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Single-particle momentum distribution of Efimov states in noninteger dimensions
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We studied the single-particle momentum distribution of mass-imbalanced Efimov states embedded in nonin-
teger dimensions. The contact parameters, which can be related to the thermodynamic properties of the gas,
were extracted from the tail of the single-particle momentum densities. We studied the dependence of the
contact parameters on the progressive change in the noninteger dimension, ranging from three (D = 3) to two
(D = 2) dimensions. Within this interval, we move from the D = 3 regime where the Efimov discrete-scale
symmetry drives the physics to close to the critical dimension, which depends on the mass imbalance, where
the continuum-scale symmetry takes place. We found that the two- and three-body contacts grow significantly in
magnitude with the decrease of the noninteger dimension towards the critical dimension, impacting observables
of resonantly interacting trapped Bose gases.
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I. INTRODUCTION

More than 20 years of advances in cold-atom technologies
not only allowed experimental confirmation of Efimov states
in homonuclear [1–3] and heteronuclear atomic systems [4–6]
but also led to the explosion of the rich research area of
Efimov physics. Nowadays, atomic traps provide remarkable
freedom to conveniently manipulate energies and geometries
to study several aspects of few-body physics. Magnetic fields
tuned to a Feshbach resonance [7] allow controlling the value
of scattering lengths, and asymmetrical magnetic fields allow
squeezing atomic clouds to create three- [8], two- [9], and
one-dimensional [10] environments.

The achievement of the universal regime, in that the scat-
tering length tends to infinity, effectively made possible the
experimental confirmation of Efimov states—weakly bound
systems originally predicted by Efimov in 1970 when he was
studying three identical bosons [11,12]. This effect is charac-
terized by a three-boson system exhibiting an infinite number
of geometrically spaced energy levels (see Refs. [13–16] for
reviews) and was first observed through indirect measure-
ment of the three-body loss peaks in trapped cold atomic
systems [17]. Nowadays, advanced experimental techniques
allow direct measurement of the binding energies of two- and
three-body molecules in cold atomic gases [18,19].

A myriad of developments followed the experimental
confirmation of Efimov states. One of the most notable de-
velopments is the measurements in cold gases (e.g., those in
Refs. [20–24]) of the contacts introduced by Tan [25–27],
which are remarkable universal quantities that parametrize
thermodynamic relations between macroscopic observables
such as the momentum distribution, energy, and response
functions of low-temperature gases interacting via short-range
interactions. Tan found those universal relations by studying
the tail of the single-particle momentum distribution for a two-
component Fermi gas in the presence of strong interactions.
For unitary Bose gases, there is one more contact parameter

[28–31] related to the probability of finding three atoms close
together.

For a long time, the determinant role played by the spatial
dimension in the presence of the Efimov effect in a three-body
system has been known—it is present in three dimensions
but absent in two [32,33]. As a consequence, in two dimen-
sions physical properties of few- and many-boson systems
scale with the two-body energies in the limit of zero-range
interactions [34]. The contacts in particular also reflect such
a scaling [35]. Therefore, the sequential disappearance of the
most excited bound states during a progressive change in the
effective dimension of a confined resonant three-body system
should also have consequences for the contacts extracted from
the tail of the single-boson momentum distributions.

An efficient way to study a dimensional crossover is to
introduce a continuous dimension D and solve the three-
body problem employing only the interatomic interactions,
with the D-dependent centrifugal barrier mocking the external
squeezing potential [36–40]. Although technically convenient
to implement, connecting D to an experimental setup is a key
issue. For three identical bosons in a deformed trap induced
by an external harmonic potential, such a connection was
suggested in Ref. [41] to be

3(D − 2)

(3 − D)(D − 1)
=
(

bho

r2D

)2

, (1.1)

where bho is the oscillator length and r2D is the root-
mean-square radius of the bound three-body system in two
dimensions. A similar expression for a two-body system was
suggested in Ref. [36].

Despite the advances that led to the possibility of com-
pressing and expanding atomic clouds, effectively creating
two- [9] and one-dimensional [10] setups, to the best of our
knowledge, there have not been any experiments designed
to study the effects of continuous deformation of the trap
on Efimov physics. While awaiting such an experimental
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possibility, the rich physics revealed by previous theoretical
studies warrants exploring this subject in connection with the
contacts. Within such a perspective, we study in this work the
D dependence of the two- and three-body contact parameters
in mass-imbalanced three-body systems featuring the Efimov
effect. We extract the contact parameters from the single-
particle momentum distributions at high momentum values.
We treat the three-body problem in terms of D-dimensional
hyperspherical coordinates [42] and solve the problem an-
alytically using the Bethe-Peierls (BP) boundary conditions
employing the method we introduced in Ref. [43].

This work is organized as follows. In Sec. II, for a system
composed of two A atoms and a third one, B, we review the
derivation of the analytical D-dimensional Faddeev compo-
nents of the mass-imbalanced three-body bound-state wave
function. Section III is devoted to the derivation of the mo-
mentum distribution of particle B in D dimensions. We also
discuss in this section the high-momentum regime of the
single-particle momentum distribution from which the two-
and three-body contacts are obtained. Section IV shows quan-
titative results for the momentum density and relates them to
the two- and three-body contacts for three identical bosons
and a mass-imbalanced system of the form 6Li - 133Cs2. The
conclusions are given in Sec. V. Appendixes A to D give
the details of the large-momentum subleading contributions
to the single-particle momentum distribution discussed in
Sec. III. In Appendix E, we display the numerical values of
the two- and three-body parameters for different mass config-
urations in three dimensions.

II. D-DIMENSIONAL EFIMOV STATE

In this section, we review the derivation of the D-
dimensional three-body wave function of an Efimov state
for a mass-imbalanced system at unitarity, according to our
approach introduced in Ref. [43]. We found the solution of
the energy eigenvalue equation for a three-particle system
interacting with a zero-range potential by considering the
Bethe-Peierls boundary condition [44] on the free-energy
eigenstate. This method uses the fact that the short-range
region, where the interaction strongly affects the wave func-
tion, can be neglected because only the asymptotic region,
parametrized by the scattering length, is relevant.

