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Dynamic structure factor of two-dimensional Fermi superfluid with Rashba spin-orbit coupling
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We theoretically calculate the dynamic structure factor of a two-dimensional Rashba-type spin-orbit-coupled
(SOC) Fermi superfluid with the random phase approximation and analyze the main characters of dynamical ex-
citation shown by both density and spin dynamic structure factors during a continuous phase transition between a
Bardeen-Cooper-Schrieffer superfluid and a topological superfluid. Generally we find three different excitations,
including collective phonon excitation, two-atom molecular and atomic excitations, and pair-breaking excitations
due to the two-branch structure of the quasiparticle spectrum. It should be emphasized that collective phonon
excitation is overlapped with a gapless DD-type pair-breaking excitation at the critical Zeeman field hc and
is imparted a finite width to phonon peak when the transferred momentum q is around the Fermi vector kF .
At a much larger transferred momentum (q = 4kF ), the pair-breaking excitation happens earlier than two-atom
molecular excitation, which is different from the conventional Fermi superfluid without the SOC effect.
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I. INTRODUCTION

Finding and distinguishing exotic matter states are inter-
esting and important tasks in quantum many-body physics
[1,2]. In atomic physics, the strategy that analyzing the atomic
spectrum structure shown by all possible electronic transitions
between atomic energy levels has been verified to be an effec-
tive way to distinguish chemical elements. All spectra consist
of dynamical excitation information, which can be described
by the optical spectrum dynamic structure factor. In quan-
tum many-body physics, many particles interplay with each
other and arrive at rich equilibrium matter states. Since the
realization of the spin-linear (angular) momentum coupling
effect in ultracold atomic gases [3–13], it has been possible
to investigate many exotic matter states, such as two types
of stripe phase with discrete translational or rational sym-
metry [14–16], the topological state [17–19], etc., in these
highly controllable systems. Naturally it is interesting to know
whether it is possible to find a universal way to identify all
these matter states with dynamical excitation information.

The dynamic structure factor, which is related to the imag-
inary part of the response function in the momentum-energy
representation, is an important many-body physical quantity
and includes rich dynamics about the system in a certain
matter state [20]. Experimentally the dynamic structure factor
can be measured by a two-photon Bragg scattering tech-
nique [21–25], in which two Bragg laser beams can transfer
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a selected transferred momentum q and energy ω to per-
turb the system. After this Bragg perturbation, the dynamic
structure factor can be obtained by measuring the center-
of-mass velocity of the system [26]. In a small transferred
momentum q, some momentum-related collective modes, like
Goldstone phonons [22,27,28], second sound [29,30], Higgs
mode [31–37], and Leggett excitation [38,39], can be ob-
served. At a large q, the dynamics is dominated by the
single-particle excitation, including not only the Cooper pair-
breaking excitation but also the ideal (or interaction-revised)
atomic or molecular excitation [27,40]. All these dynamics
consist of the dynamical character of the system in a specific
matter state and may display different dynamical behaviors
during phase transition. So it is interesting to study these
dynamical characters of the system in different matter states
according to the dynamic structure factor and to check the
feasibility to identify the matter state by the dynamic struc-
ture factor. In our previous work, we found that the dynamic
structure factor can display different dynamical behaviors in a
few phase transitions [41–43].

In this paper, we theoretically investigate a two-
dimensional (2D) Rashba-type spin-orbit-coupled (SOC)
Fermi superfluid, which can experience a continuous phase
transition from a conventional Bardeen-Cooper-Schrieffer
(BCS) superfluid to a topological superfluid by continuously
varying the Zeeman field [44]. We numerically calculate the
dynamic structure factor of this system with the random phase
approximation [45,46] and try to find its main dynamical exci-
tation character during phase transition. We find the dynamic
structure factor presents rich excitation signals, including
collective phonon excitation, molecular or atomic excita-
tions, and four kinds of pair-breaking excitations due to the
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two-branch structure of the quasiparticle spectrum. Among all
these excitations, the collective phonon excitation requires the
smallest excitation energy in both the BCS and the topological
superfluid. At the critical point of the phase transition, one
of the pair-breaking excitations becomes a gapless excitation.
It overlaps with the phonon excitation and imparts a finite
expansion width to the phonon peak in a certain transferred
momentum. This paper is organized as follows. In the next
section, we use the motion equation of Green’s function to in-
troduce the microscopic model of a 2D Fermi superfluid with
the Rashba SOC effect, outline the mean-field approximation,
and show how to calculate the response function with the
random phase approximation. We give results of the dynamic
structure factor of both BCS and topological superfluids in
Sec. III, and we give our conclusions and outlook in Sec. IV.
Some calculation details are listed in the Appendix.

