively: more particles are
pushed towards the center, and the maximum density starts
to increase, as shown in Fig. 1(b) for λ = 0.03. The flat-top
structures are easily destroyed, and the droplet shows the bell-
like profile as the strength of the external potential increases
further [Fig. 1(c) for λ = 0.1], a phenomenon that also occurs
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FIG. 1. Density profiles of the quantum droplet for particle
number Ñ = 1 (black), 10 (red), and 20 (blue) and (a) trapping
potential λ = 0, (b) 0.03, and (c) 0.1 in dimensionless units defined
in Eqs. (10) and (8).

in the 3D case [19]. We observe that in the 1D case the
flat-top structure is more fragile and harder to observe than its
3D counterpart, as a very weak external potential λ ∼ 10−3

is enough to spoil the flat top, while it is still robust for a
confinement as strong as λ ∼ 0.03 in three dimensions [19].
Note that the spatial extension in Fig. 1 gradually shrinks
inward and the maximum value of the density is squeezed to
a relatively high value as the confinement becomes tighter. It
is helpful to have a closer look at how the confinement would
change the minimum size of the droplet. In Fig. 2 we present
the numerical result for the mean-square radius

√
〈x2〉 of the

droplet, with

〈x2〉 =
∫ +∞
−∞ x2|ψg|2dx∫ +∞
−∞ |ψg|2dx

, (30)

as a function of the reduced particle number Ñ . It can be
observed that, for both the self-bound droplet and the droplet
in the trapping potential, the size of the droplets exhibits a
minimum value, which, as marked by red crosses in Fig. 2,
in the self-bound droplet is near Ñ = 1 and moves gradually
toward smaller particle numbers with increasing confinement
λ. While in the self-bound case the size of a smaller droplet
diverges at Ñ → 0 and, in the opposite limit, the size of large
droplets grows linearly with Ñ , we find that the confinement
changes this picture; that is, the size of a smaller droplet
no longer diverges but tends to be a constant in units of x0

for increasingly strong traps, and at large particle numbers
the droplet size still grows linearly with Ñ , but the growth
rate becomes very slow. The minimal values define a critical
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FIG. 2. Mean-square radius
√

〈x2〉 of the droplet as a function of
the number of particles Ñ for various trapping parameters λ from the
self-bound case (λ = 0) to strong confinement (λ = 1), as indicated
in the legend. The minimum values marked with red crosses are
critical particle numbers Ñc where the droplet has a minimum size.

particle number Ñc for which the droplet has the minimum
size. For the self-bound case it separates two different density
profiles, i.e., the Gaussian-like profile for Ñ � Ñc and the
flap-top structure for Ñ 
 Ñc. But this situation is no longer
true for the droplet in the trap as the flat top is very fragile
and easily lost for a 1D trap. This critical number of particles
Ñc depends almost exponentially on the trapping parameter λ.
This phenomenon is likely attributed to the dominance of the
kinetic term when the number of particles is small (see [46]).
It can be explained as follows. In the self-bound system the
quantum pressure generated by the kinetic term serves to
balance the interaction energy. The presence of the external
trapping potential then compensates for the potential energy,
leading to a reduction in the required interaction energy, which
also corresponds to the need for fewer particles. As a re-
sult, the minimum value of

√
〈x2〉 gradually shifts towards

lower particle numbers. This behavior is also reflected in the
monopole oscillation of the collective excitation, which will
be discussed in detail in the next section.

We note that the confinement will also alter the chemical
potential μ greatly. For a 1D self-bound droplet, the chemical
potential always takes a negative value that approaches −2/9
for large number of particles, as shown in Fig. 3, implying that
the state is self-bound at equilibrium, which is consistent with
previous findings [2,46]. In this case, the chemical potential μ

can be regarded as the threshold of particle emission, making
|μ| a suitable unit for excitation energy. The trapping poten-
tial contributes to the chemical potential of the 1D trapped
droplet, which will increase not only with the number of
particles Ñ but also with the confinement parameter λ. For a
weaker potential (λ < 0.2), the chemical potential maintains
the same downward trend as the self-bound droplets for small
particle numbers but begins to increase after a certain number
of particles until its value becomes positive. For a stronger
potential (λ > 0.5), the chemical potential is already positive
for small particle numbers and increases rapidly with Ñ . We
observe a critical trapping parameter λc ∼ 0.47, above which