A. Configuration space

We consider three different particles with masses mi, mj ,
and mk and coordinates xi, x j , and xk . One can eliminate the
center-of-mass coordinate and describe the system in terms
of two relative Jacobi coordinates. The three sets of such
coordinates are given by

ri = x j − xk, ρi = xi − mjx j + mkxk

mj + mk
, (2.1)

where (i, j, k) are taken cyclically among (1,2,3). The Fad-
deev decomposition of the three-body wave function allows
us to write it as a sum of three components. In the center of
mass, it reads

�(x1, x2, x3) = ψ (1)(r1, ρ1) + ψ (2)(r2, ρ2) + ψ (3)(r3, ρ3).

Each Faddeev component satisfies the free Schrödinger eigen-
value equation:[

1

2ηi
∇2

ri
+ 1

2μi
∇2

ρi
− E3

]
ψ (i)(ri, ρi ) = 0, (2.2)

where E3 is the energy eigenvalue. The reduced
masses are given by ηi = mjmk/(mj + mk ) and μi =
mi(mj + mk )/(mi + mj + mk ). The BP boundary condition
applies to the total wave function; when applied to the
chosen coordinates pair (ri, ρi ), it reads, in the unitary limit
a → ∞,

[
∂

∂ri
r

D−1
2

i �(ri, ρi )

]
ri→0

= 3 − D

2

⎡
⎣�(ri, ρi )

r
3−D

2
i

⎤
⎦

ri→0

. (2.3)

This solution strategy was applied to different particles and
spins in Ref. [45], and we adapted it to D dimensions closely
following Efimov’s original derivation [46].

For convenience, we simplify the form of the kinetic en-
ergies, introducing the new coordinates r′

i = √
ηi ri and

ρ′
i = √

μi ρi. The three sets of primed coordinates are related
to each other by the orthogonal transformations

r′
j = −r′

k cos θi + ρ′
k sin θi,

ρ′
j = −r′

k sin θi − ρ′
k cos θi, (2.4)

where tan θi = [miM/(mj mk )]1/2, with M = m1 + m2 + m3.
Considering three distinct bosons in a state with vanishing

total angular momentum, we can write a reduced Faddeev
component as χ

(i)
0 (r′

i, ρ
′
i ) = (r′

i ρ ′
i )

(D−1)/2ψ (i)(r′
i, ρ

′
i ). The so-

lution of the corresponding eigenvalue equation for χ
(i)
0 is

found by using hyperspherical coordinates to separate the
variables r′

i = R sin αi and ρ ′
i = R cos αi, so that we can write

χ
(i)
0 (R, αi ) = C (i)F (R) G(i)(αi ), where R2 = r′2

i + ρ ′2
i , αi =

arctan(r′
i/ρ

′
i ), and the coefficients C (i) give the weight be-

tween the different Faddeev components for mass-imbalanced
systems. The functions F (R) and G(i)(αi ) satisfy the following
differential equations:[

− ∂2

∂R2
+ s2

n − 1/4

R2
+ 2κ2

0

]√
RF (R) = 0, (2.5)

[
− ∂2

∂α2
i

− s2
n + (D − 1)(D − 3)

sin2 2αi

]
G(i)(αi ) = 0, (2.6)

where −κ2
0 = E3 and sn is recognized as the Efimov parame-

ter.
Equation (2.6) can be solved in two steps. First, we change

the variable zi = cos 2αi to write Eq. (2.6) as

4
(
1 − z2

i

)∂2G(i)(zi )

∂z2
i

− 4zi
∂G(i)(zi )

∂zi

+
[

s2
n − (D − 1)(D − 3)

1 − z2
i

]
G(i)(zi) = 0. (2.7)

Next, to arrive at the desired equation we define G(i)(zi ) =
(1 − z2

i )1/4g(i)(zi), so that Eq. (2.7) becomes the associated
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Legendre differential equation [47]

(
1 − z2

i

)∂2g(i)(zi )

∂z2
i

− 2zi
∂g(i)(zi)

∂zi
+
[

s2
n − 1

4
− (D − 2)2/4

1 − z2
i

]
g(i)(zi ) = 0, (2.8)

with known analytical solutions:

G(i)(αi ) =
√

sin 2αi

{
PD/2−1

sn/2−1/2 (cos 2αi ) − 2

π
tan[π (sn − 1)/2]QD/2−1

sn/2−1/2 (cos 2αi )

}
, (2.9)

where Pm
n (x) and Qm

n (x) are the associated Legendre functions. A finite value for the Faddeev component ψ (i) at ρi = 0 imposes
G(i)(αi = π/2) = 0 since ρ ′

i = R cos αi.
Considering the solution of the hyperradial equation (2.5) and the hyperangular eigenfunction, Eq. (2.9), each Faddeev

component of the wave function is written as [43]

ψ (i)(r′
i, ρ

′
i ) = C (i)

Ksn

(√
2κ0

√
r′2

i + ρ ′2
i

)
(
r′2

i + ρ ′2
i

)D/2−1/2

√
sin[2 arctan(r′

i/ρ
′
i )]

{cos[arctan(r′
i/ρ

′
i )] sin[arctan(r′

i/ρ
′
i )]}D/2−1/2

×
[

PD/2−1
sn/2−1/2{cos[2 arctan(r′

i/ρ
′
i )]} − 2

π
tan[π (sn − 1)/2]QD/2−1

sn/2−1/2{cos[2 arctan(r′
i/ρ

′
i )]}
]
, (2.10)

where Ksn is the modified Bessel function of the second
kind.

The BP boundary condition at the unitary limit [43] must
be satisfied by the three-body wave function, written as the
sum of its Faddeev components given in Eq. (2.10), when each
relative distance between two of the particles tends to zero.
Taking the three cyclic permutations of {i, j, k}, we have a
homogeneous linear system,

C (i)

2

[
(cot αi )

D−1
2

(
sin 2αi

∂

∂αi
+ D − 3

)
G(i)(αi )

]
αi→0

+ (D − 2)

[
C ( j) G( j)(θk )

(sin θk cos θk )
D−1

2

+ C (k) G(k)(θ j )

(sin θ j cos θ j )
D−1

2

]
= 0,

(2.11)

and using i �= j �= k, we can explicitly write the set of three
linear equations for an ABC system.