II. METHODS

A. Model and Hamiltonian

We consider a uniform 2D Fermi gas subject to a Rashba
SOC potential Vsoc = −iλ(∂y + i∂x ) with strength λ and a
Zeeman field h. The system can be described by the model
Hamiltonian

H =
∫

d2r

[∑
σ

HS
σ + HSOC + Hint

]
. (1)

Here HS
σ = ψ†

σ [−∇2/2m − μ − hσz]ψσ is the single-particle
Hamiltonian of spin-σ component particles with mass m in
reference to the chemical potential μ, and ψσ (ψ†

σ ) is the
annihilation (generation) operator. HSOC = ψ

†
↑Vsocψ↓ + H.c.

is the Rashba SOC Hamiltonian, and it should be noted that
the strength λ of the SOC effect is isotropic in the 2D XY
plane. Hint = Uψ

†
↑ψ

†
↓ψ↓ψ↑ describes the contact interaction

between opposite spins, in which the strength U should be
regularized via 1/U = −∑

k 1/(k2/m + Ea). Ea is the bind-
ing energy of the two-body bound state and is often used to
demonstrate the interaction strength in the 2D system [47].
Here and in the following, we have set h̄ = kB = 1 for sim-
plicity. Since we consider a uniform system with the bulk
density n0, the inverse of the Fermi wave vector kF = √

2πn0

and the Fermi energy EF = k2
F /2m are used as length and

energy units, respectively.
A standard mean-field treatment is carried out to the in-

teraction Hamiltonian Hint with the usual definition of order
parameter � = −U 〈ψ↓ψ↑〉. After Fourier transformation to
the mean-field model Hamiltonian, we can obtain its expres-
sion in the momentum representation, which reads

Hmf =
∑
kσ

(ξk − hσz )c†
kσ

ckσ

+
∑

k

[λ(ky + ikx )c†
k↑ck↓ + H.c.]

−
∑

k

[�c†
k↑c†

−k↓ + �∗c−k↓ck↑], (2)

with ξk = k2/2m − μ. Usually the order parameter � is a
complex number. However, U(1) symmetry is spontaneously
broken in the ground state of the system, and the value for the

phase of � is pushed to choose a random number. Here we
just set � = �∗. The exact diagonalization of the mean-field
Hamiltonian Hmf can be solved with the motion equation of
Green’s functions. Finally we get six independent Green’s
functions, which are as follows:

G1(k, ω) ≡ 〈〈ck↑|c†
k↑〉〉 =

∑
l

[G1]l
k/

(
ω − El

k

)
,

G2(k, ω) ≡ 〈〈ck↓|c†
k↓〉〉 =

∑
l

[G2]l
k/

(
ω − El

k

)
,

Γ (k, ω) ≡ 〈〈ck↑|c−k↓〉〉 =
∑

l

[Γ ]l
k/

(
ω − El

k

)
,

S(k, ω) ≡ 〈〈ck↓|c†
k↑〉〉 =

∑
l

[S]l
k/

(
ω − El

k

)
,

F1(k, ω) ≡ 〈〈ck↑|c−k↑〉〉 =
∑

l

[F1]l
k/

(
ω − El

k

)
,

F2(k, ω) ≡ 〈〈ck↓|c−k↓〉〉 =
∑

l

[F2]l
k/

(
ω − El

k

)
, (3)

where l = ±1 and ±2 denotes respectively all four impor-
tant quasiparticle energy spectra E (+1)

k = −E (−1)
k = Uk and

E (+2)
k = −E (−2)

k = Dk. Uk and Dk are respectively the up- and
down-branch positive quasiparticle spectra:

Uk =
√

E2
k + h2 + k2λ2 + 2

√
E2

k h2 + ξ 2
k k2λ2, (4)

