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Creating atomic Stokes vortices with spin-1 atomic wave functions
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The formal correspondences between pseudo-spin-1/2 systems in optics and in atomic physics have provided
fertile ground for exploring polarization in atom optics. Previous experimental results demonstrated atomic
polarimetry techniques for two-level wave functions and explored wave-field singularities in the multicomponent
wave function of a spinor Bose-Einstein condensate using visualization techniques developed in optics [J. T.
Schultz, A. Hansen, and N. P. Bigelow, Opt. Lett. 39, 4271 (2014); A. Hansen, J. T. Schultz, and N. P. Bigelow,
Optica 3, 355 (2016)]. Here we further this discussion, reexamining the atomic Stokes parameters and Stokes
polarimetry in the context of spin-1 systems where the tensor moments of the higher-spin system enrich the
physics considerably. We show that our atomic polarimetry methods provide tools to engineer the multipole
tensor moments of the higher-spin atomic wave function, and to realize nontrivial couplings between these
multipole moments and an atomic center-of-mass orbital angular momentum. The different forms of coupling
between internal tensor moments and external angular momenta can be used to realize a variety of topological
structures in the atomic wave field. We identify these π - and 2π -symmetric features in the streamlines of the
atomic Stokes fields constructed in analogy with singular optics.
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I. INTRODUCTION

Atom optics connects the fields of optics and atomic
physics. Atomic analogs of many optical elements, including
lenses, beamsplitters, and interferometers, have already been
developed for applications in precision interferometry, sens-
ing, and metrology [1]. The availability of internal degrees of
freedom in atomic systems allows us to explore polarization
in atom optics.

In previous work from our group, we investigated atom-
optic polarization using a correspondence between two
pseudo-spin-1/2 systems: the circular polarization states of a
transverse optical field, and the energy eigenstates of a two-
level atom. In the pseudo-spin-1/2 framework, we defined the
atomic Stokes parameters that characterize an arbitrary atomic
state, and developed atomic analogs of optical waveplates
with a coherent two-photon Raman interaction. Using these
results, we demonstrated a form of atomic Stokes polarimetry
to extract the Stokes parameters of an atomic wave function
[2]. Our techniques have allowed us to explore the rich physics
of wave-field singularities in atomic systems. By drawing
on foundations of singular optics, we realized atomic coun-
terparts to vector-vortex beam fields, full-Poincaré beams,
optical q-plates, and more [3,4].

The availability of higher-spin manifolds and external
degrees of freedom in these systems enriches the physical
landscape considerably. High-spin systems (spin >1/2) must
be characterized not only by their rank-1 spin moments, but
also by their higher-order tensor moments: a spin-1 system

*Corresponding author: maitreyi.jayaseelan@colorado.edu

for instance must be described by both its “orientation,”
captured by the first-order (vector) moments of the spin op-
erators, and its “alignment,” captured by the second-order
(quadrupolar) moments. The alignment is typically described
with a π -symmetric nematic director which defines the long
axis of broken symmetry for a system with quadrupolar order.
Such nematic directors are seen in many physical systems,
with a well-known example being the long rodlike molecules
of nematic liquid crystals: the head-to-tail symmetry of the
molecules’ long axis allows their orientational order to be
described by a headless nematic director.

In optics, the higher-order tensor wave fields associated
with light have been extensively studied in the context of
polarization, where the invariance of the polarization ellipse
under a π rotation is a signature of the second-order tensor
moment of the optical field. Phase and polarization singu-
larities in these wave fields display a variety of interesting
features, including π - and 2π -symmetric structures in field
streamlines [5], fractionally quantized photon total angular
momenta [6,7], Möbius bands [8], and knots [7]. Many of
these features are brought about by a coupling between the
intrinsic and extrinsic momenta of the system and play im-
portant roles in polarimetry, singular optics, and quantum
information.

Here, we move beyond the pseudo-spin-1/2 description
to extend the discussion of atom-optic polarization to spin-1
systems, using the multicomponent wave function of an 87Rb
spinor Bose-Einstein condensate. We present a theoretical
development of the language of atom optics to include higher-
order (rank-2) tensor moments of the atomic wave field and
show experimental data to illustrate physical realizations of
the phenomena we describe.
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We tailor the spin-1 atomic multipole components using
nonlinear light-matter interaction Hamiltonians composed of
a combination of rank-2 and rank-1 operators. Within the
spin-1 framework, we develop the discussion of the Raman
waveplate and atomic Stokes polarimetry to examine the var-
ious forms of coupling of internal (spin tensor) and external
(orbital) angular momenta in the system. Such couplings have
been of both theoretical and experimental interest in atomic
physics over the last decade [9–17], and the language of
atomic physics offers a powerful machinery that allows us to
highlight these couplings explicitly. We show using appro-
priate gauge transformations that our results [2] on atomic
Stokes polarimetry can be cast as experimental realizations
of a spin-nematic vortex state, and nematic-orbit states, when
considered within the spin-1 framework. These states feature
a coupling between orbital angular momentum (OAM) and
the higher-order tensor moments of the wave function: in the
spin-nematic state, the coupling of OAM and spin results in
a vortex structure appearing in the nematic components of
the cloud, while in the nematic-orbit states, the coupling is
between OAM and a nematic component of the wave function.