The Efimov parameter sn is then computed by solving
the characteristic equation for the linear set obtained from
Eq. (2.11), which reduces to one and two equations for AAA
and AAB systems, respectively. When sn is purely imagi-
nary (sn → is0), the effective 1/R2 potential in Eq. (2.5) is
attractive, giving rise to the discrete scaling symmetry and
to the well-known Landau “fall to the center,” where the
energy spectrum is unbounded from below, namely, the col-
lapse of the three-body system discovered by Thomas [48]
long ago. In particular, for the AAA system in D = 3 the
characteristic equation for s0 reduces to the standard Efimov
equation.

B. Momentum space

To obtain the single-particle momentum distributions, we
need to perform the Fourier transform (FT) of the Faddeev
wave functions, Eq. (2.10). However, instead of performing
the FT directly, we first obtain the spectator amplitude, closely
following Ref.’s [29] derivation for three identical bosons for
D = 3 . The asymptotic form of the associated Legendre poly-

nomials for r′
i → 0 in the hyperangular part of the Faddeev

wave function, Eq. (2.9), has to be used, which leads to

ψ (i)(ρ ′
i , r′

i ) =
r′

i→0
C (i)

√
2[1 − i cot (Dπ/2) tanh (s0π/2)]

�(2 − D/2)

× r′
i
2−D Kis0 (

√
2κ0ρ

′
i )

ρ ′
i

, (2.12)

where �(z) is the gamma function defined for all complex
numbers z, except for the nonpositive integers—this con-
dition restricts the validity of our results to the interval
2 � D < 4.

The spectator function, namely, B(i)(ρi ), can be found by
taking advantage of the fact that each Faddeev component
ψ (i)(ρ ′

i , r′
i ) obeys Schrödinger’s equation for the contact in-

teraction, written as[∇2
r′

i
+ ∇2

ρ ′
i
− 2κ2

0

]
ψ (i)(r′

i, ρ
′
i ) = δ(r′

i )B
(i)(ρ ′

i ). (2.13)

We substitute Eq. (2.12) in (2.13), which, in the limit r′
i → 0,

gives

B(i)(ρ ′
i ) = C (i) 23/2πD/2[1 − i cot(Dπ/2) tanh(s0π/2)]

�(D/2)�(2 − D/2)

× Kis0 (
√

2κ0ρ
′
i )

ρ ′
i

. (2.14)

Now, we take the D-dimensional FT∫
dDρ ′

i exp(−iq′
i · ρ′

i )B
(i)(ρ ′

i ) = χ (i)(q′
i ) (2.15)

to write the spectator function in momentum space (q′
i =

qi/
√

μi) as

χ (i)(q′
i ) = C (i)F(D,s0 )κ

1−D
0

× H2F̃1

(
F ∗

(D,s0 ), F (D,s0 ),
D

2
,− q′2

i

2κ2
0

)
, (2.16)
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where

F(D,s0 ) ≡ i
2D/2+1πD−1 �

[
F (D,s0 )

]
�
[
F ∗

(D,s0 )

]
(D − 2)

× cos
(π

2
(D − is0)

)
csch

(π

2
s0

)
(2.17)

and H2F̃1(a, b, c, z) is the regularized hypergeometrical func-
tion with F (D,s0 ) ≡ (D − 1 + is0)/2. The characteristic log-
periodic behavior of the spectator functions exhibited in the
asymptotic form of the spectator functions for the range of
noninteger dimensions where the Efimov effect exists is found
from Eq. (2.16) at large momentum as

χ
(i)
0 (q′

i ) = C (i)F(D,s0 )2
√

Re(G)2 + Im(G)2

×
(

q′
i√
2

)1−D

cos

[
s0 ln

(
q′

i√
2κ∗

0

)]
, (2.18)

where κ∗
0 ≡ κ0/ exp{arctan[Im(G)/ Re(G)]/s0} and

G = �
(
F (D,s0 ) − F ∗

(D,s0 )

)
�
(
F (D,s0 ) − D/2 − 1

)
�
(
F (D,s0 )

) . (2.19)

We note that the asymptotic form of the spectator function
in Eq. (2.18) also corresponds to the limit of vanishing three-
body energy, with κ∗

0 associated with the necessary three-body
scale parameter, which is chosen to match Eq. (2.18) with the
large-momentum behavior of Eq. (2.16) for the finite-energy
spectator function. The normalization constants are solutions
of Eq. (2.11), namely, the linear homogeneous system that
determines the Efimov parameter.

Figure 1 shows the spectator functions, Eq. (2.16), com-
pared to the zero-energy case, Eq. (2.18), conveniently
normalized to one for an AAB system with A = 133Cs and
B = 6Li embedded in two different dimensions, namely, D =
3 (top panel) and 2.5 (bottom panel). In the low-momentum
region, the damping of the spectator amplitude with respect to
the zero-energy case is an effect of the finite three-body bind-
ing energy. The impact of changing the dimension in which
the 6Li - 133Cs2 system is embedded is manifested mainly
in the different log periodicities of the spectator functions.
The period increases to infinity as the system approaches the
critical dimension, D = 2.231, for which the Efimov state dis-
appears. The increasing separation of the log-periodic nodes
towards the critical dimension is illustrated by comparing the
top and bottom panels of Fig. 1, where the 6Li - 133Cs2 system
is forced to decrease from 3 to 2.5 dimensions, respectively.
We reproduce analytically the numerical results obtained in
Ref. [49] for D = 3.

III. MOMENTUM DISTRIBUTION

In this section, we compute the momentum distribution
of particle B for AAB systems at the unitary limit in D di-
mensions. We recall that particle B is the one responsible for
giving rise to an effective Efimov-like potential in the limit of
heavy A, as we showed in Ref. [39]. We recall that in three
dimensions, Ref. [29] computed the momentum density for
three identical bosons, and Ref. [49] obtained the momentum
densities for an AAB system.