Dk =
√

E2
k + h2 + k2λ2 − 2

√
E2

k h2 + ξ 2
k k2λ2, (5)

with Ek =
√

ξ 2
k + �2. The Green’s functions S, F1, and F2

come from the Rashba SOC Hamiltonian, and they are the
odd functions of momentum k, which are the even functions
in the Raman SOC case. These single-particle spectra (Uk and
Dk) do greatly influence the static and dynamical properties of
the ground state. All expressions related to [G1]l

k, [G2]l
k, [�]l

k,
[S]l

k, [F1]l
k, and [F2]l

k are given in the Appendix.
Based on the spectrum theorem, it is also easy to get all

equations of all physical quantities with the above Green’s
functions. For example, we obtain the following spin-up and
spin-down density equations,

n1 =
∑

k

〈c†
k↑ck↑〉 = − 1

π

∑
k

∫
dω

Im[G1(k, ω)]

eω/T + 1
, (6)

n2 =
∑

k

〈c†
k↓ck↓〉 = − 1

π

∑
k

∫
dω

Im[G2(k, ω)]

eω/T + 1
, (7)

and the order parameter equation

�

U
= −

∑
k

〈c−k↓ck↑〉 = 1

π

∑
k

∫
dω

Im[Γ (k, ω)]

eω/T + 1
, (8)

with the Green’s functions G1, G2, and Γ in Eq. (3) at the
temperature T . By self-consistently solving the density and
order parameter equations, the value of the chemical potential
μ and the order parameter � can be numerically calculated.

In this paper, we just consider the zero temperature case
and take the binding energy as Ea = 0.5EF and the SOC
strength as λkF /EF = 1.5. As shown in Fig. 1, the system
experiences a phase transition from a BCS superfluid to a
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FIG. 1. Two types of single-particle excitation spectra Uk (black
short-dotted line) and Dk (red solid line) at different Zeeman fields:
(a) h = 0.6EF , (b) h = 0.96EF , and (c) h = 1.3EF . (d) The distribu-
tion of chemical potential (blue solid line), order parameter (olive
dashed line), and Ecr = |h −

√
μ2 + �2| (purple dash-dotted line)

at different Zeeman fields h during a continuous phase transition
from a BCS superfluid to a topological superfluid. A gray vertical
dotted line marks the location of a critical value of the Zeeman field
hc = 0.96EF at Ea = 0.5EF and λkF /EF = 1.5.

topological superfluid by increasing the Zeeman field h over a
critical value hc = 0.96EF . This is a continuous phase tran-
sition, which is displayed by the smooth variation of the
chemical potential μ and the order parameter � with the
Zeeman field h. The critical Zeeman field hc is determined
by the zero value of Ecr = |h −

√
μ2 + �2|. When h = hc,

the minimum of Dk touches zero at momentum k = 0 [red
line in Fig. 1(b)]. By continuously increasing Zeeman field
h from h < hc to h > hc, the value of the second-order local
minimum in the lower-branch spectrum Dk at a nonzero mo-
mentum k will experience a variation from the situation that
is much larger than the global minimum at k = 0 in the BCS
regime to the case of almost the same value of the global one at
k = 0 in the topological regime, while the spectrum structure
of Uk does not change too much. We have checked that the
continuous phase transition mentioned above will be present
in a quite large parameter space of SOC strength λ, except
a weak SOC strength of λkF /EF < 0.4 where the parameter
space of the topological superfluid is depressed to almost
vanishing and makes the phase transition to be a first order
one from a trivial superfluid to normal state.

Next we discuss the dynamical excitation of this system.

B. Response function and random phase approximation

At zero temperature, the interacting system comes into
a superfluid state and induces four different densities. Be-
sides the normal spin-up density n1 = 〈ψ†

↑ψ↑〉 and spin-down

density n2 = 〈ψ†
↓ψ↓〉, the pairing physics of two spins gen-

erates the other anomalous density n3 = 〈ψ↓ψ↑〉 and its
conjugate counterpart n4 = 〈ψ†

↑ψ
†
↓〉. The interaction between

particles makes these four densities couple closely with each
other. Any fluctuation in each kind of density will influ-
ence other densities and generate a non-negligible density
fluctuation of them. This physics plays a significant role in
the dynamical excitation of the system, which demonstrates
the importance and necessity of the term in the Hamiltonian
beyond mean-field theory. The random phase approximation
has been verified to be a good way to treat the fluctuation
term of the Hamiltonian [45]. Comparing with experiments,
it can even obtain some quantitatively reliable predictions in
three-dimensional Fermi superfluid [48,49]. Its prediction also
qualitatively agrees with quantum Monte Carlo data in a 2D
Fermi system [35,50]. The random phase approximation treats
the fluctuation of the Hamiltonian as parts of an effective
external potential [42,46] and finds the response function χ

of the system is connected to its mean-field approximation
χ0, whose calculation is relatively easier, by the following
equation:

χ = χ0

1 − χ0MIU
, (9)

where

MI =

⎡
⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦

is a constant matrix reflecting the coupling situation of four
kinds of densities.