The spin-nematic and nematic-orbit states show funda-
mentally interesting topological features. We construct atomic
Stokes fields for the spin-1 wave function in analogy with
similar studies in optics, and identify a variety of wave-field
features using language from singular optics. Given the sim-
ilarities between the atomic and optical systems, we foresee
further opportunities to unify the two fields with a common
language in order to continue to combine expertise that has
been independently developed.

II. THEORETICAL FRAMEWORK

A. Spin-1 description of optical polarization

For a paraxial optical field with no component of polariza-
tion in the direction of propagation, the electric field may be
written as E(t ) = Re[(E+e+ + E−e−)e−iωt ], with ω the fre-
quency and E+ and E− the right and left circular polarization
components of the field. In the spherical basis (e+, e0, e−), a
statistical description of polarization is then provided by the
coherency matrix [18]

�3(E) = 1

2

⎛
⎝ S0 + S3 0 −(S1 − iS2)

0 0 0
−(S1 + iS2) 0 S0 − S3

⎞
⎠, (1)

where Si are the optical Stokes parameters [19]. Since the
full symmetry group for spin-1 is the group su(3), there are
eight independent operators, including three spin operators
F = {F̂x, F̂y, F̂z} and five nematic operators that are quadratic
forms composed of the spin operators, that provide a basis for
the system. By examining the components of the coherency
matrix in this basis, we find that in paraxial optics, only a
subset of these operators plays a role: the Stokes parameters
S1, S2, and S3 that characterize paraxial fields are obtained as
the expectation values of the operators Q ≡ {Q̂x2−y2 , Q̂xy, F̂z}
for the field, where Q̂x2−y2 = F̂xF̂x − F̂yF̂y and Q̂xy = F̂xF̂y +
F̂yF̂x.

We note that the operators Q form an su(2) subalgebra of
su(3), so that the system may be treated within the familiar

FIG. 1. Spherical harmonic representations showing the transfor-
mations effected by a unitary operator of the form eiϕQ̂i on the wave
function |ψ0〉 = (1, 0, 0)T , shown at intervals of ϕ = π/8 and with
Q̂i the operators (a) F̂z, (b) Q̂xy, and (c) Q̂x2−y2 . Shown are the surface
plots of |ψ (ŝ)|2 representing the magnitude of the wave function in
spin space, where ψ (ŝ) is the spin space representation [Eq. (2)] of
the wave function |ψ〉 = eiϕQ̂i |ψ0〉. Here x and y are the horizontal
and vertical directions, and z is out of the page.

pseudo-spin-1/2 formalism. However, the spin-1 description
used here allows us to recognize the tensor composition of
the field in the symmetries of the polarization ellipse: linear
polarization is symmetric under a rotation by π , and charac-
terizes the rank-2 quadrupolar component of the coherence
matrix, while circular polarization is associated with the rank-
1 component. A pseudo-spin-1/2 description obscures the
tensorial characteristics of the system.

B. Spin-1 description of atomic wave functions

We may now construct a more complete atom-optic analog
of transverse optical polarization in spin-1 atomic systems.
Since the Stokes parameters are the expectation values of the
operators Q, we must develop tools to engineer and character-
ize these multipolar components of an atomic wave function.

To this end, in Fig. 1 we show how the operators Q
transform the atomic wave function |ψ0〉 = (1, 0, 0)T , which
is initially oriented along F̂z and is the atomic analog of a
state of circular polarization. The spherical harmonics show
the surface plot of the wave function |ψ (ŝ)|2 where |ψ (ŝ)〉
is the decomposition of the spin-1 wave function |ψ〉 into its
spherical harmonic components Y1,m(ŝ),

|ψ (ŝ)〉 =
1∑

m=−1

ψmY1,m(ŝ), (2)

and ŝ is a unit vector in spin space depicting the local spin
orientation [20].

We make two observations from Fig. 1.
(1) The symmetry of the wave function can be changed

by transformations generated by Q̂x2−y2 and Q̂xy, which are
quadratic forms of the spin operators. That is, the wave func-
tion develops rank-2 (π -symmetric) components in Figs. 1(b)
and 1(c), analogous to linear polarization in optics. This is
in contrast to transformations generated by spin operators
themselves, which merely produce rotations of a state in spin
space but do not change their symmetry.

(2) The wave function does not develop any other rank-1
or rank-2 components, other than components in Q. This is
because the operators Q form an su(2) subalgebra of su(3); the
Baker-Campbell-Hausdorff lemma [21] then helps to verify
that an atomic wave function with components restricted to
these specific basis states will continue to be so restricted
under transformations generated by these operators.

Again, we note that since the operators Q form an su(2)
subalgebra of su(3), the system may be considered in the
pseudo-spin-1/2 framework, where the transformations are
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FIG. 2. Raman coupling in a spin-1 system.

generated by the Pauli matrices. However, the π symmetry
of the wave function and the sculpting of multipole moments
with quadratic forms of the spin operators cannot be described
in this reduced space, since quadratic forms of the Pauli oper-
ators are proportional to the identity. Thus, in order to control
the tensor moments of a spin-1 atomic wave function in anal-
ogy with paraxial optics and to generate an interconversion
of spin orientation and alignment, we must realize nonlinear
interaction Hamiltonians composed of a combination of the
spin and nematic operators Q.