FIG. 1. Spectator functions in momentum space for the
6Li - 133Cs2 system with finite three-body energy χ (i)(qi ) (i = A ≡
133Cs or B ≡ 6Li), computed with Eq. (2.16) for χ (A)(qA) (long-
dashed line) and χ (B)(qB ) (short-dashed line), compared to the
zero-energy case from Eq. (2.18) for χ

(A)
0 (qA) (green solid line) and

χ
(B)
0 (qB ) (blue solid line). Top: three dimensions. Bottom: D = 2.5,

which corresponds to a harmonic-trap length of bho/r2D = √
2.

We start by defining kα (α = i, j, k) as the momenta
of each particle in the rest frame. We have that the Jacobi
momenta from one particle to the center of mass of the
other two and the relative momentum of the pairs are given,
respectively, by

qi = μi

(
ki

mi
− kk + kk

mj + mk

)
, pi = ηi

(
k j

m j
− kk

mk

)
. (3.1)

In the following, we define the single-particle momentum
distribution for particles of types A and B. The Faddeev com-
ponents of the three-body wave function for a zero-range
interacting system, composed of two A identical particles and
a third one, B, can be written using the FT of Eq. (2.13) and
the spectator function given by Eq. (2.16).

We start writing the AAB bound-state wave function in the
basis |qBpB〉,

〈qBpB|�〉 = 1

E3 + p2
B/2ηB + q2

B/2μB

[
χ (B)(qB)

+ χ (A)

(∣∣∣∣pB − qB

2

∣∣∣∣
)

+ χ (A)

(∣∣∣∣pB + qB

2

∣∣∣∣
)]

,

(3.2)
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and in the basis |qApA〉,

〈qApA|�〉 = 1

E3 + p2
A/2ηA + q2

A/2μA

×
[
χ (A)(qA) + χ (B)

(∣∣∣∣pA − qA

1 + A−1

∣∣∣∣
)

+χ (A)

(∣∣∣∣pA + qA

1 + A

∣∣∣∣
)]

. (3.3)

Here, we use mA = 1 in the mass ratio A = mB/mA.
The momentum distributions in D dimensions for particles

A and B are given, respectively, by

nA(qA) =
∫

dD pA |〈qApA|�〉|2, (3.4)

nB(qB) =
∫

dD pB |〈qBpB|�〉|2. (3.5)

The AAB wave function can be determined, up to an overall
constant, by obtaining the coefficients of the spectator func-
tions from the solution of the homogeneous linear system
(2.11). We use the following normalization condition:∫

dDqB nB(qB) = 1 or
∫

dDqA nA(qA) = 1. (3.6)

From Eqs. (3.2) and (3.5), we can split the momentum
density into nine terms, which can be reduced to four, con-
sidering the symmetry between the two identical A particles.
This simplifies the computation of the momentum density to
four contributions:

nB(qB) = n1(qB) + n2(qB) + n3(qB) + n4(qB), (3.7)

which are given by

n1(qB) = |χ (B)(qB)|2
∫

dD pB
1(

E3 + p2
B + q2

B
A+2
4A

)2 ,

(3.8)

n2(qB) = 2
∫

dD pB
|χ (A)(|pB − qB/2|)|2(
E3 + p2

B + q2
B

A+2
4A

)2 , (3.9)

n3(qB) = 2χ (B)
∗
(qB)

∫
dD pB

χ (A)(|pB − qB/2|)(
E3 + p2

B + q2
B

A+2
4A

)2 ,

+c.c., (3.10)

n4(qB) =
∫

dD pB
χ (A)

∗
(|pB − qB/2|)χ (A)(|pB + qB/2|)(

E3 + p2
B + q2

B
A+2
4A

)2 + c.c.

(3.11)

Our task now is to evaluate the integral expressions in
Eqs. (3.8)–(3.11) and extract the contacts from the large-
momentum tail of the distribution densities. The contribution
n1(qB) is straightforward to calculate:

n1(qB) = |χ (B)(qB)|2
q4−D

B

SD
π

4
csc

(
Dπ

2

)
(2 − D)

×
(

A + 2

4A

)D/2−2

, (3.12)

where SD is the area of a D-dimensional sphere. The second
contribution, n2(qB), can be computed from Eq. (3.9) making
the change in variables pB − qB/2 = qA as

n2(qB) = 2
∫

dDqA
|χ (A)(qA)|2(

q2
A + qA.qB + q2

B
A+1
2A

)2 . (3.13)

In order to identify the leading-order term in the large-
momentum region, we perform the manipulation

n2(qB) = 2
∫

dDqA|χ (A)(qA)|2

×
⎡
⎣ 1(

q2
A + qA.qB + q2

B
A+1
2A

)2 − 4A2

(A + 1)2

1

q4
B

⎤
⎦

+ C2

q4
B

, (3.14)

where C2 is the two-body contact, given by

C2 = 8A2

(A + 1)2
SD

∫ ∞

0
dqA qD−1

A |χ (A)(qA)|2. (3.15)

The contact C2 can be related to the derivative with respect
to the scattering length of the gas’s mean energy (or mean
free energy at nonzero temperature). It has the dimension
(length)D−4 and therefore scales as C2 ∝ κ4−D

0 . We observe
that for D = 3 Ref. [50] presented a general virial theorem for
a Hamiltonian with an arbitrary domain. There were derived
virial theorems for several systems; one of them is an Efi-
mov state with zero-range interaction and arbitrary scattering
length. In principle, the Efimov effect in noninteger dimen-
sions does not bring any additional new length scales to the
problem; as such, we assumed that similar relations are also
valid in these situations.

From the integral representations in Eqs. (3.8)–(3.11), we
obtain the oscillatory and nonoscillatory contributions of each
of the four components of the momentum density at large
momentum (detailed calculations of the subleading contri-
butions for n1 to n4 at large momentum can be found in
Appendixes A to D). The leading and subleading contribu-
tions in the asymptotic region are given by

nB(qB) = C2

q4
B

+ C′
3

qD+2
B

+ C3

qD+2
B

× cos

[
2s0 ln

(
qB/κ∗

0

(4μAμB)1/4

)
+ �

]
+ · · · ,

(3.16)

where C′
3 leads to the known nonoscillatory behavior along

with C2, C3, and �, which are, respectively, the amplitudes
and the phase related to the log-periodic oscillatory term.
The parameter C3 is the three-body contact, closely related
to the Efimov effect because it gives the amplitude of the
log-periodic function of the momentum distribution.