Next we introduce the expression of the mean-field re-
sponse function χ0, which is a 4×4 matrix,

χ0 =

⎡
⎢⎢⎢⎢⎣

χ0
11 χ0

12 χ0
13 χ0

14

χ0
21 χ0

22 χ0
23 χ0

24

χ0
31 χ0

32 χ0
33 χ0

34

χ0
41 χ0

42 χ0
43 χ0

44

⎤
⎥⎥⎥⎥⎦. (10)

Here its i j matrix element is defined by χ0
i j (r1, r2, τ, 0) ≡

−〈n̂i(r1, τ )n̂ j (r2, 0)〉; density operators n̂i and n̂ j were in-
troduced at the beginning of this subsection. In the uniform
system, all response function elements are only the function
of the 2D relative coordinate r = r1 − r2 and time τ . So a
generalized coordinate R = (r, τ ) is used to go on discussing.
Based on Wick’s theorem, we should consider all possible
two-operator contraction terms, which are all related to the
six independent Green’s functions of Eq. (3). We find that
the mean-field response function χ0 = A + B, in which A is
only connected to the Green’s functions G1, G2, and �, while
B is connected to the SOC Green’s functions S, F1, and F2.
For example, in the spatial and time representation, χ0

11(R) ≡
−〈n̂1(r1, τ )n̂1(r2, 0)〉 = A11(R) + B11(R), where A11(R) =
G1(−R)G1(R) and B11(R) = −F ∗

1 (−R)F1(R). After Fourier
transformation to Green’s functions, we obtain the expression
of all matrix elements in the momentum-energy representation

χ0(q, ω) = A(q, ω) + B(q, ω), (11)

033309-3



ZHAO, YAN, PENG, AND ZOU PHYSICAL REVIEW A 108, 033309 (2023)

where

A =

⎡
⎢⎢⎣

A11, A12, A13, A14

A12, A22, A23, A24

A14, A24, −A12, A34

A13, A23, A43, −A12

⎤
⎥⎥⎦

has nine independent matrix elements, and

B =

⎡
⎢⎢⎣

B11, B12, B13, B14

B21, B22, B23, B24

B31, B32, B33, B34

B41, B42, B43, B44

⎤
⎥⎥⎦.

All expressions of these matrix elements are listed in the
Appendix. The numerical calculation of all the above matrix
elements requires a two-dimensional integral, which makes
the numerical calculations here much heavier than those of
the one-dimensional SOC system [42].

C. Dynamic structure factor

With Eqs. (9) and (11), we can obtain the expression of
both the total density response function χn ≡ χ11 + χ22 +
χ12 + χ21 and the spin density response function χs ≡ χ11 +
χ22 − χ12 − χ21. χn reflects the density response of the sys-
tem, while χs shows the spin density response in two-spin
components. Based on the fluctuation and dissipation theo-
rem, their imaginal parts are connected to density and spin
dynamic structure factors by

Sn/s = − 1

π

1

1 − e−ω/T
Im[χn/s]. (12)

III. RESULTS

In the following discussions, we focus on an interaction
binding energy of Ea = 0.5EF and a typical SOC strength of
λkF /EF = 1.5 at zero temperature. These parameters are the
same as those in Fig. 1. As introduced before, the isotropy
of the Rashba SOC effect induces that the Hamiltonian equa-
tion (1) is also isotropic, which means the direction of the
transferred momentum q can make no difference to the dy-
namical excitation of the system, so we just set q along the
positive direction of X axis. And the dynamical excitation of
the system is also rotation invariant in the 2D XY plane.

We numerically calculate the density (left column) and
spin (right column) dynamic structure factors, as shown in
Fig. 2, in the phase transition from a BCS superfluid (top two
panels), across the critical regime (middle two panels), and
then to a topological superfluid (bottom two panels). Gen-
erally we investigate a full dynamical excitation in different
transferred momenta q, including the low-energy (or momen-
tum) collective excitation and the high-energy (or momentum)
single-particle excitation. The white dotted lines mark the
location of three types of the minimum energy needed to break
a Cooper pair, which will be introduced later.

A. Collective and single-particle excitation

At a low transferred energy ω, it is easy to investigate
the collective excitation [51]. By continuously increasing
the transferred momentum q from zero, we initially see a

FIG. 2. The density (left column) and spin (right column) dy-
namic structure factors at three typical different Zeeman fields h =
0.6EF , hc, and 1.3EF . The dotted lines are the same lines as described
in Fig. 4, which reflect all kinds of threshold energy needed to break
a Cooper pair.

gapless phonon excitation in both the density and spin dy-
namic structure factors. As shown in Fig. 3, the velocity of
collective phonon excitation almost does not change during
this continuous phase transition, which is different from the
first order one in 1D Raman SOC Fermi superfluid [42]. When
the transferred momentum q is large enough, this phonon ex-
citation gradually merges into the continuous single-particle
excitation. Specially in the critical regime h = hc, the mini-
mum of the lower single-particle spectrum Dk touches zero
[Fig. 1(b)], which induces a gapless pair-breaking excitation
at the same location as the collective phonon excitation and
gives a finite expansion width to the phonon excitation.