III. RAMAN COUPLING IN SPIN-1

A. Hamiltonian engineering of the spin-1 wave function

We now turn to a theoretical description of the experimen-
tal system. Our system is composed of three ground atomic
energy eigenstates labeled {|1〉, |0〉, | − 1〉}. We employ a co-
herent two-photon Raman process to couple the two ground
states |1〉 and | − 1〉 via an excited state |e〉, using optical fields
with Rabi frequencies �A and �B and (σ−, σ+) polarizations
(Fig. 2). For large single-photon detuning, �, of the lasers
from |e〉, the excited state can be adiabatically eliminated and
the three ground-state levels constitute a spin-1 system.

To simplify our treatment, we use |�A| = |�B| = |�|. The
effective Rabi frequency between the two coupled ground
states is �R(r) = |�(r)|2/4�, where r is the radial coordi-
nate. Denoting the relative phase between the Raman beams
as β, the total laboratory frame Hamiltonian, including the
kinetic-energy term and the Raman interaction, has a general
form given by

Hlab(β, δ) = − 1
2∇2 − �R(r)F̂ 2

z − �eff · Q. (3)

The effective light-induced coupling term of
the Hamiltonian is through �eff · Q with �eff ≡
(�R(r) cos β,�R(r) sin β,−δ/2), where δ is the two-photon
detuning. The parameters β, δ, and �R(r) and the time of
the Raman interaction τ are experimentally controlled. Note
that the relative phase between the Raman beams (β) and the
effective Rabi frequency [�R(r)] may be spatially varying.
The Raman Hamiltonian thus provides a versatile tool to
engineer the atomic wave function, allowing control of its
tensor components 〈Q〉.

B. Raman waveplate Hamiltonians in spin-1

A special case of the Raman Hamiltonian is obtained for
two-photon detuning δ = 0 and spatially uniform Rabi fre-
quencies and relative phase β, and for square diabatic pulses.
In this special case, the interaction portion of Eq. (3) is
the atomic analog of an optical waveplate: the effect of this

Raman waveplate on a pseudo-spin-1/2 atomic wave function
is analogous to the effect of an optical waveplate on an electric
field [2]. We give a brief description of the Raman interaction
in the pseudo-spin-1/2 regime in Appendix A, and the Raman
waveplate and atomic Stokes polarimetry in the pseudo-spin-
1/2 regime in Appendix B.

We may examine the Raman waveplate Hamiltonian in
the spin-1 context, noting that the pseudo-spin-1/2 case is
recovered by neglecting the basis state |0〉. For Raman beams
with spatially uniform relative phase β and Rabi frequency �R

the Raman interaction portion of the Hamiltonian of Eq. (3) is

HWP(β ) ≡ Hlab(β, δ = 0)

= −�R
(
F̂ 2

z + cos βQ̂x2−y2 + sin βQ̂xy
)
. (4)

Comparing this with the Raman waveplate for pseudo-spin-
1/2 systems [2], we recognize that this is an effective
waveplate Hamiltonian in the transverse subspace with wave-
plate angle β/2, and retardance determined by total pulse area
�Rτ for interaction time τ . Quarter and half waveplates at
arbitrary angles β/2 are realized by tuning the interaction time
such that �Rτ = π/4 or π/2.

In optics, waveplates perform interconversions of linear
and circular polarization states of light. In the spin-1 atomic
system, the Raman waveplate of Eq. (4) performs analo-
gous transformations, interconverting the rank-2 and rank-1
moments of the wave function. The mechanism for the in-
terconversion of these atomic tensor moments is highlighted
by considering particular waveplate Hamiltonians: for β =
0, π/2, π, and 3π/2, we find that Eq. (4) has the same form
as nonlinear twisting Hamiltonians,1 specifically,

HWP(β = 0) = −�R
(
F̂ 2

z + Q̂x2−y2

)
= −�R

(
F̂ 2 − 2F̂ 2

y

)
,

HWP(β = π/2) = −�R
(
F̂ 2

z + Q̂xy
)

= −�R(F̂ 2 − (F̂x − F̂y)2),

HWP(β = π ) = −�R
(
F̂ 2

z − Q̂x2−y2

)
= −�R

(
F̂ 2 − 2F̂ 2

x

)
,

HWP(β = 3π/2) = −�R
(
F̂ 2

z − Q̂xy
)

= −�R(F̂ 2 − (F̂x + F̂y)2). (5)

These expressions offer an intuitive way to understand the
interconversion of spin orientation and alignment of our wave
function, and will allow a straightforward treatment of our
atomic polarimetry techniques.

C. Atomic Stokes polarimetry in spin-1

With the spin-1 description of the Raman waveplate in
place, we can now describe our atomic polarimetry techniques
in the spin-1 context. We demonstrate this technique on a
wave function of the form

|ψ〉 = ψ1|1〉 + eiφψ−1| − 1〉, (6)

1Hamiltonians with these forms are important in the context of
spin squeezing, and give rise to modifications in the structure of
fluctuations in multispin systems [22].
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where φ denotes the azimuthal coordinate, so that eiφ is an
azimuthal phase term.

We create a wave function of this form using a Raman
pulse pair with Gaussian (G) and Laguerre-Gaussian (LG)
beam profiles. The relative azimuthal phase of these Raman
beams, β = φ, is imprinted onto the wave function as the
relative phase between the spin states. Further experimental
details are given in Appendix C.