The contact parameter C3 and the phase � of the log-
periodic asymptotic density, Eq. (3.16), are computed by
adding Eqs. (A3), (B7), (C4), and (D4). C′

3 is obtained by
adding Eqs. (A4), (B8), (C5), and (D5). Both parameters C3

and C′
3 scale with κ2

0 or, equivalently, the three-body bound-
state energy.
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FIG. 2. Single-particle momentum distribution nB(qB) of an
6Li - 133Cs2 Efimov state for D = 3 (solid line), D = 2.5 (long-
dashed line), and D = 2.3 (short-dashed line).

IV. QUANTITATIVE RESULTS

In this section, we present the numerical results for the
momentum density in noninteger dimensions computed from
Eq. (3.7) with the exact spectator function (2.16), as well
as the subleading contributions to the density given by
Eq. (3.16). We provide examples for real systems, and the con-
tact parameters C2 [from Eq. (3.15)], C3, and C′

3 are compared
with known results for three dimensions.

A. Momentum density

The normalized momentum density nB(qB) is shown for the
low-momentum region in Fig. 2, considering the 6Li - 133Cs2

system in 3, 2.5, and 2.3 dimensions. The results for D = 2.3
situate close to the critical dimension where the transition be-
tween the regimes of the Efimov discrete-scale symmetry and
the continuum one takes place. We observe that by lowering
the noninteger dimension, the squeezing of the system tends
to emphasize the large-momentum region or short distances;
this naively reflects a well-known result in two dimensions:
any weakly attractive potential is enough to bind the system
for the lowest angular momentum state.

Consequently, the large-momentum region is privileged,
which is also expressed by the enhancement of the momentum
density and the associated two- and three-body contacts. This
becomes evident in Fig. 2 when one follows the decrease of
the noninteger dimension by observing that density is depleted
close to qB = 0 and enhanced for larger values of qB/κ0.
What is visible in Fig. 2 is essentially the tail C2/q4

B, which
indicates that C2 increases considerably from 3 to the critical
dimension, where the Efimov effect vanishes.

In Fig. 3, we show the results for the subtracted single-
particle momentum distribution [nB(qB) − C2/q4

B] for an
Efimov state of the 6Li - 133Cs2 system in 3 (top panel), 2.5
(middle panel), and 2.3 (bottom panel) dimensions. The re-
sults are obtained from computing Eq. (3.7) with the exact
spectator function (2.16). These results are compared with
the subleading terms in the asymptotic expansion given in
Eq. (3.16), and we find that the asymptotic region is reached
quite quickly and the condition qB  κ0 can be relaxed to
qB � κ0.

FIG. 3. Subtracted single-particle momentum distribution,
nB(qB ) − C2/q4

B, of an 6Li - 133Cs2 Efimov state for D = 3 (top
panel), D = 2.5 (middle panel), and D = 2.3 (bottom panel).
Results are obtained with the regular spectator function (2.16)
(dashed lines) and subtracted asymptotic formula obtained with
Eq. (2.18) (solid lines).

Comparing the top, middle, and bottom panels, we observe
the increasing separation between the nodes of the momentum
distribution for 3, 2.5, and 2.3 dimensions, tending to infinity
as the system approaches the critical dimension, where the
Efimov effect disappears. The wavelength associated with
the log periodicity at large momentum is directly related to the
value of the Efimov parameter for each noninteger dimension,
such that it diverges towards the critical dimension where
s0 → 0.
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TABLE I. Comparison with the contacts for D = 3 obtained in
Refs. [29,49]. The results from Ref. [29] were multiplied by a factor
of 3(2π )3 to agree with the normalization in Eq. (3.6).

mB/mA Contacts Ref. [49] Ref. [29] This work

6/133 C2 0.0274 0.0301
C3 0.0062
C′

3 −0.0067
� −4.5201

1 C2 0.0715 0.0713 0.0713
C3 0.1199 0.1199
C′

3 0 0 0
� −0.8728 −0.8728

It is also possible to observe in Fig. 3 that the amplitude
of the log-periodic oscillations increases with a decrease in
the dimension from 3 to 2.3. This effect corresponds to the
enhancement of C3 by lowering the noninteger dimension,
mimicked by strengthening the three-dimensional confine-
ment of the system in one direction. Furthermore, we notice
that the mean value reflected in |C′

3| also increases. In what
follows, we will further explore the dependence of the con-
tact parameters by changing the noninteger dimension in two
systems: 6Li - 133Cs2 and one with three identical bosons.

B. Contact parameters

We start by presenting our results for the contacts and
phase for three-particle systems in three dimensions. In Ta-
ble I, we compare our calculations with results from Ref. [49]
for mB/mA = 6/133 and from Ref. [29] for mB/mA = 1. The
small discrepancy between our results for C2 and the ones
from Ref. [49] is due to the choice of the second excited
Efimov state in that work, while in the present work we have
an arbitrarily high excited state.

Figure 4 illustrates the dependence of C2, C3, C′
3, and �

on the mass ratio, ranging from heavy-heavy-light to light-
light-heavy systems. In the top panel, we show results for the
two- and three-body parameters, C2, C3, and C′

3, considering
a wide range of mass-imbalanced three-body systems. In the
bottom panel of Fig. 4, we show the results for the phase � of
the subleading log-periodic term in the asymptotic form of the
momentum density. We observe that C3, C′

3, and � saturate for
the light-light-heavy system (mB/mA  1), in addition to C2.
Furthermore, for mB/mA  1, the heavy particle B tends to
be closer to the center of mass of the AAB system, increasing
the probability of finding it in the large-momentum region,
which is reflected in the large values of the contacts. At the
other extreme of mB/mA � 1, where the Efimov parameter
increases and the density of the light particle B becomes very
diffuse, making it less likely to find it at small distances, the
contacts decrease.