When the transferred energy ω is large enough, the ex-
citation of the system is dominated by the single-particle
excitation. A pair-breaking of Cooper pairs will occur and
make pairs be broken into free Fermi atoms. Indeed, much

FIG. 3. The sound velocity cs at different Zeeman fields h.
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FIG. 4. All kinds of threshold energy of pair-breaking excitation
in different momenta at (a) h = 0.6EF , (b) h = 0.96EF , and (c) h =
1.3EF . Olive solid line: Dk ↔ Dk+q. Red dotted line: Dk ↔ Uk+q and
Uk ↔ Dk+q. Blue dashed line: Uk ↔ Uk+q.

of the dynamical excitation in Fig. 2 is dominated by this
pair-breaking effect. In the density dynamic structure factor
Sn, this effect usually is very obvious in a relatively large
transferred momentum q > kF , where the collective excita-
tion is strongly depressed. Different from the conventional
Fermi superfluid, this single-particle excitation takes up a
large regime in the spin dynamic structure factor Ss, even for
a small or zero transferred momentum q. To understand this,
it is necessary to study the threshold energy needed to break
a Cooper pair. This pair-breaking excitation is related to two
branches of quasiparticle spectra Uk and Dk. The two atoms
forming a Cooper pair can come from the same or the op-
posite branch of a single-particle spectrum. This two-branch
spectrum structure generates four kinds of mechanisms to
break a Cooper pair, namely, the DD, DU , UD, and UU
types. The minimum energy at a certain momentum q to break
a pair is min[Dk + Dk+q], min[Dk + Uk+q], min[Uk + Dk+q],
or min[Uk + Uk+q]. Here the DU and UD excitations are
overlapped with each other, and finally display three kinds
of pair-breaking excitation regimes. The minimum energy in
these pair-breaking excitations are shown in the three panels
of Fig. 4 and are also displayed by the dotted lines in Fig. 2.
The bottom olive line denotes the DD-type minimum energy
(min[Dk + Dk+q]) needed to break a Cooper pair at a cer-
tain q, and atoms forming a Cooper pair are both from the
down-branch quasiparticle spectrum Dk. Generally this value
is always larger than zero in both a BCS superfluid [Fig. 4(a)]
and a topological superfluid [Fig. 4(c)]. However it will touch
zero at the critical Zeeman field h = 0.96EF [Fig. 4(b)], which
is an important signal of this continuous phase transition.
The red line denotes the minimum energy of cross-spectrum
excitation (DU and UD types). The two atoms in a pair come
from different branches of the spectrum. This excitation starts
from the min[Dk + Uk+q], and it requires an energy higher
than the DD one. This cross-spectrum excitation also reflects
the coupling effect between spin and orbital motion, and it
is much easier to be observed in the spin dynamic structure

FIG. 5. The density (gray) and spin (magenta) dynamical struc-
ture factors at transferred momentum q = 4kF . (a) h = 0.6EF in the
BCS superfluid, (b) h = 0.96EF at the transition point, and (c) h =
1.3EF in the topological superfluid.

factor than that in density one. The blue dashed line is the
minimum energy in the UU excitation. Its energy is the largest
among three kinds of pair-breaking excitation; however, the
excitation signal of the UU excitation is the weakest.

Besides all the global minima discussed above, there are
also some possible local minima in these pair-breaking exci-
tations, which generate some edges in the dynamic structure
factor. For example, some horizon edges emerge when ω is
a little lower than 2EF in the dynamic structure factor of
Fig. 2, which is from the local minimum of the DD-type
pair-breaking excitation.

To better understand the dynamical excitation in these col-
orful panels, we also discuss the dynamic structure factor at a
fixed transferred momentum q.