Stokes polarimetry is performed in analogy with opti-
cal Stokes polarimetry, by obtaining spin state population
measurements of |ψ〉 in three orthogonal bases. Our Stokes
polarimetry measurements rely on a Stern-Gerlach absorp-
tion imaging process that yields spatially resolved spin state
information in the F̂z basis. A direct measurement of the
wave function thus yields |ψ1|2 and |ψ−1|2. The parameter
S3 ≡ 〈F̂z〉 = |ψ1|2 − |ψ−1|2 is then obtained by subtracting
these two measurement results [Fig. 3(c)]. The sum of the two
measurements gives S0, the total population. Measurements of
S1 ≡ 〈Q̂x2−y2〉 and S2 ≡ 〈Q̂xy〉 are obtained by using Raman
quarter waveplates with β = π/2 and 0 to perform a rota-
tion of the measurement basis prior to Stern-Gerlach imaging
[Figs. 3(a) and 3(b)]. The measurement results in the rotated
bases are then subtracted to give S1 and S2. This is in analogy
with optics, where waveplates transform the polarization of
light between circular and linear bases prior to measurement
with a beamsplitter.

In Fig. 3, we show the results of atomic Stokes polarimetric
measurements of |ψ〉, with corresponding theory maps. The
experimental data in the first two columns in each set of
images are averages of two-to-three single-shot absorption
images of spatially separated spin components of a Bose-
Einstein condensate. Inhomogeneities in the spatial modes of
the Raman beams, inhomogeneities in the shape of the atomic
cloud, and noise particularly in regions of low atomic density
contribute to experimental noise in the images. Further, the
Stokes parameters that we measure are reconstructed from
the cloud column densities, and variations of spin state along
the long axis of the cloud are integrated out during imaging.
Thus, misalignments of the imaging beam—which propagates
along the long axis of the atomic cloud—could also contribute
to experimental inhomogeneities. The theory maps are fits to
the experimental data that use the analytic forms for the wave
function after the Raman interaction. Further details are given
in Appendix D.

IV. COUPLING OF MOMENTA
IN STOKES POLARIMETRY

The relative azimuthal phase between the spin components
of |ψ〉 [Eq. (6)] signifies an extrinsic OAM in the system.
Here we show that our atomic polarimetry sequences generate
forms of coupling between internal spin tensor momenta and
the external orbital angular momentum of the wave function,
that are only apparent when the full spin-1 system is consid-
ered. In order to identify and analyze these couplings we now
turn to the forms of the Hamiltonians used to create |ψ〉 and
to measure its Stokes parameters.

FIG. 3. (a), (b), (c) Experiment (top row) and theory (bottom
row) maps showing Stokes parameters S1, S2, and S3 for the wave
function |ψ〉 of Eq. (6). The first two columns in each panel show
spatial maps of the individual spin state populations, with color
indicating local atomic density, and normalized within each image.
The two measured spin state populations are subtracted to obtain
the Stokes parameters shown in the third column of each panel. The
length scale is indicated in µm. Here x and y are the horizontal and
vertical directions, and z is out of the page.
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A. Spin-nematic vortex states

As described above, |ψ〉 is created using a Raman pulse
pair with Gaussian and Laguerre-Gaussian beam profiles. The
associated Hamiltonian is obtained by setting the relative
phase between the Raman beams to be the azimuthal phase
β = φ so that �eff = (�R(r) cos φ,�R(r) sin φ,−δ/2) in the
Raman interaction Hamiltonian of Eq. (3). For this discussion,
we consider the case of two-photon resonance (δ = 0).

There are two points of interest when we examine this
Hamiltonian, Hlab(β = φ). First, the vortex structure asso-
ciated with the azimuthal phase appears in the transverse
components of Q, that is, in the components associated with
spin alignment: Q̂x2−y2 and Q̂xy. This shows that |ψ〉 is a
spin-nematic vortex state, featuring vorticity in a higher-order
tensor moment of the wave function. We will describe the
implications of this in the topological features that appear in
the associated wave field in Sec. V.

Second, the Hamiltonian couples a well-defined OAM state
to a state of definite atomic spin. This coupling is more
clearly visible in a gauge that transforms with the nematic
components as they change with φ, the azimuthal coordinate.
The gauge transformation with USN = ei(φ/2)F̂z transforms the
Hamiltonian into a frame where the φ dependence vanishes.2

The dressed Hamiltonian (we use a tilde to denote the Hamil-
tonian after the spatially dependent gauge transformation) is
then H̃SN = USNHlab(β = φ)U†

SN:

H̃SN = −1

2
∇2

⊥ + 1

2r2

F̂z
2

4
− 1

2r2

LzF̂z

2

− �R(r)F̂ 2
z − �R(r)Q̂x2−y2 . (7)

The coupling between OAM and spin is apparent in the term
proportional to LzF̂z where Lz = −i∂φ is the atomic quasi-
OAM that is conserved in this frame: [Lz, H̃SN] = 0.