We should observe that the three-body parameter C3 is
finite for any mass ratio. For three identical bosons, the
contact C′

3 vanishes, as already shown in Ref. [29]. In this
case, the subleading contribution to the momentum distribu-
tion presents a log-periodic oscillation around zero. For all
the other cases where mA �= mB, we found that C′

3 is finite,

FIG. 4. Three- and two-body contact parameters (top panel) and
phase (bottom panel), considering an AAB system with different mass
ratios embedded in three dimensions.

which is in agreement with the results obtained numerically
in Ref. [49].

A comment is appropriate here. Reference [31] showed
that a universal relation links C3 to the derivative of the
energy with respect to the three-body parameter. We expect
that the term proportional to C′

3 will not contribute to this
relation since, in the asymptotic momentum density, this con-
tact appears in Eq. (3.16) without explicit dependence on
the three-body parameter (represented by κ∗

0 ), contrary to C3,
which comes with the log-periodic dependence on the three-
body parameter.

In Fig. 5, we show the dependence of the contacts and
phase on the noninteger dimension for the 6Li - 133Cs2 system
from noninteger dimension 2.3 up to 3. In the top panel, we
observe that the contacts decrease when moving from 2.3 to
3 dimensions, which can be understood as the system turning
out to be more dilute for a fixed binding energy as the dimen-
sion increases, and in this particular case, 6Li is less likely to
be found at short distances as one increases the dimension.
Therefore, the asymptotic tail for large momentum is depleted
by increasing the dimension, which is reflected in the lowering
of the contacts. For completeness, we present in the bottom
panel the phase as a function of the dimension.

Finally, in Fig. 6, we consider the case of three resonantly
interacting identical bosons. We change the noninteger di-
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FIG. 5. Three- and two-body contact parameters and phase for
the 6Li - 133Cs2 system in noninteger dimensions from 2.3 to 3. Top:
100C′

3/κ
2
0 (solid line), 100 |C3|/κ2

0 (long-dashed line), 20 |C2|/κ4−D
0

(short-dashed line), and s0 (dot-dashed line). Bottom: phase �/π

(dotted line).

mension from 3 to D = 2.4. In this case, the Efimov effect
is present until the critical dimension of Dc = 2.3, which
corresponds to a squeezed trap with bho/r2D = √

0.994. We
observe in Fig. 6 that C′

3 is always zero, while towards the
critical dimension the two- and three-body contacts increase,
and the phase approaches a value of −0.737 for D = 2.4 or a
squeezed trap with bho/r2D = √

1.429.

V. SUMMARY

In this work, we calculated the single-particle momentum
distribution of an Efimov mass-imbalanced state in noninteger
dimensions at unitarity. We used the wave function of an
Efimov state with a finite three-body binding energy, obtained
previously in Ref. [43]; in that work, the three-body energy
eigenstate was derived in configuration space by considering
the Bethe-Peierls boundary conditions in the limit of a zero-
range interaction and infinite two-body scattering length.

We studied the single-particle momentum distribution in
terms of the relative momentum of particle B with respect to
the AA subsystem. For that, the Fourier transform of the Efi-
mov state wave function was performed while relying on the
spectator functions obtained analytically by the application of
the free resolvent to each Faddeev component of the wave

FIG. 6. Three- and two-body contact parameters and phase for
three identical bosons in noninteger dimensions. Top: C3/κ

2
0 (long-

dashed line) and C2/κ
4−D
0 (short-dashed line). Bottom: phase �/π

(dotted line).

function, following the method developed in Ref. [29]. These
spectator functions depend only on the relative momentum
of the spectator particle to the center of mass of the interact-
ing pair. They have characteristic log-periodic oscillations at
large momentum, which depend on the noninteger dimension.
Furthermore, due to the finite three-body binding energy, the
spectator functions are finite for vanishing momentum. Their
analytical form reproduces the known numerical results from
the literature [49].

The task of deriving the leading and subleading con-
tributions to the high-momentum tail of the single-particle
momentum density and the associated two- and three-body
contact parameters was made possible by using the analytic
form of the spectator functions in momentum space. Indepen-
dent of the noninteger dimension, the leading nonoscillatory
large-momentum tail scales as 1/q4 [see Eqs. (3.14) and
(3.16)] and is normalized by the two-body contact. The sub-
leading term is proportional to 1/qD+2; it is composed of the
sum of two contributions, a log-periodic one and a nonoscil-
latory one, each of which is normalized by the corresponding
three-body contact, as shown in Eq. (3.16).

The contact parameters were then computed by decreas-
ing the noninteger dimension starting from three dimensions,
where the Efimov discrete scaling drives the physics of the
three-body system, to close to the critical dimension, where
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the transition to the continuum-scale symmetry takes place.
We found that the two- and three-body parameters tend to
increase in magnitude close to the critical dimension, inde-
pendent of the mass imbalance of the three-body system.

We explored in detail the systems formed by 6Li - 133Cs2

and three identical bosons. The parameter C′
3, normalizing

the subleading nonoscillatory term, is zero for three identi-
cal bosons regardless of the noninteger dimension. For the
6Li - 133Cs2 system, we found that the two- and three-body
contact parameters increase close to the critical dimension
where the Efimov effect disappears. Furthermore, in this case,
the phase of the log-periodic term approaches −1.143 for
D = 2.4. The expectation of the growth of the two- and three-
body contact parameters with the decrease of the noninteger
dimension seems natural, as one can naively infer that, in this
situation, the particles have the chance to stay closer to the
system confined in an oblate trap.

In summary, we have explored different aspects of the
momentum density of particle B for mass-imbalanced AAB
systems in noninteger dimensions, which can be a useful
probe of the effect of trap deformation on few-body dynamics
and on the Efimov phenomenon. The hallmark of this transi-
tion from three dimensions to the critical dimension where
the Efimov effect vanishes can be seen in the asymptotic
momentum distribution, where we showed that the contact
parameters grow and, consequently, so do their effects on the
evolution of the many-body properties with the decrease of
the noninteger dimension.
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APPENDIX A: SUBLEADING CONTRIBUTIONS TO n1(qB)

Equation (3.8) can be written in spherical coordinates as

n1(qB) = |χ (B)(qB)|2SD

∫ ∞

0
d pB

pD−1
B(

E3 + p2
B + q2

B
2μB

)2 ,

(A1)

where SD = 2πD/2/�(D/2). Changing variables pB/qB = p′
B

and considering qB  √
2μBE3 allow us to write

n1(qB) = |χ (B)(qB)|2
q4−D

B

SD

∫ ∞

0
d p′

B

p′D−1
B(

p′2
B + 1/2μB

)2
= |χ (B)(qB)|2

q4−D
B

SD
(2 − D)π

4
csc

(
Dπ

2

)
(2μB)2−D/2.