B. Dynamic excitation at a constant
momentum q

For a large transferred momentum q � kF , the dynamic
structure factor is dominated by the single-particle excita-
tion. As shown in Fig. 5, we investigate the density and
spin dynamic structure factors at q = 4kF between BCS and
topological superfluid. In all three panels, we always find a
high excitation signal in the density dynamic structure factor
(gray solid lines) around ω = 8EF . In fact, it is the molecu-
lar Cooper-pair excitation, whose dispersion relation can be
easily explained by εk = q2/2M, and M = 2m is the mass of
a two-atom molecule. Also the single-atom excitation arrives
at its maximum around q2/2m ≈ 16EF here. The olive and
red arrows respectively mark the threshold energy to break a
Cooper pair in the DD- and DU -type (or UD-type) excita-
tions. Different from the 3D crossover Fermi superfluid [40],
the Rashba-SOC effect makes DD pair-breaking excitation
happen earlier than molecular excitation, no matter the value
of the Zeeman field h.

When taking the transferred momentum q = 2kF , the
collective phonon has already merged into the regime of
single-particle excitation. The dynamic structure factor is
dominated by strong signals of pair-breaking excitation. As
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FIG. 6. The density (gray line) and spin (magenta line) dynam-
ical structure factors at the transferred momentum q = 2kF . The
parameters in these three panels are the same as those in Fig. 5.

shown in Fig. 6, both curves of Sn and Ss have many twists,
which means they exhibit rich oscillations, and the two-olive
arrows respectively mark the global (left) and local (right)
minimum energy to break a Cooper pair according to the DD-
type excitation, and one red-dashed arrow marks the minimum
energy of the DU -type (or UD-type) excitation. In all three
panels, small peaks (left side of the red arrow) in the density
dynamic structure factor display the two-atom molecule ex-
citation around ω = 2.9EF , and the obvious deviation from
the dispersion line εk = q2/2M = 4EF is due to its coupling
effect to pair-breaking excitation in this relative weak trans-
ferred momentum (q = 2kF ).

For a transferred momentum q at the order of the Fermi
wave vector kF (or smaller than kF ), the collective phonon
excitation can be separated from the pair-breaking excitation
and happens at an energy smaller than that of the pair-breaking
effect. In panels (a) and (c) of Figs. 7 and 8, strong sharp
peaks are shown on the leftmost side of the dynamic structure

FIG. 7. The density (gray line) and spin (magenta line) dynam-
ical structure factors at the transferred momentum q = 1kF . The
parameters in these three panels are the same as those in Fig. 5.

FIG. 8. The density (gray line) and spin (magenta line) dynam-
ical structure factors at the transferred momentum q = 0.5kF . The
parameters in these three panels are the same as those in Fig. 5.

factor, whose excitation energy is smaller than the global
minimum energy of the DD-type pair-breaking excitation.
And the separation energy between the phonon excitation
and the DD-type threshold excitation is relatively small in
the topological superfluid (h = 1.3EF ) since it has an order
parameter � weaker than that in the BCS superfluid (h =
0.6EF ). However, at the point of phase transition h = 0.96EF

[shown by panel (b) of Figs. 7 and 8], the phonon excitation
is just overlapped with the beginning of the gapless DD-type
pair-breaking excitation, and give a finite width to the phonon
peak at q = 1kF [Fig. 7(b)]. At q = 0.5kF , although these two
excitations are still mixed with each other at h = 0.96EF , this
small transferred momentum q generates a relative weaker
strength of the DD excitation. The phonon excitation is still
very sharp in the density dynamic structure factor, and the spin
dynamic structure factor can help to track the signal of the DD
excitation and display a bump structure closely following the
phonon peak.

IV. CONCLUSIONS AND OUTLOOK

In summary, we numerically calculate the density and
spin dynamic structure factors of a 2D Rashba SOC Fermi
superfluid with the random phase approximation during a
continuous phase transition between BCS and topological
superfluids. The dynamic structure factor presents rich excita-
tion signals, including collective phonon excitation, molecular
or atomic excitations, and pair-breaking excitations. The
gapless collective phonon excitation requires the smallest ex-
citation energy in both BCS and topological superfluids. In the
critical point of phase transition, the phonon excitation is over-
lapped with a gapless DD-type pair-breaking excitation and a
finite expansion width is imparted to the phonon peak, which
is a delta-like peak when far from the critical point of phase
transition. For a larger transferred momentum q, the strength
of the phonon excitation gradually decreases and merges into
the pair-breaking excitation regime, and the excitation signals
in both density and spin dynamic structure factors are dom-
inated by single-particle excitation, including three kinds of
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pair-breaking excitation, and two-atom molecular and single
atomic excitations. The two-atom molecular (single atomic)
excitations can be well explained by an ideal single molecule
(atom) dispersion relation at a very large transferred momen-
tum q � kF . Our research on the dynamic structure factor can
help us to understand the dynamical excitation information in
both BCS and topological matter states, distinguish different
matter states during phase transition, and judge the location of
phase transition.