B. Nematic-orbit coupled states

Next we examine the Hamiltonians that create the wave
functions yielding measurements of S1 and S2 for |ψ〉. These
Hamiltonians are obtained by transforming Hlab(β = φ) with
Raman quarter waveplates, using the waveplate Hamiltoni-
ans HWP(β = π/2) and HWP(β = 0) [Eq. (5)], and setting
�Rτ = π/4. Transforming with the waveplate HWP(β =
π/2), the transformed laboratory frame Hamiltonian is Hlab =
UHlab(β = φ)U †:

Hlab = − 1
2∇2 + U (−�R(r)F̂ 2

z

− �R(r)[cos φ Q̂x2−y2 + sin φ Q̂xy])U † (8)

with U = exp [−i π
4 (F̂ 2 − (F̂x − F̂y)2)].

Interestingly, the waveplate interaction transforms the cou-
pling of OAM and spin of the spin-nematic vortex state
to a coupling between OAM and the nematic components
of the wave function, realizing nematic-orbit coupled wave

2Note that the structure factor of the su(2) subalgebra in consid-
eration here is different than that of the spin matrices: i.e., for the
operators Q ≡ {Q1, Q2, Q3}, we have [Qi, Qj] = 2iεi jkQk , while for
the spin operators F ≡ {F1, F2, F3} we have [Fi, Fj] = iεi jkFk .

functions.3 This coupling is more clearly visible after a
gauge rotation with UNO = exp(i φ

2 Q̂x2−y2 ), where again the
φ dependence is removed by the transformation, leaving
the quasi-OAM Lz conserved in this frame. The dressed
Hamiltonian (again we use a tilde to denote the Hamiltonian
after the spatially dependent gauge transformation) H̃NO =
UNOHlabU†

NO is

H̃NO = −1

2
∇⊥2 + 1

2r2

F̂ 2
z

4
− 1

2r2

LzQ̂x2−y2

2

+ �R(r)F̂z − �R(r)F̂ 2
z . (9)

The coupling between OAM and nematicity is evident in
the term proportional to LzQ̂x2−y2 . Similarly, when a quarter
waveplate with β = 0 is used, the OAM becomes coupled
with the operator Q̂xy.

More generally, acting an arbitrary Raman waveplate on
the spin-nematic vortex state realizes a coupling of the form

Lz[sin(β ) sin(γ )Q̂x2−y2 − cos(β ) sin(γ )Q̂xy + cos(γ )F̂z]

(10)

between the OAM and the nematic operator defined by the
angles (γ , β ) where pulse area �Rτ = γ /2.

V. TOPOLOGY AND SINGULARITIES WITH ATOMIC
STOKES VORTICES

We now examine the singularities and topological features
of the wave function |ψ〉 [Eq. (6)]. Most simply, |ψ〉 hosts
a phase singularity in a single spin component, in which the
azimuthal phase changes by 2π around a singularity where
spin state amplitude goes to zero and phase is undefined.
However, a discussion of vector (multicomponent) singular-
ities must go beyond a discussion of phase singularities in
individual components. In particular for our spin-1 system,
the spin-nematic and nematic-orbit coupled states involve the
rank-2 moments of the atomic wave function, and thus the
topological features of these wave functions must be discussed
in the context of a second-order tensor field.

A. Atomic Stokes fields

Powerful tools with which to study singularities in the
second-order tensor field are the complex scalar Stokes fields
[23,24]. We define the atomic Stokes fields

�i j ≡ (Si + iS j ) (11)

and the corresponding phase fields

�i j = arg(�i j ). (12)

With these definitions, all three Stokes fields for |ψ〉 may be
constructed from the experimentally measured Stokes param-
eters (Fig. 3), in analogy with similar studies carried out on an
optical lemon field [5].

3Note that Ref. [16] uses the term “nematic-orbit coupling” to refer
to a coupling between the linear momentum and nematicity, while
we realize a coupling between the orbital angular momentum and
nematicity.
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FIG. 4. Stokes phase fields �i j and streamlines for the wave
function |ψ〉 of Eq. (6). Here we show (a) experimental data, (b) the-
ory maps taking into account the extra radial phase conferred on the
atomic spin states by the spatially varying intensities of the Raman
beams, and (c) ideal theory maps where the extra radial phase is
absent. The maps show 2π symmetric features, with dipole structures
appearing in �23 and �31. The length scale is indicated in µm. Here
x and y are the horizontal and vertical directions, and z is out of the
page.

In Fig. 4 we show experimental maps and corresponding
theoretical constructions of the atomic Stokes fields associated
with |ψ〉. The streamlines indicate the angle of the Stokes
phase field: for instance the color light blue, which is the
zero phase in the colormap, corresponds to a locally horizontal
streamline.

We emphasize that the three Stokes fields are all associ-
ated with the same wave function |ψ〉: from the Stokes field
definitions we may see that �12 is converted to �23 or �31

using a quarter waveplate oriented at β/2, with β = π/2 or 0.
The atomic polarimetry sequences that deploy Raman quarter
waveplates thus provide access to all three Stokes fields for
the wave function |ψ〉.

B. Stokes singularities in the spin-nematic state

The phase field for the Stokes field �12 ≡ (S1 + iS2) is
shown in the first column of Fig. 4. The phase field �12 ≡
arg(�12) gives the relative phase between S1 and S2, and thus
characterizes the quadrupolar alignment of the wave function.
For the wave function |ψ〉, we have S1 = |ψ1||ψ−1| cos φ and
S2 = |ψ1||ψ−1| sin φ; thus �12 gives the relative phase φ be-
tween the two wave-function components of the spin-nematic
state, which is the azimuthal phase. This is consistent with

our observation that the spin-nematic vortex state features
vorticity in the quadrupolar components.