(A2)

For large momentum, we use the asymptotic specta-
tor function, Eq. (2.18), and from simple manipulations
we separate the oscillatory term, namely, the log-periodic
one,

nosc
1 (qB) = |C (B)|2

qD+2
B

cos

[
2s0 ln

(
qB√

2μBκ∗
0

)]∣∣F(D,s0 )

∣∣2
× SDπ

(
1 − D

2

)
[Re(G)2 + Im(G)2]

× (2μB)1+D/2 csc

(
Dπ

2

)
, (A3)

and the nonoscillatory part,

nnosc
1 (qB) = |C (B)|2

qD+2
B

∣∣F(D,s0 )

∣∣2SDπ

(
1 − D

2

)
(2μB)1+D/2

× [Re(G)2 + Im(G)2] csc

(
Dπ

2

)
, (A4)

where G is written in Eq. (2.19).

APPENDIX B: SUBLEADING CONTRIBUTIONS TO n2(qB)

Taking the large-momentum limit, where qB  √
2μBE3, and changing the variables to qA = pB − qB/2, Eq. (3.9) can be

written as

n2(qB) = 2
∫

dDqA
|χ (A)(qA)|2(

q2
A + qA · qB + q2

B/2μB
)2 . (B1)

In spherical coordinates we have

n2(qB) = 2(2π )

q4
B

D−3∏
k=1

∫ π

0
dθk sink θk

∫ ∞

0
dqA qD−1

A |χ (A)(qA)|2
∫ π

0
dθ sinD−2 θ

1

[(qA/qB)2 + (qA/qB) cos θ + (A + 1)/2A]2 ;

(B2)

changing the variables to q′
A = qA/qB, we find that

n2(qB) = 2SD

q4−D
B

∫ ∞

0
dq′

A q′ D−1
A |χ (A)(qB q′

A)|2H (q′
A), (B3)
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with

H (y) = 4A2(D − 2)

A2(4y4 + 1) + A(4y2 + 2) + 1
+ 4A2(3 − D)

(
2y2 A + A + 1

)
[2A(y − 1)y + A + 1]2[2y(y + 1)A + A + 1]

× H2F1

(
1,

D − 1

2
, D − 1,− 4Ay

2(y − 1)yA + A + 1

)
, (B4)

where H2F1(a, b, c, z) is the hypergeometrical function.
In order to separate the oscillatory and nonoscillatory contributions in n2(qB) (B3), we perform the following manipulation:

n2(qB) = 2SD

q4−D
B

∫ ∞

0
dq′

A q′D−1
A |χ (A)(qB q′

A)|2
(

H (q′
A) − 4A2

(A + 1)2

)
+ C2

q4
B

, (B5)

where C2 is the two-body contact parameter and was written in Eq. (3.15).
In order to derive the oscillatory part of n2(qB) at large momentum, we introduce the asymptotic spectator function, Eq. (2.18),

in the first term of Eq. (B5), i.e., n2(qB) − C2/q4
B. cos2 from the asymptotic expression for |χ (A)(qB q′

A)|2 is algebraically
manipulated in the form

cos2

[
s0 ln

(
q′

A qB√
2μAκ∗

0

)]
= 1

2
+ 1

2

{
cos

[
2s0 ln

(
qB√

2μAκ∗
0

)]
cos[2s0 ln(q′

A)]

− sin

[
2s0 ln

(
qB√

2μAκ∗
0

)]
sin[2s0 ln(q′

A)]

}
. (B6)

We can write the oscillatory term as

nosc
2 (qB) − C2

q4
B

=
∣∣C (A)

∣∣2
qD+2

B

21+DSD

μ1−D
A

[Re(G)2 + Im(G)2]
∣∣F(D,s0 )

∣∣2 ∫ ∞

0
dq′

A q′1−D
A

(
H (q′

A) − 4A2

(A + 1)2

)

×
{

cos

[
2s0 ln

(
qB√

2μAκ∗
0

)]
cos[2s0 ln(q′

A)] − sin

[
2s0 ln

(
qB√

2μAκ∗
0

)]
sin[2s0 ln(q′

A)]

}
(B7)

and the nonoscillatory one as

nnosc
2 (qB) − C2

q4
B

= |C (A)|2
qD+2

B

21+DSD

μ1−D
A

[Re(G)2 + Im(G)2]
∣∣F(D,s0 )

∣∣2 ∫ ∞

0
dq′

A q′1−D
A

(
H (q′

A) − 4A2

(A + 1)2

)
. (B8)

APPENDIX C: SUBLEADING CONTRIBUTIONS TO n3(qB)

Taking n3(qB) from Eq. (3.10) with the change in variables pB − qB/2 = qA and considering the large-momentum limit,
namely, qB 

√
2AE3/(A + 1), we can write

n3(qB) =
∫

dDqA
2χ (B)

∗
(qB) χ (A)(qA)(

q2
A + qA.qB + q2

B
A+1
2A

)2 + c.c. (C1)

The spectator functions are real; once again, after changing the variables qA/qB = q′
A and integrating in spherical coordinates,

we get

n3(qB) = χ (B)
∗
(qB)

4SD

q4−D
B

∫ ∞

0
dq′

A q′D−1
A χ (A)(qBq′

A)H (q′
A), (C2)

where H (q′
A) is given by Eq. (B4). The asymptotic form is found by using the spectator function from Eq. (2.18), leading to

n3(qB) = C (B)∗C (A)

qD+2
B

2D+3SD(μBμA)D/2−1/2[Re(G)2 + Im(G)2]

{
cos

[
s0 ln

(
qB√

2μBκ∗
0

)]