0 5 10 15 20
-0.5

0

0.5

1

1.5

2

FIG. 3. Chemical potential μ of the droplet as a function of Ñ
in different traps with different λ as indicated in the legend. The
dashed line represents the equilibrium value corresponding to the
spatially uniform state when Ñ → +∞, and the dot-dashed line is
the negative-to-positive transition line μ = 0, which intersects with
the chemical potential for increasing λ at a smaller and smaller num-
ber of particles, marked by the red crosses. The chemical potential
is always positive for a trapping parameter larger than λc ∼ 0.47
(dot-dashed curve).

the chemical potential is never negative. This transition of
the chemical potential from negative to positive causes the
ratio of the excitation energy to the chemical potential, i.e.,
ωB/|μ|, to diverge at the transition points μ = 0. Marked by
red crosses in Fig. 3, these transition points occur for smaller
particle numbers for stronger trapping potentials. To avoid this
divergence, in both the strong-confinement limit and the large-
particle-number limit, we plot the ratio of the breathing-mode
frequency ωB and the trapping frequency λ in the following.

V. BREATHING MODE OF A TRAPPED DROPLET

In the context of quantum droplets in cold atoms, the
monopole oscillation, also known as the breathing mode,
refers to a collective oscillation of the droplet’s density pro-
file or size, which can be calculated by means of several
different methods. For example, the low-energy excitation
spectrum of the system can be obtained by solving the hy-
drodynamic equations, where the lowest monopole mode is
the breathing mode [42,53]. In the variational approach, us-
ing the time-dependent ansatz, one can define an effective
potential by the Euler-Lagrange equation for the width param-
eter and assume that it has the form of a harmonic potential
to obtain the frequency of the breathing mode [20,46,54–
56]. For the time-independent situation the elegant sum-rule
approach is adopted in order to evaluate the collective fre-
quencies in the intermediate regimes where the hydrodynamic
equations are not analytically soluble [19,57–59]. In addi-
tion, the breathing mode can also be excited by introducing
a small interaction perturbation [20] or by driving a sin-
gle droplet out of equilibrium with an initial excitation in
the norm Ñ and study the ensuing dynamics by simulating
the EGPE [46]. Here we numerically solve the Bogoliubov
equation (26) to extract the breathing mode of the system
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FIG. 4. The ratios ωB/|μ| (left axis) and ωB/λ (right axis) of the droplet as a function of λ for (a) Ñ = 0.1, (b) 1, (c) 10, and (d) 20. The
black dotted line represents the results for the self-bound system [15], the orange dot-dashed line for ωB = 2λ and the orange dashed line
for ωB = √

3λ are the predictions of an ideal gas and the interacting BEC system, respectively. The gray dotted curve in (d) represents the
excitation energy for a very large droplet Ñ = 50 with a bottom very close to the value of a 1D dilute Bose gas.

and check how it is affected by the confinement parame-
ter λ. It is noteworthy that the breathing mode for the 1D
droplet corresponds to the third eigenvalue of the Bogoliubov
equation (26), i.e., j = 2.

The excitation energy of the breathing mode ωB of the
droplet is shown in Fig. 4 as a function of the trapping pa-
rameter λ for several typical atomic numbers. We use two
different energy units for the nearly self-bound droplet on one
side and the very tightly confined droplet on the other side;
that is, the ratios ωB/|μ| and ωB/λ are plotted, respectively,
as explained in the last section. To illustrate more clearly the
excitation energies in the two limits logarithm coordinates are
used for λ. Numerically, for weak confinement λ ∼ 10−4–100

we use the λ scheme to diagonalize the Bogoliubov equa-
tions with operators Ĥλ and M̂λ and to extract the third
eigenvalues, i.e., the excitation energy ωB of the breathing
mode, which is shown by the black solid lines in Fig. 4. For
small or large droplets the breathing modes fall back to their
self-bound values [15] (the horizontal dashed lines) when the
confinement is as weak as λ ∼ 10−2, as expected. For strong
confinement λ ∼ 100–104, on the other hand, the numerical β

scheme is preferred, and it is the operators Ĥβ and M̂β that
play a role in the diagonalization of the Bogoliubov matrix;
the numerical results are shown by orange solid lines. We
find that for very strong confinement the droplets all behave
like ideal gases, with the excitation energy showing a smooth
convergence to the value ωB/λ = 2 [36]. However, the excita-
tion energies for larger droplets undergo a downward process
with a minimum value around λ ∼ 1 and eventually approach
the ideal-gas value from below. The downward movement
of this minimum in the excitation energy is attributed to the

competition among the trapping potential (∼N) and the mean-
field (∼N2) and LHY (∼N5/2) interactions in the droplet,
and more particles will push the bottom further down to
the value of a weakly interacting condensate, i.e., ωB/λ =√

3 [42], denoted by dashed lines in Fig. 4; the case for a
relatively large droplet of Ñ = 50 is additionally shown in
Fig. 4(d).