The phase singularities of the Stokes fields, or Stokes vor-
tices, correspond to component singularities [25]. This means
that at a singularity of �12, either |ψ1| or |ψ−1| must be zero.
This is reasoned as follows: since �12 is the relative phase
between S1 and S2, both S1 and S2 vanish at singularities
of �12. Since the Stokes parameters obey

∑
i S2

i = 1, this
implies that |S3| = 1 at the singularity; for instance S3 = +1
corresponds to |ψ1| = 1, and |ψ−1| must then be zero. Thus
�12 singularities are points of indefinite alignment and def-
inite spin: since S1 and S2 characterize the preponderance
of the eigencomponents of the quadrupolar operators, the
quadrupolar alignment is indefinite when these parameters
are zero, as at a singularity of �12. However, the spin (F̂z

eigencomponents) takes a definite value.
Singularities of �12 coincide with the conventional C-point

polarization singularities of optics [26]. The Stokes fields thus
provide a description of vector field singularities in terms of
singularities of a scalar complex field. In the first column of
Fig. 4 corresponding to �12, we can identify a phase singular-
ity of �12. Comparing this phase distribution with the density
distribution of the spin-nematic state of Fig. 3(c), we see that
the component |ψ−1|2 is zero at this location.

The Stokes vortices are associated with integer valued
Stokes indices given by σi j = 1

2π

∮ ∇�i j · dl. The phase sin-
gularity seen in �12 can be identified as an integer-indexed
singularity, around which the phase changes by 2π . The
streamlines show a radial structure, most clearly visible in
the first column of the theory maps in Fig. 4(c). In the ex-
perimental data in Fig. 4(a) the Stokes fields show a radial
twist as a result of the spatially varying Rabi frequencies of
the G-LG Raman pulse pair used to create the spin-nematic
wave function (see Appendix A). The theory maps of Fig. 4(b)
take into account and model the extra intensity-dependent
radial phase. Nevertheless, these streamline plots show the
same features as the ideal theory maps that neglect this radial
phase.

C. Stokes singularities in nematic-orbit states

The Stokes fields �23 ≡ (S2 + iS3) and �31 ≡ (S3 + iS1)
are shown in the second and third columns of Fig. 4. Just
as �12 characterized the relative phase between the wave-
function components of |ψ〉, �23 and �31 characterize the
relative phase between the wave-function components of the
two nematic-orbit states.

The phase singularities of �23 and �31 correspond to x
or y and diagonal or antidiagonal component singularities.
At a phase singularity of �23 for instance, we must have
|S1| = 1. This implies that either the x or the y component
(that is, one of the eigencomponents of Q̂x2−y2 ) must be zero.
At a phase singularity of �31, since we must have |S2| = 1,
either the diagonal or the antidiagonal component (that is,
one of the eigencomponents of Q̂xy) must be zero. However,
comparing the phase distributions with the density distribu-
tions of the nematic-orbit wave functions [Figs. 3(a) and 3(b)]
is less instructive: since our measurements of the spin state
populations are in the spin basis, and the nematic-orbit states
are superpositions of the components of |ψ〉, the component
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FIG. 5. Half-integer indexed topological structures in the field
�12. Here we show (a) ideal theory structures neglecting the extra
radial phase, (b) the theory map taking into account the radial phase,
and (c) experimental data (the same data as shown in the first row and
column in Fig. 4) here showing the streamlines of �12. The length
scale is indicated in µm. Here x and y are the horizontal and vertical
directions, and z is out of the page.

singularity in these cases does not correspond to a vanishing
density in the measured population maps.

The phase fields �13 and �23 show a complex structure
with two singular points4 with opposite phase windings and
integer indices ±1. The spatially separated singularities con-
stitute a dipole structure. The size of the dipole depends on
the relative amplitudes of the two spin components of |ψ〉.
The streamlines of the Stokes fields show saddles and cir-
culation points. These are most clearly visible in the second
and third columns of the theory maps in Fig. 4(c). Again, the
experimental data shown in Fig. 4(a), and the theory maps of
Fig. 4(b) that take into account the extra radial phase, show a
twist that distorts the streamlines and the singular structures.

D. Half-integer indexed singularities in the atomic wave field

So far, we have discussed the topology of the spin-nematic
and nematic-orbit states in terms of the Stokes fields �i j and
the Stokes indices σi j . Because the Stokes fields are scalar
fields, the vortices of Stokes fields share many of the proper-
ties of the more familiar phase vortices in scalar fields [24].

However, the construction of the Stokes fields leads to
degeneracies in the types of singularities associated with a
particular Stokes index. In optics, for instance, it is well
known that the Stokes index cannot distinguish the hand-
edness of polarization C-point singularities, and it cannot
distinguish vector field and ellipse field singularities [27].
These singularities are characterized by Poincaré-Hopf and
C-point indices, which are defined based on the azimuth of
the state of polarization of the field [28].