× cos

[
s0 ln

(
qB√

2μAκ∗
0

)]∫ ∞

0
dq′

AH (q′
A) cos[s0 ln(q′

A)]

− sin

[
s0 ln

(
qB√

2μBκ∗
0

)]
sin

[
s0 ln

(
qB√

2μAκ∗
0

)]∫ ∞

0
dq′

AH (q′
A) sin[s0 ln(q′

A)]

}
. (C3)

033307-10



SINGLE-PARTICLE MOMENTUM DISTRIBUTION OF … PHYSICAL REVIEW A 108, 033307 (2023)

The algebraic manipulation of the cosines and sines in the equation above allows us to identify the oscillatory term as

nosc
3 (qB) = C (B)∗C (A)

qD+2
B

2D+2SD(μBμA)D/2−1/2
∣∣F(D,s0 )

∣∣2[Re(G)2 + Im(G)2]

{
cos

[
s0 ln

(
q2

B/κ∗2
0

2
√

μAμB

)]

×
∫ ∞

0
dq′

AH (q′
A) cos[s0 ln(q′

A)] − sin

[
s0 ln

(
q2

B/κ∗2
0

2
√

μAμB

)]∫ ∞

0
dq′

AH (q′
A) sin[s0 ln(q′

A)]

}
(C4)

and the nonoscillatory one as

nnosc
3 (qB) = C (B)∗C (A)

qD+2
B

2D+2SD(μBμA)D/2−1/2
∣∣F(D,s0 )

∣∣2[Re(G)2 + Im(G)2]

{
cos

[
s0 ln

(√
μB

μA

)]

×
∫ ∞

0
dq′

AH (q′
A) cos[s0 ln(q′

A)] − sin

[
s0 ln

(√
μB

μA

)]∫ ∞

0
dq′

AH (q′
A) sin[s0 ln(q′

A)]

}
. (C5)

APPENDIX D: SUBLEADING CONTRIBUTIONS TO n4(qB)

The argument of the spectator function in Eq. (3.11) is

∣∣∣∣pB ± qB

2

∣∣∣∣ = qB

√
p2

B

q2
B

+ 1

4
± pB

qB
cos θ ; (D1)

then changing the variables to pB/qB = p′
B and considering the large-momentum limit, we have

n4(qB) = 1

q4−D
B

4π

D−3∏
k=1

∫ π

0
dθk sink (θk )

∫ ∞

0
d p′

B

p′D−1
B[

p′2
B + (A + 2)/4A

]2
∫ π

0
dθ sinD−2 θχ (A)

∗
(qB p′

B−)χ (A)(qB p′
B+), (D2)

where p′
B± =

√
p′2

B + 1
4 ± p′

B cos θ . The product of the spectator functions (2.18) allow us to write

χ (A)
∗
(qB p′

B−)χ (A)(qB p′
B+) = |C (A)|2[Re(G)2 + Im(G)2]2

∣∣F(D,s0 )

∣∣2( qB√
2μA

√
p′

B− p′
B+

)2−2D

×
{

cos

[
s0 ln

(
p′

B+
p′

B−

)]
+ cos

[
s0 ln

(
q2

B p′
B+ p′

B−
2μAκ∗ 2

0

)]}
. (D3)

Then, the oscillatory contribution in Eq. (D2) is

nosc
4 (qB) = |C (A)|2

qD+2
B

22+DπD/2−1/2

�[D/2 − 1/2]

∣∣F(D,s0 )

∣∣2μD−1
A [Re(G)2 + Im(G)2]

×
∫ ∞

0
d p′

B

p′D−1
B[

p′2
B + (A + 2)/4A

]2
∫ π

0
dθ sinD−2 θW 1/2−D/2 cos

[
s0 ln

(
q2

B

2μAκ∗2
0

W 1/2

)]
, (D4)

where

W = (p′2
B + 1

4 + p′
B cos θ

)(
p′2

B + 1
4 − p′

B cos θ
)
.

The nonoscillatory contribution in Eq. (D2) can be identified as

nnosc
4 (qB) = |C (A)|2

qD+2
B

22+DπD/2−1/2

�[D/2 − 1/2]

∣∣F(D,s0 )

∣∣2μD−1
A [Re(G)2 + Im(G)2]

∫ ∞

0
d p′

B

p′D−1
B[

p′2
B + (A + 2)/4A

]2
×
∫ π

0
dθ sinD−2 θW 1/2−D/2 cos

⎡
⎣s0 ln

⎛
⎝
√

p′2
B + 1

4 + p′
B cos θ

p′2
B + 1

4 − p′
B cos θ

⎞
⎠
⎤
⎦. (D5)

APPENDIX E: CONTACT PARAMETERS AND PHASES FOR MASS-IMBALANCED SYSTEMS

Table II displays numerical results for the two- and three-body contact parameters and phases for several mass-imbalanced
atomic systems for D = 3. We also show the mass ratio and Efimov scale parameter for each weakly bound molecule. Our
findings are in agreement with those from Ref. [49] for mB/mA = 6/133 and from Ref. [29] for mB/mA = 1.
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TABLE II. Two- and three-body contact parameters and phases for several mass-imbalanced systems for D = 3.

System mB/mA C2/κ0 C3/κ
2
0 C′

3/κ
2
0 � s0

174Yb2 - 6Li 0.0345 0.0277 0.0049 −0.0056 −5.5376 2.2590
133Cs2 - 6Li 0.0451 0.0301 0.0062 −0.0067 −4.5201 2.0059
87Rb2 - 6Li 0.0690 0.0387 0.0120 −0.0113 −3.4030 1.6833
41K2 - 6Li 0.1463 0.0551 0.0289 −0.0239 −2.0926 1.3019
23Na2 - 6Li 0.2609 0.0679 0.0497 −0.0379 −1.5428 1.1331
87Rb2 - 41K 0.4713 0.0754 0.0770 −0.0395 −1.1413 1.0406
133Cs2 - 87Rb 0.6544 0.0753 0.0968 −0.0271 −0.9814 1.0162
133Cs3 1.0000 0.0713 0.1199 0.0000 −0.8728 1.0062
41K2 - 87Rb 2.1219 0.0625 0.2229 0.0872 −0.7819 1.0269
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