In the near future, it will be interesting to bring some
nonuniform structures, like edge, impurity, or soliton (vortex),
to this system, with the expectation of investigating some
excitations related to the generation of Majorana fermions
[52–55], which is absent in the current work. Experimentally
the edge can be brought by a hard wall or a harmonic trap, and
the soliton can be generated by a phase-imprinting technique
[56]. So it will be worth carrying out calculation of these
nonuniform systems.
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APPENDIX

The exact diagonalization of the mean-field Hamilto-
nian Hmf is carried out by the motion equation of the
Green’s function ω〈〈c1|c2〉〉 = 〈[c1, c2]+〉 + 〈〈[c1, Hmf ]|c2〉〉,
where c1 and c2 are any possible fermionic operators of
the system, and the double-bracket notation 〈〈c1|c2〉〉 is
the corresponding momentum-energy Fourier transforma-
tion of the space-time Green’s function G(r1, τ, r2, 0) =
−〈T ψ1(r1, τ )ψ2(r2, 0)〉. Finally, we find that the system has
six independent Green’s functions. In this Appendix, we list
expressions of six independent Green’s functions and the
mean-field response function χ0 = A + B. The six indepen-
dent Green’s functions are G1(k, ω) = ∑

l [G1]l
k/(ω − El

k),
with

[G1](1)
k = U 2

k − (
h2 + k2λ2 + E2

k + 2hξk
)

2
(
U 2

k − D2
k

)
+ (ξk − h)U 2

k − (ξk + h)
(
E2

k − h2 − k2λ2
)

2Uk
(
U 2

k − D2
k

) ,

[G1](−1)
k = U 2

k − (
h2 + k2λ2 + E2

k + 2hξk
)

2
(
U 2

k − D2
k

)
− (ξk − h)U 2

k − (ξk + h)
(
E2

k − h2 − k2λ2
)

2Uk
(
U 2

k − D2
k

) ,

[G1](2)
k = − D2

k − (
h2 + k2λ2 + E2

k + 2hξk
)

2
(
U 2

k − D2
k

)
− (ξk − h)D2

k − (ξk + h)
(
E2

k − h2 − k2λ2
)

2Dk
(
U 2

k − D2
k

) ,

[G1](−2)
k = − D2

k − (
h2 + k2λ2 + E2

k + 2hξk
)

2
(
U 2

k − D2
k

)
+ (ξk − h)D2

k − (ξk + h)
(
E2

k − h2 − k2λ2
)

2Dk
(
U 2

k − D2
k

) ;

G2(k, ω) =
∑

l

[G2]l
k/(ω − El

k), with

[G2](1)
k = U 2

k − (
h2 + k2λ2 + E2

k − 2hξk
)

2
(
U 2

k − D2
k

)
+ (ξk + h)U 2

k − (ξk − h)
(
E2

k − h2 − k2λ2
)

2Uk
(
U 2

k − D2
k

) ,

[G2](−1)
k = U 2

k − (
h2 + k2λ2 + E2

k − 2hξk
)

2
(
U 2

k − D2
k

)
− (ξk + h)U 2

k − (ξk − h)
(
E2

k − h2 − k2λ2
)

2Uk
(
U 2

k − D2
k

) ,

[G2](2)
k = − D2

k − (
h2 + k2λ2 + E2

k − 2hξk
)

2
(
U 2

k − D2
k

)
− (ξk + h)D2

k − (ξk − h)
(
E2

k − h2 − k2λ2
)

2Dk
(
U 2

k − D2
k

) ,

[G2](−2)
k = − D2

k − (
h2 + k2λ2 + E2

k − 2hξk
)

2
(
U 2

k − D2
k

)
+ (ξk + h)D2

k − (ξk − h)
(
E2

k − h2 − k2λ2
)

2Dk
(
U 2

k − D2
k

) ;

Γ (k, ω) =
∑

l

[Γ ]l
k/(ω − El

k), with

[Γ ](1)
k = + �h

U 2
k − D2

k

− �
[
U 2

k + (
h2 − k2λ2 − E2

k

)]
2Uk

(
U 2

k − D2
k

) ,

[Γ ](−1)
k = + �h

U 2
k − D2

k

+ �
[
U 2

k + (
h2 − k2λ2 − E2

k

)]
2Uk

(
U 2

k − D2
k

) ,

[Γ ](2)
k = − �h

U 2
k − D2

k

+ �
[
D2

k + (
h2 − k2λ2 − E2

k

)]
2Dk

(
U 2

k − D2
k

) ,

[Γ ](−2)
k = − �h

U 2
k − D2

k

− �
[
D2

k + (
h2 − k2λ2 − E2

k

)]
2Dk

(
U 2

k − D2
k

) ;