The “divergence” in the excitation energy seems unrea-
sonable, which is due to either the vanishing of the chemical
potential at the transition points for ωB/|μ| or the disappear-
ance of the trap for ωB/λ. To cure this, the dependence of
the nontrivial excitation modes, including the breathing mode,
and the chemical potential on the droplet’s size is presented in
units of energy scale Eλ in Fig. 5. It is already known [46] that
for the self-bound droplet this dependence is nonmonotonous,
with the largest excitation energy (stiffness) being reached
around Ñc = 1.2776, which is very close to Ñc of the mean-
square radius when the droplet has the minimal size Ñc =
0.8330. It is also argued that the “autocooling” mechanism,
which loses atoms until all excitations are gone and droplets
are generated in the true ground state for a 3D droplet, is
no longer applicable in 1D geometry, as the energy of the
breathing mode is always less than the absolute value of the
chemical potential, i.e., ωB < |μ|. It is worth noting that there
is no longer a particle-emission threshold to the continuum
in the presence of an external trap because all excitations
become bound modes with discrete frequency [19]. We find
that for the 1D droplet the excitation energy is indeed lower
than −μ in very weak traps as in the self-bound case [46]; we
see no difference in the excitation spectrum for λ ∼ 10−3 and
the self-bound droplet. Note that −μ actually will approach
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FIG. 5. The first three nontrivial modes ω j=2,3,4 of the Bogoli-
ubov excitation spectrum and the chemical potential (with minus
sign) of the self-bound droplet and trapped droplet with (a) λ =
0.001, (b) 0.01, and (c) 0.05 as a function of Ñ . The dashed and
solid lines are the results for the chemical potential and the excitation
modes, respectively. The breathing mode ωB is the third mode, i.e.,
ω j=2.

its equilibrium value of 2/9, corresponding to the spatially
uniform state when Ñ → +∞. No intersection point is found
for the lowest breathing mode and the chemical potential,
while the higher modes ω j=3,4,... will intersect with −μ at their
branching points, below which the corresponding excitations
lie in the continuum spectrum, as shown in Fig. 5(a). The
presence of an external trap, e.g., a very weak one with λ =
0.01, immediately splits the continuum into discrete modes,
which are likely to be peeled off layer by layer from the
threshold −μ, and allows the excitation modes of smaller
droplets to increase and exceed −μ; as a result, we observe
the intersection of the lowest breathing mode with −μ, and
branching points for higher modes now intersect with −μ,
moving toward larger numbers of particles in Fig. 5(b). In the
meantime, −μ for large Ñ is bent downward [e.g., in a trap
with λ = 0.05 in Fig. 5(c)], and two intersections appear in the
competition of the breathing mode and the chemical potential,
but no intersections appear for higher modes. At the same time
the discrete modes are gradually taken over by the harmonic
trapping potential; that is, for small or large Ñ the excitation
spectrum tends to be equidistant with a characteristic gap
proportional to λ. Interestingly, for even stronger confinement
(e.g., λ = 0.1), the lowest excitation mode will exceed −μ

completely, and we further illustrate the size-dependent fre-
quency of the breathing mode for large trapping parameters in
Fig. 6, where an additional shift of 2λ has been made for each
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FIG. 6. The dependence of the breathing mode ωB of the trapped
droplet on Ñ for several larger λ. Just as in the self-bound case, the
breathing mode of the trapped droplet exhibits a maximum excitation
energy for each parameter λ and determines a critical number of
particles Ñc of ωB.

mode ωB in units of Eλ. The reason why we shift by 2λ is that
for a small enough number of particles the excitation mode
is more or less near the ideal-gas limit ωB = 2λ, as shown
in Fig. 4(a). For each trapping parameter, there exists a peak
value of the number of particles, which defines another critical
particle number Ñc where the excitation energy of the droplet
ωB has the maximum energy, marked by the red crosses in
Fig. 6. Recall that for the critical number of particles Ñc of the
mean-square radius in Fig. 2, we found that both the critical
numbers of particles Ñc for