The Stokes index degeneracy prompts us to examine re-
lated indices for the atomic wave function. In our system,
the relevant index is the C-point index, which we define in
analogy to the optical case through the field �12 = �12/2.
This definition takes into account the π symmetry in the
orientation of the polarization ellipse or in the quadrupolar

4Note that the terminology of “vortex-antivortex pairs” is often
used to describe paired vortices with opposite phase windings. Such
pairs of vortices play important roles for example in the Berezinskii-
Kosterlitz-Thouless transition.

orientation of the spin-1 wave function. The C-point index is
defined in terms of this �12 field as IC = 1

2π

∮ ∇�12 · dl. The
Stokes index σ12 is thus related to IC as σ12 = 2IC [26].

In Fig. 5 we show the phase field �12 associated with
the spin-nematic atomic state. We now see the consequence
of the π symmetry of the nematic director: on a full 2π

traversal of the central point of the wave function, the stream-
lines of �12 undergo a rotation by π , while the field itself
remains continuous. The spin-nematic state is thus associated
with a half-integer indexed singularity, with IC = 1/2. Similar
maps of the nematic-orbit states show dipole structures with
two half-integer indexed singularities with opposite signs.
These half-integer indexed topological structures are well
known in optics and have been previously described in atomic
systems [3].

VI. CONCLUSION

We have demonstrated aspects of polarization in atom
optics in the spin-1 regime, and showed that our Raman
waveplate Hamiltonians effect an orientation-to-alignment
conversion to tailor the multipole components of the atomic
wave function. We examined the different forms of cou-
pling with an external orbital angular momentum that may
be achieved in such a spin-1 system. Using appropriate
gauge transformations, we revealed nontrivial spin-nematic
and nematic-orbit states, realized in the course of recon-
structing the atomic Stokes parameters through well-known
polarimetry techniques.

The density profiles of the spin components of the nematic-
orbit states and the spin-nematic state were shown in Fig. 3.
The relative phases between the spin components of these
states were described in terms of the Stokes phase fields, and
shown in Fig. 4. It is interesting to note that a measurement
of the spin state populations in the circular basis can be used
to reconstruct the relative phase of the quadrupolar compo-
nents of the wave function, as shown with the phase field
�12.

Our results underline the utility of recognizing the com-
mon morphological and topological characteristics of wave
fields in these two different systems. We connected the atomic
Stokes fields and Stokes vortices with the spin-nematic and
nematic-orbit states. We were thus able to examine the topo-
logical characteristics of these atomic wave functions using
the language of optics, and identify π - and 2π -symmetric
structures in the Stokes field streamlines. These features are
characteristic of the rank-2 tensor wave field. Our results thus
also highlight the significance of developing the language of
atom optics to include polarization beyond the pseudo-spin-
1/2 regime. The atomic multipole components for density
matrices and the polarization moments for optical fields pro-
vide these connections; these results may be generalized to
higher-spin systems and bichromatic optical Lissajous fields
that share further higher-order symmetries [7,29].

In sum, there is much to be explored in atom-optic po-
larization with higher-spin systems. Atomic systems offer
features, including interactions and higher-spin manifolds,
which are unavailable or difficult to realize in optics. Building
a common vocabulary will allow us to explore new physics in
both systems.
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APPENDIX A: RAMAN INTERACTION

The energy eigenstates of a two-level atomic system and
the right and left circular polarization states of light constitute
pseudo-spin-1/2 systems. In previous work from our group,
we explored polarization in atom optics in the pseudo-spin-
1/2 regime. We present some of the previous results on atomic
Stokes polarimetry here, for clarity.

Consider the states |1〉 and | − 1〉 to constitute a pseudo-
spin-1/2 system. We consider a two-photon Raman coupling
between the states |1〉 and | − 1〉 via an excited state |e〉, using
optical fields with Rabi frequencies �A and �B (Fig. 2). In the
limit of large detuning � of the optical fields from the excited
state, and for square optical pulses of duration t , the Raman
interaction can be described with an analytic form after direct
integration of the Schrödinger equation [4]:

|ψ (t )〉 = exp

(
i
�efft

2

)
exp

(
i
�efft

2
�n · �σ

)
|ψ (0)〉 (A1)

where �n = (sin 2α cos β, sin 2α sin β, cos 2α)T , �σ is the vec-
tor of Pauli matrices, �eff = (|�A|2 + |�B|2)/4�, α =
arctan(|�A|/|�B|), and β = φA − φB is the relative phase
between the two optical Raman fields. Note that for
|�A| = |�B| = |�|, we defined �R = |�|2/4�, and we have
�eff = 2�R. This form of the Raman interaction is a comple-
mentary picture to the Raman Hamiltonians of Eq. (3), which
highlights the effect of the Raman Hamiltonian on the atomic
wave function in the pseudo-spin-1/2 regime.

APPENDIX B: ATOMIC STOKES POLARIMETRY
IN THE PSEUDO-SPIN-1/2 REGIME

The atomic Stokes parameters of the wave function |ψ〉
[Eq. (6)] are defined in atom optics in analogy with the Stokes
parameters for light. In the circular basis, the atomic Stokes
parameters are

S1 = |ψ1||ψ−1| cos φ,

S2 = |ψ1||ψ−1| sin φ,

S3 = |ψ1|2 − |ψ−1|2,
S0 = |ψ1|2 + |ψ−1|2. (B1)

To characterize an atomic wave function with atomic
Stokes polarimetry, we need measurements of the spin state
populations, and their relative phase. Our measurements are
performed in the F̂z basis, and yield spin state populations.
The Stokes parameters S0 and S3 are then obtained directly as
the sum and difference of results from a measurement of the
spin state populations of |ψ〉.