033309-7



ZHAO, YAN, PENG, AND ZOU PHYSICAL REVIEW A 108, 033309 (2023)

S(k, ω) = ∑
l [S]l

k/(ω − El
k), with

[S](1)
k = (ky − ikx )λ

[
+ ξk

U 2
k − D2

k

+ U 2
k + (

ξ 2
k − h2 − k2λ2 − �2

)
2Uk

(
U 2

k − D2
k

)
]
,

[S](−1)
k = (ky − ikx )λ

[
+ ξk

U 2
k − D2

k

− U 2
k + (

ξ 2
k − h2 − k2λ2 − �2

)
2Uk

(
U 2

k − D2
k

)
]
,

[S](2)
k = (ky − ikx )λ

[
− ξk

U 2
k − D2

k

− D2
k + (

ξ 2
k − h2 − k2λ2 − �2

)
2Dk

(
U 2

k − D2
k

)
]
,

[S](−2)
k = (ky − ikx )λ

[
− ξk

U 2
k − D2

k

+ D2
k + (

ξ 2
k − h2 − k2λ2 − �2

)
2Dk

(
U 2

k − D2
k

)
]

;

F1(k, ω) = ∑
l [F1]l

k/(ω − El
k), with

[F1](1)
k = −[F1](−1)

k = +�λ(ky + ikx )(ξk + h)

Uk
(
U 2

k − D2
k

) ,

[F1](2)
k = −[F1](−2)

k = −�λ(ky + ikx )(ξk + h)

Dk
(
U 2

k − D2
k

) ;

and F2(k, ω) = ∑
l [F2]l

k/(ω − El
k), with

[F2](1)
k = −[F2](−1)

k = −�λ(ky − ikx )(ξk − h)

Uk
(
U 2

k − D2
k

) ,

[F2](2)
k = −[F2](−2)

k = +�λ(ky − ikx )(ξk − h)

Dk
(
U 2

k − D2
k

) .

The expressions of all 9 independent matrix elements in the
mean-field response function A are

A11 = +
∑
pll ′

[G1]l
p[G1]l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

A12 = −
∑
pll ′

[Γ ]l
p[Γ ]l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

A13 = +
∑
pll ′

[G1]l
p[Γ ]l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

A14 = +
∑
pll ′

[Γ ]l
p[G1]l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

A22 = +
∑
pll ′

[G2]l
p[G2]l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

A23 = −
∑
pll ′

[G2]l
p[Γ ]−l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

A24 = −
∑
pll ′

[Γ ]−l
p [G2]l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

A34 = +
∑
pll ′

[G2]−l
p [G1]l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

A43 = +
∑
pll ′

[G1]l
p[G2]−l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

where f (x) = 1/(ex/T + 1) is the Fermi-Dirac distribution
function. The expressions of the 16 independent matrix ele-
ments in the mean-field response function B are

B11 = −
∑
pll ′

[F ∗
1 ]l

p[F1]l ′
p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

B12 = +
∑
pll ′

[S]l
p[S∗]l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

B13 = −
∑
pll ′

[S]l
p[F1]l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

B14 = −
∑
pll ′

[F ∗
1 ]l

p[S∗]l ′
p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

B21 = +
∑
pll ′

[S∗]l
p[S]l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

B22 = −
∑
pll ′

[F2]l
p[F ∗

2 ]l ′
p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

B23 = +
∑
pll ′

[S∗]l
p[F2]l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

B24 = +
∑
pll ′

[F ∗
2 ]l

p[S]l ′
p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

B31 = −
∑
pll ′

[F1]l
p[S]l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

B32 = +
∑
pll ′

[F2]l
p[S∗]l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,
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B33 = −
∑
pll ′

[F2]l
p[F1]l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

B34 = +
∑
pll ′

[S]−l
p [S∗]l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

B41 = −
∑
pll ′

[S∗]l
p[F ∗

1 ]l ′
p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

B42 = +
∑
pll ′

[S]l
p[F ∗

2 ]l ′
p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

B43 = +
∑
pll ′

[S]l
p[S∗]−l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

,

B44 = −
∑
pll ′

[F ∗
1 ]l

p[F ∗
2 ]l ′

p+q

f
(
El

p

) − f
(
El ′

p+q

)
iωn + El

p − El ′
p+q

.
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