√
〈x2〉 and Ñc for ωB decrease with

the trapping parameter λ exponentially, as shown in Fig. 7,
where the self-bound values of Ñc = 0.8330 and 1.2776 are
denoted by two red crosses. The discrepancy in the critical

0 2 4 6 8 10
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1.5

FIG. 7. The critical number of particles Ñc determined by the
minimum values of the mean-square radius

√
〈x2〉 (light blue dots)

and by the maximum values of the breathing-mode excitation energy
ωB (black dots) as a function of the trapping parameter λ. A simple
fit is shown by the dashed lines.
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numbers in the self-bound droplet roughly carried over into
the trapped droplets, which are compared in detail in Fig. 7.
We find that, clearly, the existence of the minimum size of the
droplet is accompanied by the appearance of the maximum
excitation energy of the breathing mode. It is important to note
that the study of excitation modes in quantum droplets is an
active and rapidly evolving field of research, and the under-
standing of their properties, including the breathing mode, is
still developing. For example, a similar minimum size for the
3D self-bound droplet occurs at Ñ ∼ 30, while the variational
Gaussian ansatz for the breathing mode gives an estimate of
Ñ ∼ 80 and the numerical result from EGPE is, instead, Ñ ∼
103 [19]. The specific details of the droplet’s composition,
interparticle interactions, and external conditions can signif-
icantly influence the relationship between the droplet size
and the excitation energy of the breathing mode in cold-atom
systems.

Finally, let us check the reliability of the two numeri-
cal schemes adopted in this paper. Note that in the chosen
characteristic units the parameters in these two schemes are
related by equation (21); that is, the only parameters left in the
dimensionless equations, λ and β, are inverse to each other.
The immediate problem is that, when λ and β are assigned
relatively large values during the numerical procedure, the
corresponding trapping or interaction energy terms will be
very large in units of the chosen characteristic wave function
ψ0, while the step sizes of spatial and temporal discretization
in the numerical computation are defined in terms of units
of x0 and t0, making it difficult to obtain an accurate ground
state and thus reliable small-amplitude excitations. Thus, we
choose the λ scheme to carry out the calculation for very
weak traps because the case of the self-bound droplet, λ = 0,
may serve as a benchmark, while it is more suitable to adopt
the β scheme for very strong confinement and the trapped-
ideal-gas limit ωB = 2λ is a good reference. In this context,
we have checked the breathing modes calculated by these
two schemes over the intermediate regions of the parameter
{λ, β} ∼ {0.1, 10} from a numerical perspective. The results
of the two EGPEs are nearly identical when either λ or β is
not greater than 10.

VI. CONCLUSION

In conclusion, our study provides a comprehensive anal-
ysis of the stationary and excitation properties of a one-
dimensional quantum droplet by emphasizing the role of
a harmonic trapping potential. To address different en-
ergy scales, we introduced two different dimensionless
time-dependent Gross-Pitaevskii equations (GPEs) with a
parametric duality that allows us to study the system un-
der weak and strong trapping potentials. By means of these
equations, we explored the ground-state properties such as
the density, mean-square radius, chemical potential, etc. We
found the fragile feature of the flap-top shape in the density
distribution with respect to the external potential and a mini-
mum size in terms of the mean-square radius with respect to
the normalization.

Furthermore, after applying the Bogoliubov theory or
adding a small fluctuation in the GPE, we carefully discussed
the low-lying elementary collective modes, especially the
breathing mode in the excitation energy spectrum. By varying
the external potential strength, we showed an intriguing non-
monotonic behavior in the breathing-mode frequency which
can effectively recover the results of a 1D uniform quantum
droplet, an ideal gas, and a conventional trapped BEC in
the specific parameter limits. In addition, the breathing-mode
frequency was depicted as a function of the particle number
and exhibited a maximum value at a critical position, which is
closely associated with the minimum in the mean-square ra-
dius. The critical particle number in both the breathing-mode
frequency and the radius was further shown as an exponen-
tially decaying function of the external potential strength.
The predicted stationary and excitation properties are directly
accessible with current techniques in ultracold quantum gas
experiments [8–11].
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