In order to measure S1 and S2, |ψ〉 must first be transformed
to change the effective measurement basis. The coherent Ra-
man interaction can be used to realize effective “waveplates”

for the atomic wave function [2]. Such atomic analogs of
optical waveplates are realized with uniform intensity Raman
fields with equal Rabi frequencies |�A| = |�B|, so that �n =
(cos β, sin β, 0) lies in the S1-S2 plane. The pulse area �efft
plays the role of retardance, and the angle of the waveplate is
given by β/2.

By using Raman waveplates with β = π/2 or 0, the effec-
tive measurement basis becomes the diagonal basis of Q̂x2−y2

or Q̂xy, respectively. The two Stokes parameters S1 and S2 may
then be recovered as the differences of the populations of the
wave function when measured in these transformed bases.

APPENDIX C: EXPERIMENTAL DETAILS

In this paper our spin-1 system consists of three mag-
netic Zeeman sublevels {|2, 2〉, |2, 1〉, |2, 0〉} in the F = 2
electronic ground state of an 87Rb atomic Bose-Einstein con-
densate, which we denote {|1〉, |0〉, | − 1〉}. Our experiments
are performed starting with a spin-polarized condensate of
87Rb with ≈6.5 × 106 atoms in a magnetic trap in initial spin
state |1〉 ≡ |2, 2〉. The cloud is released from the trap and
allowed to expand for 9 ms. A Raman pulse pair with lasers
detuned 440 MHz below the D1 line of Rb and square tempo-
ral profiles couples the states |1〉 ≡ |2, 2〉 and | − 1〉 ≡ |2, 0〉
via an excited state |e〉. A small bias magnetic field of ≈11 G
breaks the degeneracy of the spin states.

To create |ψ〉, we use Raman beams with G and LG spatial
modes. The phase difference β = φ is the azimuthal phase
difference between the LG and G modes. This azimuthal
phase difference is transferred from the Raman beams to the
atoms, with the transformation of the wave function dictated
by Eq. (A1).

For the waveplate Hamiltonians, we use Raman beams
with Gaussian spatial profiles with a spatial extent of about
500 μm, so that they are relatively uniform in intensity over
the size of the atomic cloud (50 μm in diameter at the time of
the Raman interaction). The relative phase between the beams
is controlled interferometrically [2], and set to be β = 0 or
π/2 for the two quarter-waveplate operations.

APPENDIX D: FITTING THE DATA

We use the analytic expression for the wave function after
the Raman interaction to generate the theory maps in Fig. 3,
which obviates the need for numerical integration of the dy-
namics. This wave function has the form

|ψ〉exp =
√

G|1〉 + eiφatoms
√

LG| − 1〉, (D1)

where LG and G are the spatial modes of the Raman beams,
and φatoms denotes the relative phase between the spin states.

The mode functions that we use are

G ≡
exp

[
− (x−x0 )2

2σ 2
x

− (y−y0 )2

2σ 2
y

]
2πσxσy

, (D2)

LG ≡ 4

(
(x − x0)2

w2
x

+ (y − y0)2

w2
y

)

×
exp

[
−2

(
(x−x0 )2

w2
x

+ (y−y0 )2

w2
y

)]
πwxwy

. (D3)
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In general, the relative phase between the atomic spin states
is a function of β, the relative phase between the Raman
optical fields, but also includes extra phases conferred by
the intensity-dependent ac Stark shift of the atomic energy
levels, which may have a spatial variation. For Gaussian and
Laguerre-Gaussian spatial modes, these phases result in an
extra radial phase between the spin states. The relative phase
between the spin states is thus given by [3,4]

φatoms = − arctan

(
tan

�efft

2
cos 2α

)
+ π

2
+ β. (D4)

The theory maps of Fig. 3(c) are direct fits of the mode
functions |√G|2 and |√LG|2 to the data. The data of Figs. 3(a)
and 3(b) are obtained with a second Raman pulse pair in the
quarter-waveplate configuration, this time with the relative
phase between the Raman beams as β = 0 or π/2. These
Raman quarter waveplates create an equal superposition of
the spin states, with relative phase of 0 or π/2. These wave

functions have the form

|ψ〉′exp = 1√
2

[(
√

G + eiφatoms
√

LG)|1〉

+ (−
√

G + eiφatoms
√

LG)| − 1〉], (D5)

and

|ψ〉′′exp = 1√
2

[(
√

G + ieiφatoms
√

LG)|1〉

+ (i
√

G + eiφatoms
√

LG)| − 1〉]. (D6)

The theory maps of Figs. 3(a) and 3(b) are thus fits of the
form |√G ± √

LGeiφatoms |2 and |√G ± i
√

LGeiφatoms |2 to the
experimental data.

The Stokes parameters are obtained as the difference in
spin state populations when measured in the three bases.
The experiment and theory maps of Figs. 4(a) and 4(b) are
obtained from these measured and fit Stokes parameters, re-
spectively. The ideal theory map of Fig. 4(c) is generated
using the wave function of Eq. (D1), but using just the az-
imuthal phase β = φ as the relative phase between the states.
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